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Transitive Factorizations in the Symmetric Group, and Combinatorial
Aspects of Singularity Theory

IAN P. GOULDEN AND DAVID M. JACKSON

We consider the determination of the numberck(α) of ordered factorizations of an arbitrary permu-
tation onn symbols, with cycle distributionα, into k-cycles such that the factorizations have minimal
length and the group generated by the factors acts transitively on then symbols. The casek = 2
corresponds to the celebrated result of Hurwitz on the number of topologically distinct holomorphic
functions on the 2-sphere that preserve a given number of elementary branch point singularities. In
this case the monodromy group is the full symmetric group. Fork = 3, the monodromy group is the
alternating group, and this is another case that, in principle, is of considerable interest.

We conjecture an explicit form, for arbitraryk, for the generating series forck(α), and prove that
it holds for factorizations of permutations with one, two and three cycles (soα is a partition with at
most three parts). Our approach is to determine a differential equation for the generating series from
a combinatorial analysis of the creation and annihilation of cycles in products under the minimality
condition.

c© 2000 Academic Press

1. INTRODUCTION

1.1. Background.This paper has two goals. The first is to provide some general techniques
to assist in the solution of the type of enumerative questions about permutation factorization,
with transitivity and minimality conditions, that originate in the classical study of holomorphic
mappings and branched coverings of Riemann surfaces. Thus, we are concerned with certain
combinatorialquestions that are encountered in aspects ofsingularity theory. The appearance
of such questions has long been recognized, and the reader is directed to Arnold [1], for
example, for further instances.

Very briefly, the classical construction concerns rational mappings from a Riemann sur-
face to the sphere. Letα be the partition formed by the orders of the poles of this mapping.
Each factor in an ordered factorization is associated with a distinguished branch point, and it
specifies the sheet transitions imposed in a closed tour of the branch point, starting from an
arbitrarily chosen base point on the codomain of the mapping. In the generic case, the sheet
transitions are transpositions (2-cycles). The concatenation of the tours for each branch point,
from the same base point, in the designated order, gives a sheet transition that is the product
of the sheet transitions for each branch point. But this sheet transition is a permutation with
α as its cycle type. The transitivity condition ensures that the ramified covering is connected,
so the resulting Riemann surface is a ramified covering of a sphere. The minimality condition
ensures that the covering surface is also a sphere. The monodromy group is the group freely
generated by the sheet transitions.

The particular class of permutation factorization questions that we shall consider in this
paper involve as factors onlyk-cycles, for some fixed, but arbitrary, value ofk. The results
that we are able to obtain are thus extensions of Hurwitz’s [13] result with transpositions as
factors, which arose in the singularity theory context described above.

The second goal is to investigate the possibility of determining analogues of Macdonald’s
‘top’ symmetric functions that will be appropriate for accommodating the transitivity con-
dition. A striking common element between the results of this paper on transitive, minimal
ordered factorizations, and Macdonald’s symmetric functions is the functional equation

w = xew
k−1
, (1)
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that arises in both settings whenk-cycles are factors, for apparently different reasons. The
nature of this possible connection is explored more fully in Section1.5.

For the most part we now regard ordered factorizations as discrete structures and we treat
them by combinatorial techniques. Throughout, we work in the appropriate ring of formal
power series. Thus, for example, the functional Eqn (1) has a unique solution for formal
power series inx. Although we have not completely attained the two goals, we have provided
a substantial amount of methodology for the first, and concrete evidence for the second. We
hope that the results are substantial enough to provoke others to explore further.

1.2. Minimal ordered factorizations.Let κ(π) denote the number of cycles inπ ∈ Sn.
There is an obvious restriction onκ(π) under permutation multiplication.

PROPOSITION1.1. Letπ, π ′ ∈ Sn. Then(n− κ(π))+ (n− κ(π ′)) ≥ (n− κ(ππ ′)).

If (σ1, . . . , σ j ) ∈ S
j
n andσ1 · · · σ j = π, then(σ1, . . . , σ j ) is called anordered factorization

of π. Immediately from Proposition1.1, we obtain the inequality

j∑
i=1

(n− κ(σi )) ≥ n− κ(π). (2)

In the case of equality, we call(σ1, . . . , σ j ) ∈ S
j
n aminimalordered factorization ofπ .

Such factorizations have an elegant theory and many enumerative applications (see, for
example, Goulden and Jackson [9]), including permissible commutation of adjacent factors. In
particular, [9] contains an explicit construction for a set of symmetric functions (Macdonald’s
top symmetric functions) that we shall return to in Section1.5 of the Introduction. Now we
turn to the topic of the present paper.

1.3. Minimal, transitive ordered factorizations.We write α ` n to indicate thatα is a
partition ofn, andCα for the conjugacy class ofSn indexed byα. Let l (α) denote the number
of parts inα. If π ∈ Cα thenκ(π) = l (α). An ordered factorization(σ1, . . . , σ j ) is said to be
transitive if the subgroup ofSn generated by the factors acts transitively on{1, . . . ,n}. We
consider the case in which each of the factors is inC[k,1n−k], and is therefore a purek-cycle.
A transitive ordered factorization ofπ ∈ Cα into purek-cycles with the minimal choice ofj
consistent with the other conditions is said to beminimal. In this case,j = µk(α), where

µk(α) =
n+ l (α)− 2

k− 1
, (3)

as we shall prove in Proposition2.1. For example, whenk = 3, suppressing 1-cycles in the
factors,

(247)(586)(479)(136)(235) = (1386)(254)(79), (4)

and ((247), (568), (479), (136), (235)) is a minimal, transitive ordered factorization of the
permutation(1386)(254)(79) into 3-cycles with five factors (minimality holds in this example
sinceµ3([4,3,2]) = 5).

Such factorizations are encountered in a number of contexts. These include, for example,
the topological classification of polynomials of a given degree and a given number of critical
values, and the moduli space of covers of the Riemann sphere and properties of the Hurwitz
monodromy group, and applications to mathematical physics [2]. The reader is directed to [3,
4, 14] for further background information.
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The number of minimal, transitive ordered factorizations of an arbitrary but fixedπ ∈ Cα
into purek-cycles is denoted byck(α). Hurwitz [13] conjectured the expression forc2(α), as
a consequence of his study of holomorphic mappings on the sphere, to be

c2(α) = nl (α)−3(n+ l (α)− 2)!
l (α)∏
j=1

α
α j
j

(α j − 1)!
. (5)

(See also Strehl [17] for the proof of an identity that completes Hurwitz’s treatment.) A shorter
and self-contained proof of this result has been given by Goulden and Jackson [10]. The
special casec2([1n

]) was derived independently by Crescimanno and Taylor [2]. For related
work, in the language of singularity theory, see [16].

The casek = 3 is also of considerable interest, since the subgroup generated in this case is
the alternating group.

1.4. A conjecture and the supporting results.The main conjecture of this paper concerns
the form of the generating series for theck(α). Let u, z, p1, p2, . . . be indeterminates and let
pα = pα1 pα2 . . .. Let

F (m)(u, z; p1, p2, . . .) =
∑
n≥1

k−1|n+m−2

∑
α`n

l (α)=m

ck(α) |Cα| pα
uµk(α)

µk(α)!

zn

n!
. (6)

ThenF (m) is a formal power series inz with coefficients that are polynomial inu, p1, p2, . . . ,

and we will be working in this ring. The choice of this generating series to be exponential in
u andz, and ordinary inp1, p2, . . ., will become apparent in Section2.

It is more convenient to work with a symmetrised form of the generating series, defined in
terms of the following linear symmetrization operatorψm. If l (α) = m, let

ψm(pαui z j ) =
∑
σ∈Sm

x
ασ(1)
1 · · · x

ασ(m)
m =

(∏
r≥1

vr !

)
mα(x1, . . . , xm), (7)

wheremα is the monomial symmetric function indexed byα, andvr is the number of parts of
α equal tor , for eachr ≥ 1. If l (α) 6= m, then the value ofψm is 0. Now let

P(m)(x1, . . . , xm) = ψm(F
(m)). (8)

In the main conjecture that follows, we letwi = w(xi ) for i ≥ 1, wherew(x) is the
unique power series solution of the functional equation given in (1). Of course,w1, . . . are
algebraically independent.

CONJECTURE1.2 (MAIN CONJECTURE). For m≥ 1,(
m∑

i=1

xi
∂

∂xi

)3−m

P(m)(x1, . . . , xm) = S(m)(w1, . . . , wm)

m∏
i=1

xi
dwi

dxi
,

where S(m)(w1, . . . , wm) is a symmetric polynomial inw1, . . . , wm.

The conjectured form for the seriesP(m) therefore involves rational expressions inw1, . . . ,

wm. To see this, differentiate (1) with respect tox, to obtain the rational form

x
dw

dx
=

w

1− (k− 1)wk−1
. (9)
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Note that the dependence onk not only resides in the coefficients of the symmetric polyno-
mial (which we conjecture to be polynomials ink), but also in the functional Eqn (1). The
dependence of the explicit formal power series forw on k through this functional equation is
actually straightforward, and is seen immediately by Lagrange’s Theorem to be

w(x) =
∑
m≥0

(1+ (k− 1)m)m−1

m!
x1+(k−1)m. (10)

In this paper, we determine explicitlyP(m) for the casesm = 1,2,3. These are all of
a form that supports the above conjecture. Explicit expressions forS(m) in these cases are
stated below. LetV(w1, . . . , w j ) denote the Vandermonde determinant inw1, . . . , w j , and
let hi (w1, . . . , w j ) denote the complete symmetric function of degreei in w1, . . . , w j .

THEOREM 1.3. S(1)(w1) = 1.

THEOREM 1.4. S(2)(w1, w2) = (w
k−1
1 − wk−1

2 )2/V(w1, w2)
2
= h2

k−2(w1, w2).

THEOREM 1.5. S(3)(w1, w2, w3) = G2/V(w1, w2, w3)
2
= (hk−3+(k−1)h2k−4)

2,where

G = w1(1− (k− 1)wk−1
1 )(wk−1

3 − wk−1
2 )+ w2(1− (k− 1)wk−1

2 )(wk−1
1 − wk−1

3 )

+w3(1− (k− 1)wk−1
3 )(wk−1

2 − wk−1
1 ), and hi = hi (w1, w2, w3).

The proofs of these results are given in Section4. The method is to solve a partial dif-
ferential equation forP(m) that is obtained in Section3. This equation is itself deduced by
symmetrizing a partial differential equation forF (m) that is obtained in Section2. The latter
is determined by a combinatorial analysis of minimal permutation multiplication. The deter-
mination of further cases, at present, seems to be intractable, despite the fact that we have a
general solution scheme, as we will discuss in Section5.

The forms obtained above in the first three cases are remarkably simple, although it has
not been possible to conjecture a general form based on this evidence. AlthoughS(1), by
default,S(2) andS(3) are perfect squares, we do not believe that this holds in general. Note
that S(m) does not restrict toS(m−1) throughwm = 0, in the casesm = 2 andm = 3. Also
note that if we substitutek = 2 in Theorems1.4 and1.5 above, then we immediately obtain
S(2) = S(3) = 1. In the following result, we demonstrate that this is true whenk = 2 for an
arbitrary choice ofm as a direct consequence of Hurwitz’s result (5).

LEMMA 1.6. If k = 2, then S(m)(w1, . . . , wm) = 1 for m≥ 1.

PROOF. From (5), for k = 2, we have(
m∑

i=1

xi
∂

∂xi

)3−m

P(m)(x1, . . . , xm) =
∑
n≥1

∑
α`n

l (α)=m

|Cα|
n!

(
m∏

j=1

α
α j+1
j

α j !

) ∑
σ∈Sm

x
ασ(1)
1 · · · x

ασ(m)
m

=
1

m!

∑
α1,...,αm≥1

(
m∏

j=1

α
α j
j

α j !

) ∑
σ∈Sm

x
ασ(1)
1 · · · x

ασ(m)
m

=

m∏
j=1

x j
dw j

dxj
.

The result now follows. 2

We note that, in the case of transpositions, together with Vainshtein [11], we have recently
been able to obtain similar results in the case where there are two more than the minimal
number of factors. These correspond to holomorphic mappings from the torus.
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1.5. Symmetric functions and minimal ordered factorizations.In [9] (see also [15]) an ex-
plicit construction is given for Macdonald’s ‘top’ symmetric functionsuλ, indexed byλ ` n.
They have the property that the number of minimal ordered factorizations(σ1, . . . , σ j ) of π ,
whereσi ∈ Cβi , i = 1, . . . , j , and for eachπ ∈ Cλ, is given by

[uλ−1]uβ1−1 · · · uβ j−1, (11)

whereβi−1 is the partition obtained by subtracting one from each part ofβi . Several examples
of their use in enumerative questions is given in [9].

The symmetric functionsuλ, whereλ ` n, are constructed as follows. LetH(t; x) be the
generating series for the complete symmetric functionshi (x) of degreei in x = (x1, x2, . . .).

Then the functional equations = t H(t; x) has a unique solutiont ≡ t (s, x) given by t =
s H?(s; x) whereH ?(s; x) =

∑
j≥0 s j h?j (x), andh?j (x) is a symmetric function inx of total

degreej . Let h?λ = h?λ1
h?λ2
· · · . Then{uλ} is defined to be the basis for the symmetric function

ring that is dual to the basis{h?λ} with respect to the inner product for which the monomial
and complete symmetric functions are dual (see, e.g., Macdonald [15]).

Thus, for minimal ordered factorizations in which all factors arek-cycles, then in Eqn (11),
we haveuβi−1 = uk−1 for all i = 1, . . . , j . But, as is shown in [9], uk−1 = −pk−1, so for
minimal ordered factorizations in which all factors arek-cycles, we can restrict our attention
to a symmetric function algebra in whichpi = 0 if i 6= k− 1. In this case, we have

s= t H(t; x) = exp

(∑
m≥1

pm

m
tm

)
= t exp

(
−pk−1

k− 1
tk−1

)
.

Thus, if z is substituted forpk−1
k−1 , in this equation, we obtaint = seztk−1

. But this is precisely
the functional Eqn (1), whose solution features so centrally in our results for the transitive
case above.

We conclude from this that there must be an important relationship between the transitive
case of minimal ordered factorizations for which we have obtained partial results in this paper,
and minimal ordered factorizations themselves, that have such an elegant theory based on
symmetric functions. Although we have been unable to find a direct link between these two
classes, we hope that the results of this paper will provide a good starting point for such a
direct link, and a similarly elegant theory for the transitive case.

2. THE PARTIAL DIFFERENTIAL EQUATION

In this section we derive a partial differential equation for the generating series

8 =
∑
m≥1

F (m), (12)

whereF (m) is given in (6), by a case analysis of the creation and annihilation of cycles in
products of permutations subject to the minimality condition. We begin with a discussion of
permutation multiplication. First, we prove the expression (3) for µk(π).

PROPOSITION2.1. Letα ` n, and letπ ∈ Cα. Thenµk(π) = µk(α), where

µk(α) =
n+ l (α)− 2

k− 1
.
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PROOF. Let (σ1, . . . , σ j ) be a minimal, transitive ordered factorization ofπ into k-cycles.
Let π ′ andπ be in the same conjugacy class, soπ ′ = g−1πg for someg ∈ Sn. Then
(g−1σ1g, . . . , g−1σ j g) is a minimal, transitive ordered factorization ofπ ′, so µk(π

′) =

µk(π), and we denote the common value byµk(α) whereπ ∈ Cα. Now eachk-cycle in
Sk has a minimal, transitive ordered factorization intoµ2([k]) transpositions, soµ2(α) =

µ2([k]) µk(α). But [10, Proposition 2.1]µ2(α) = n+ l (α)− 2, and the result follows. 2

2.1. A characterization of minimal, transitive ordered factorizations.Next we give a com-
binatorial characterization of minimal, transitive ordered factorizations. The following lemma
characterizes the relationship betweenσ1 andσ2 · · · σ j for a minimal, transitive ordered fac-
torization(σ1, . . . , σ j ) of π ∈ Sn intok-cycles. Some notation will be useful, and will be used
throughout this section. The multi-graphDσ1,...,σ j has vertex-set{1, . . . ,n}, and edges con-
sisting of the edges of thek-cycles in the factorization. LetV1, . . . ,Vl be the vertex-sets of the
connected components ofDσ2,...,σ j , so{V1, . . . ,Vl } is a partition of{1, . . . ,n} into non-empty
subsets. Fori = 1, . . . , l , let αi consist of allt ∈ {2, . . . , j } such that all of thek elements
onσt belong toVi , so{α1, . . . , αl } is a partition of{2, . . . , j }. Supposeαi = {αi 1, . . . , αisi },
with αi 1 < · · · < αisi , andσαi 1 · · · σαisi

= πi , for i = 1, . . . , l . Then clearly, by construction,

(σαi 1, . . . , σαisi
) (13)

is a minimal, transitive ordered factorization ofπi , for i = 1, . . . , l , and we have

π = σ1π1 · · ·πl . (14)

Moreover,σαab andσαcd commute fora 6= c and allb,d, since the elements on thesek-cycles
are disjoint.

For example, in the minimal, transitive factorization given in (4), we havel = 2, with
V1 = {1,2,3,5,6,8} andV2 = {4,7,9}; α1 = {2,4,5} andα2 = {3}; π1 = (1386)(25) and
π2 = (479).

Forδ ∈ Sn andA ⊆ {1, . . . ,n}, theA-restrictionof δ is the permutation onA obtained by
deleting the elements not inA from the cycles ofδ. For example, ifδ = (1538)(27469) and
A = {1,4,6,7,8}, then theA-restriction ofδ is (18)(467).

LEMMA 2.2. Let (σ1, . . . , σ j ) be a minimal, transitive ordered factorization ofπ ∈ Sn

into k-cycles, and letπ1, . . . , πl be constructed as above. Then:

(1) σ1 has at least one element in common with each ofπ1, . . . , πl .

(2) The elements ofσ1 in common withπi lie on a single cycle ofπi , for i = 1, . . . , l .
(3) LetU denote the k-subset of{1, . . . ,n} consisting of the elements on the k-cycleσ1. Let

γ denote theU-restriction ofσ1, let ρ denote theU-restriction ofπ1 · · ·πl , and letτ
denote theU-restriction ofπ (soγρ = τ ). Then(k− κ(τ))+ (k− κ(ρ)) = k− κ(γ ),
so(τ, ρ−1) is a minimal, ordered factorization ofγ .

PROOF. Since(σ1, . . . , σ j ) is a transitive factorization ofπ , thenDσ1,...,σl is connected.
Thus the singlek-cycle inDσ1 has at least one vertex in each of the connected components of
Dσ2,...,σl , and this establishes part (1).

For part (2), from part (1) it suffices to prove thatκ(ρ) = l . Now, from (14) and the fact
that(σαi 1, . . . , σαisi

) is a minimal, transitive ordered factorization ofπi , for i = 1, . . . , l , we
have

µk(π) = 1+ µk(π1)+ · · · + µk(πl ). (15)
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But, from Proposition2.1

µk(π) =
n+ κ(π)− 2

k− 1
and µk(πi ) =

|Vi | + κ(πi )− 2

k− 1
,

for i = 1, . . . , l . Thusn + κ(π) − 2 = k − 1+
∑l

i=1(|Vi | + κ(πi ) − 2), from (15). But
n =

∑l
i=1 |Vi |, so

κ(π)−

l∑
i=1

κ(πi ) = k+ 1− 2l . (16)

Now letρi be theU-restriction ofπi , for i = 1, . . . , l , soπ = σ1π1 · · ·πl restricts toτ = γρ,
whereρ = ρ1 · · · ρl . Thus,κ(π)− κ(τ) =

∑l
i=1(κ(πi )− κ(ρi )) =

∑l
i=1 κ(πi )− κ(ρ), and

together with (16) this gives

κ(τ)− κ(ρ) = κ(π)−

l∑
i=1

κ(πi ) = k+ 1− 2l . (17)

On the other hand, sinceγ, ρ andτ act on ak-set andτρ−1
= γ we have from Proposition1.1

that (k − κ(τ)) + (k − κ(ρ−1)) ≥ (k − κ(γ )). But κ(γ ) = 1 andκ(ρ−1) = κ(ρ), so
κ(τ) + κ(ρ) ≤ k + 1, and in addition, from part (1) we haveκ(ρ) ≥ l . It follows that
κ(τ) − κ(ρ) ≤ k + 1 − 2κ(ρ) ≤ k + 1 − 2l . Combining this with (17) givesκ(ρ) = l .
Together with part (1), this establishes part (2).

Part (3) follows immediately fromκ(ρ) = l , κ(γ ) = 1 and (17). 2

2.2. The tree bijection.We now use this characterization as a construction for deriving a
partial differential equation for8 with arbitraryk, given in Theorem2.3 below. The terms
in the equation are indexed by the setTk of plane, vertex two-coloured (black, white), edge-
rooted trees withk edges,k ≥ 1, together with canonical labellings of the vertices and edges,
described as follows.

Let T be such a tree. NowT is the boundary of an unbounded region of the plane. De-
scribe the boundary by moving along the edges, keeping the region on the left, beginning
along the root edge from its incident black vertex to its incident white vertex. Each edge is en-
countered twice, once from black vertex to white vertex, and once from white vertex to black
vertex. Assign the labels 1, . . . , k to the edges, in the order that they are encountered from
black to white vertex. LetB(T) andW(T) denote, respectively, the number of black vertices
and white vertices inT . The black vertices and white vertices are labelledb1, . . . ,bB(T) and
w1, . . . , wW(T), respectively, where for each colour, the subscripts are in increasing order of
the smallest label on the edges incident with the vertices they index. Forj = 1, . . . , B(T),
let β j be the set of labels on the edges incident with vertexb j . Similarly, letω j be the set of
labels on the edges incident with vertexw j . Then{β1, . . . , βB(T)} and{ω1, . . . , ωW(T)} are
set partitions of{1, . . . , k}, and the blocks are indexed in increasing order of their smallest
elements. Leti1, . . . , ik be positive integer-valued indexed variables, and define

θ(br ) =
∑
s∈βr

is, θ(wr ) =
∑
s∈ωr

is.

The setTk is in one-to-one correspondence with minimal ordered factorizations of ak-cycle,
as was shown in [8, Theorem 2.1]. The correspondence, which we shall refer to as thetree
bijection, is described as follows:λB andλW are permutations inSk. There is one cycle in the
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disjoint cycle representation ofλB for each black vertex inT ; the elements on this cycle are the
labels of the edges incident with the black vertex, where the order of these labels on the cycle
is the clockwise order in which the corresponding edges are encountered around the vertex.
Similarly, there is one cycle ofλW for each white vertex inT , giving the labels on incident
edges in clockwise order around the vertex. Then(λB, λW) is a minimal ordered factorization
of (1 . . . k). In terms of the vertex labelling ofT given above, note that the cycles ofλB and
λW are the elements of theβ j ’s andω j ’s, respectively, arranged in a particular cyclic order.

2.3. The partial differential equation for8. The next result gives a non-linear, inhomoge-
neous partial differential equation for8, defined in (12), where8r denotesr ∂8

∂pr
.

THEOREM 2.3. Let i = (i1, . . . , ik) where i1, . . . , ik ≥ 1. Then

1

k

∑
T∈Tk

∑
i

(B(T)∏
j=1

pθ(b j )

)(W(T)∏
j=1

8θ(w j )

)
=
∂8

∂u
. (18)

PROOF. For each fixedk,8 is the generating series for minimal, transitive ordered factor-
izations(σ1, . . . , σ j ) of π into k-cycles for all permutationsπ ∈ Sn, n ≥ 1. The series is
exponential inz, recordingn, andu, recordingµk(π), which is the number of factors in the
factorization. The series is ordinary inp j , recording the number of cycles of lengthj in π ,
j ≥ 1. (Note thatck(α) gives the number of factorizations for eachπ in Cα, so the coefficient
ck(α)|Cα| in 8 accounts for factorizations of all suchπ .)

Consider modifying8 to obtain the generating series8̂ for the same set, but not recording
the left-most factorσ1 by u. The result is∂8

∂u , since ∂
∂u

uh

h! =
uh−1

(h−1)! , h ≥ 1. This gives the
right-hand side of the equation.

We now determine another expression for8̂, to obtain the left-hand side of the equation.
This is carried out by reconstructing the cycle lengths ofπ from the left-most factorσ1 and
the cycle lengths ofπ1, . . . , πl , where we are using the notation of Lemma2.2. Letu1, . . . ,uk

be distinct elements of{1, . . . ,n}, in any permuted order. We now consider the contributions
to 8̂ of all factorizations withσ1 = (u1 . . . uk), and since thek-cyclesσ1 are created exactly
k times in these ordered lists, we will divide the resulting generating function byk to obtain
an expression for̂8. In the notation of Lemma2.2, we haveU = {u1, . . . ,uk}. Then from
Lemma2.2(3) and the tree bijection described above,(τ, ρ−1) = (λB, λW) for some unique
treeT in Tk (replacei in the construction for factorizations of the canonical cycle(1 · · · k) by
ui , for i = 1, . . . , k). Moreover, the black vertex-degrees are given by the cycle lengths ofτ ,
and the white vertex-degrees are given by the cycle lengths ofρ−1.

We now observe that, in the productγρ (recall thatγ is theU-restriction ofσ1), cycles
with lengths equal to the degrees of the white vertices are annihilated, and combined to create
cycles of lengths equal to the degrees of the black vertices. This observation permits us to
reconstruct the cycle lengths ofπ from σ1 and the cycle lengths ofπ1, . . . , πl .

Now τ is theU-restriction ofπ , and from Lemma2.2(2), each cycle ofρ is theU-restriction
of a single cycle in some uniqueπ j . We call this cycle theactivecycle ofπ j in the construction
below. Suppose that on the active cycle containing elementu j , there arei j − 1 elements of
{1, . . . ,n} betweenu j and the next element ofU (which may beu j itself) around the cycle.
Theni1, . . . , ik ≥ 1.

In terms of the treeT , there is one active cycle corresponding to each white vertex ofT ,
so l = W(T), and for convenience, we suppose that the subscripts onπ1, . . . , πl are chosen
so that the active cycle ofπ j corresponds to vertexw j , for j = 1, . . . ,W(T). Then the
cycle inπ j that is annihilated has lengthθ(w j ). Moreover, once we identify this cycle, then
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the elements ofU on the cycle are all uniquely determined by specifying any of theθ(w j )

elements on the cycle to be a canonically chosen element ofU (say, the element ofU with
smallest index on the cycle), since the other elements are then determined by the values of
i1, . . . , ik. But, from (13), (σα j 1, . . . , σα js j

) is a minimal, transitive ordered factorization of

π j , so the contribution tô8 from the annihilated cycles is
∏W(T)

j=1 8θ(w j ). Also, a cycle of
lengthθ(b j ) is created for each black vertexb j in T , so the contribution from cycles that are
created is

∏B(T)
j=1 pθ(b j ).

Multiplying these contributions together, dividing byk, and summing over allT ∈ Tk

and i1, . . . , ik ≥ 1 gives the left-hand side of the equation. This is an expression for8̂; the
contributions from the cycle lengths as recorded byp1, . . . is explained by the analysis above.
The effect of labelling the elements on whichπ1, . . . , πl act with disjoint subsets of{1, . . . ,n}
(whereπ ∈ Sn) is accounted for because the series is exponential inz. The effect of shuffling
the factors ofπ1, . . . , πl into disjoint subsets of positions chosen from{2, . . . , µk(π)} is
accounted for because the series is exponential inu (here we use the fact that factors from
differentπ j ’s commute since theπ j ’s act on disjoint sets of elements). 2

Note that, ifp j is the power sum symmetric function of degreej in an infinite set of ground
variables, thenj ∂/∂p j = p?j , where p?j is the adjoint of premultiplication byp j (see, e.g.,
[15] for details). The partial differential equation therefore can be rewritten in a form that
exhibits the symmetry between black and white vertices, by writing8 j as p?j8.

2.4. Examples.As examples, we now give the casesk = 2 andk = 3 of Eqn (18). For
k = 2, there are two two-coloured trees onk edges. Both are paths of edge-length two; in
one the vertex of degree 2 is black, in the other it is white. Since both trees have a single
edge-rooting, Eqn (18) for k = 2 is

1
2

∑
i1,i2≥1

(8i18i2 pi1+i2 +8i1+i2 pi1 pi2) =
∂8

∂u
. (19)

This is the equation given in [10], where we demonstrated that a series conjectured from
numerical computations satisfied this equation uniquely.

Whenk = 3 there are three two-coloured trees withk edges. Two of these have a single
vertex of degree 3, adjacent to three vertices of degree 1; in one the vertex of degree 3 is
black, in the other it is white. Both of these have a single edge-rooting. The third tree is a
path of edge-length three, and this tree has three edge-rootings, so Eqn (18) for k = 3 is (after
permuting the summation indices arising from the three edge-rootings of the third tree)∑

i1,i2,i3≥1

(1
38i18i28i3 pi1+i2+i3 +

1
38i1+i2+i3 pi1 pi2 pi3 +8i18i2+i3 pi1+i2 pi3

)
=
∂8

∂u
. (20)

We do not know of any method for solving this equation for8 whenk = 3 explicitly, and
have not been able to conjecture the solution from numerical computations, as we could for
k = 2. However, as we show in the next section, we are able to determine the low degree
terms of8 in the p’s, for arbitraryk.

3. RESTRICTION OF THEDIFFERENTIAL EQUATION BY GRADING

In this section we determine a partial differential equation forP(m), defined in (8), that can
be used recursively to constructP(m) for all m≥ 1. It is obtained by applying the symmetriza-
tion operatorψm given in (7) to the partial differential Eqn (18) given in Theorem2.3. Some
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notation is needed for this purpose. Fori ≥ 1, let

h+i (x1, . . . , xr ) =
∑

j1,..., jr ≥1
j1+···+ jr =i

x j1
1 · · · x

jr
r ,

and leth+0 (x1, . . . , xr ) = 1, soh+i (x1, . . . , xr ) is the sum of the terms of the complete sym-
metric function of degreei in x1, . . . , xr with positive exponents on all variables. Let

H+(t; x1, . . . , xr ) =
∑
i≥0

h+i (x1, . . . , xr )t
i .

If a(t) =
∑

i≥0 ai t i is a formal power series, let

a(t) ◦ H+(t; x1, . . . , xr ) =
∑
i≥0

ai h
+

i (x1, . . . , xr ).

This is essentially the Hadamard product ofa(t) and H+(t; x1, . . . , xr ) with respect tot .
Throughout, the Hadamard product will be taken exclusively with respect to the indetermi-
natet .

For l = 1, . . . ,m, let4m,l be the symmetrization operator defined for formal power series
in x1, . . . , xm by

4m,l f (x1, . . . , xm) =
∑
σ

f (xσ(1), . . . , xσ(m)),

where the summation is overσ ∈ Sm, with the restriction thatσ(l + 1) < · · · < σ(m). Thus,
there are m!

(m−l )! terms in this summation. Letδ = {δ1, . . . , δm}, where 1≤ δ1 < · · · < δm.
Then, similarly toψm, we defineψδ by

ψδ(pαzi u j ) =
∑
σ∈Sm

x
ασ(1)
δ1
· · · x

ασ(m)
δm

,

if l (α) = m, and is 0 ifl (α) 6= m. We denote(xδ1, . . . , xδm) by xδ, and(t, xδ1, . . . , xδm), with
minor abuse of notation, by(t, xδ).

THEOREM 3.1. Letχ(wr ) = {x j : b j is adjacent towr }. Then, for m≥ 1,

1

k

∑
T∈Tk

4m,B(T)

∑
ζ

W(T)∏
r=1

(
t
∂

∂t
P(|ζr |+1)(t, xζr )

)
◦ H+(t;χ(wr ))

=
1

k− 1

(
x1

∂

∂x1
+ · · · + xm

∂

∂xm
+m− 2

)
P(m)(x1, . . . , xm),

where the sum is over all ordered (set) partitionsζ = (ζ1, . . . , ζW(T)) of {B(T)+ 1, . . . ,m},
and blocks in the ordered set partition may be empty. (If T has more than m black vertices,
then the term in the summation corresponding to T is0.)

PROOF. The left-hand side of the partial differential Eqn (18) is 1
k

∑
T∈Tk

LT , where

LT =
∑

i

(B(T)∏
r=1

pθ(br )

)(W(T)∏
s=1

8θ(ws)

)
.

Then, form≥ k,

ψmLT =
∑

i

4m,B(T)

((B(T)∏
r=1

xθ(br )
r

)∑
ζ

(W(T)∏
s=1

ψζs(8θ(ws))

))
.
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If s is an edge label ofT , let �(s) be the index of the black vertex incident with the edge
labelleds, and letI(v) be the set of all labels of edges incident with the vertexv. Then

B(T)∏
r=1

xθ(br )
r =

W(T)∏
r=1

∏
s∈I(wr )

xis
�(s),

so from (12),

ψmLT =
∑

i

4m,B(T)

∑
ζ

W(T)∏
r=1

(( ∏
s∈I(wr )

xis
�(s)

)
ψζr θ(wr )

∂

∂pθ(wr )

F (|ζr |+1)

)
.

But, using (8),

ψζr j
∂

∂p j
F (|ζr |+1)

= [t j
]t
∂

∂t
P(|ζr |+1)(t, xζr ),

and we thus obtain

ψmLT = 4m,B(T)

∑
ζ

W(T)∏
r=1

(
t
∂

∂t
P(|ζr |+1)(t, xζr )

)
◦ H+(t;χ(wr )).

Clearly, for the right-hand side of the partial differential Eqn (18), we have

ψm
∂8

∂u
=

1

k− 1

(
x1

∂

∂x1
+ · · · + xm

∂

∂xm
+m− 2

)
P(m)(x1, . . . , xm),

and the result now follows. 2

In order to use Theorem3.1in practice, to determineP(m) in terms ofk as a parameter, it is
convenient to refine the statement of the result to involve a smaller and more manageable set
of trees. Thus, form ≥ 2, letSm be the set of plane, vertex two-coloured (black, white) trees
with at least one edge, at mostm black vertices, and no monovalent white vertices. These trees
are not edge-rooted, and we let|aut(S)| denote the number of automorphisms of such a tree
S. Let B(S) andW(S) denote the numbers of black and white vertices inS, respectively, and
label these verticesb1, . . . ,bB(S) andw1, . . . , wW(S), respectively, arbitrarily. LetG(t, z) =∑

i≥1 gi (t)zi−1, and define the linear operator0m,l to act on any finite product ofg’s by

0m,l

s∏
r=1

gir (ar ) =
∑
ζ

s∏
r=1

ar
∂

∂ar
P(ir )(ar , xζr ),

where the summation is over all ordered set partitionsζ = (ζ1, . . . , ζs) of {l+1, . . . ,m}, with
|ζr | = i r−1, forr = 1, . . . , s, and

∑s
r=1 i r−1= m−l , for anys ≥ 1. If

∑s
r=1 i r−1 6= m−l ,

then the value of0m,l is 0.

COROLLARY 3.2. Let d(v) be the degree of vertexv. Then, for m≥ 1,

∑
S∈Sm

40m,B(S)

|aut(S)|
[ykzm

]

(B(S)∏
j=1

z

(
y

1− yG(x j , z)

)d(b j )
)(W(S)∏

r=1

G(t, z) ◦ H+(t;χ(wr ))

)

+
1

k
40m,1 [z

m−1
]G(x1, z)

k
=

1

k− 1

(
x1

∂

∂x1
+ · · · + xm

∂

∂xm
+m− 2

)
P(m)(x1, . . . , xm),

where40m,l denotes4m,l0m,l .
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PROOF. We begin by re-expressing the left-hand side,L, of the partial differential equation
given in Theorem3.1, using the operator0m,l defined above. Thus we obtain

L =
1

k

∑
T∈Tk

40m,B(T) [z
m−B(T)

]

W(T)∏
r=1

G(t, z) ◦ H+(t;χ(wr )).

But symmetry implies that the vertices ofT can be labelledb1, . . . ,bB(T) andw1, . . . , wW(T)

arbitrarily. In particular, all edge-rootings of the same plane tree give the same contribution
to L; thus letT̂k consist of plane, vertex two-coloured (black, white) trees withk edges, with
vertices labelled arbitrarily, and letε(T) be the number of edge-rootings ofT ∈ T̂k. Then

L =
∑
T∈T̂k

ε(T)

k
40m,B(T) [z

m−B(T)
]

W(T)∏
r=1

G(t, z) ◦ H+(t;χ(wr )).

Now note that ifwr is monovalent (of degree 1), thenχ(wr ) = {x j }, whereb j is the unique
black vertex adjacent towr , so we obtainG(t, z) ◦ H+(t, χ(wr )) = G(x j , z). Thus the
contribution toL for T with a single black vertex, adjacent tok monovalent white vertices
(a black-centredstar), is 40m,1 [zm−1

]G(x1, z)k/k. Moreover, each other treeT in T̂k is
constructed from a unique treeS in Sm, by embedding a black-centred star in some subset of
the corners ofS at each black vertex, and identifying the black centre vertex with that black
vertex, so that there is a total ofk edges in the resulting plane treeT . (The trees with more
thanm black vertices contribute 0 toL. A corner is an open region of the face bounded by
two edges that are encountered consecutively when traversing the outer face.) The generating
series for the possible embeddings at each corner at vertexb j is (1− yG(x j , z))−1, wherey
records the number of additional edges in this construction, and there ared(b j ) such corners
at vertexb j . The number of edges inS is given by

∑B(S)
j=1 d(b j ), whereB(S) = B(T). Thus

L =
∑

S∈Sm

α 40m,B(S) [y
kzm
]

(B(S)∏
j=1

z

(
y

1− yG(x j , z)

)d(b j )
)(W(S)∏

r=1

G(t, z) ◦ H+(t;χ(wr ))

)

+
1

k
40m,1 [z

m−1
]G(x1, z)

k,

whereα = ε(T)β/k, andβ gives the number of times thatT is constructed by embedding
black-centred stars in all possible ways. Butε(T)β = k/|aut(S)|, and the result follows. 2

The following result gives an explicit expression for the Hadamard product of a formal
power series withH+. This will be useful in the next section to evaluate the Hadamard prod-
ucts that arise when we apply Corollary3.2for small values ofm.

PROPOSITION3.3. Let f(t) be a formal power series in t. Then

f (t) ◦ H+(t; x1, . . . , xk) =

k∑
i=1

f (xi )
∏

1≤p≤k
p6=i

xp

xi − xp
,

where empty products are equal to1.

4. PROOFS OF THESUPPORTINGTHEOREMS

It is convenient to identify the trees inS3 in order to identify how the terms in the partial
differential equations for various choices ofm ≤ 3 arise. LetS1 be the plane tree with two
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black monovalent vertices adjacent to a single white vertex of degree 2. LetS2 be the plane
tree with three black monovalent vertices, adjacent to a single white vertex of degree 3. Let
S3 be the path on four edges, with vertices alternately black and white, where the monovalent
vertices are both black.

4.1. Proof of Theorem 1.3.Consider the casem= 1 in Corollary3.2. Then since contribu-
tions on the left-hand side come only from the last term, we obtain the differential equation

1

k

(
x1

d P(1)

dx1

)k

=
1

k− 1

(
x1

d

dx1
− 1

)
P(1)

for P(1). To solve this equation, differentiate the equation with respect tox1 and multiply by
x1. Then, with f = x1d P(1)/dx1, we obtain

x1
d f

dx1
=

f

1− (k− 1) f k−1
.

It is now straightforward to determine, for formal power series inx, that f = w1, by com-
paring this differential equation with (9), and using the initial conditionf (0) = 0. The result
follows immediately. 2

4.2. Proof of Theorem 1.4.Consider the casem = 2 in Corollary3.2. Now contributions
on the left-hand side come from the last term, and from the treeS1. Thus, substituting the
expression forP(1) from Theorem1.3, and applying Proposition3.3to evaluate the Hadamard
products, we obtain

wk−1
1 x1

∂P(2)

∂x1
+ wk−1

2 x2
∂P(2)

∂x2
+

x2w1− x1w2

x1− x2

wk−1
1 − wk−1

2

w1− w2

=
1

k− 1

(
x1

∂

∂x1
+ x2

∂

∂x2

)
P(2).

so, rearranging, we have

1

k− 1

(
(1− (k− 1)wk−1

1 )x1
∂

∂x1
+ (1− (k− 1)wk−1

2 )x2
∂

∂x2

)
P(2)

=
x2w1− x1w2

x1− x2

wk−1
1 − wk−1

2

w1− w2
.

It is now straightforward to verify that

P(2)(x1, x2) = log

(
w1− w2

x1− x2

)
−
wk

1 − w
k
2

w1− w2
,

by confirming that it satisfies the above differential equation, and the initial conditionP(2)(0,0)
= 0. (Note that the constant term in the expansion of(w1−w2)/(x1− x2) as a formal power
series inx1, x2 is 1, so the logarithm exists.) Finally, apply the operatorx1

∂
∂x1
+x2

∂
∂x2

to P(2),
and the result follows. 2
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4.3. Proof of Theorem 1.5.Consider the casem = 3 in Corollary3.2. Then contributions
on the left-hand side come from the last term, together with the treesS1, S2, S3. Substituting
the expression forP(1) from Theorem1.3, it follows that

43,1w
k−1
1 x1

∂

∂x1
P(3)

+43,1(k− 1)wk−2
1

(
x1

∂

∂x1
P(2)(x1, x2)

)(
x1

∂

∂x1
P(2)(x1, x3)

)
+43,2

(
∂

∂w1

wk−1
1 − wk−1

2

w1− w2

)(
x1

∂

∂x1
P(2)(x1, x3)

)
(w(t) ◦ H+(t; x1, x2))

+
1

2
43,2

(
wk−1

1 − wk−1
2

w1− w2

)(
t
∂

∂t
P(2)(t, x3) ◦ H+(t; x1, x2)

)
+2hk−3(w1, w2, w3)(w(t) ◦ H+(t; x1, x2, x3))

+
1

2
43,3

(
∂

∂w2
hk−3(w1, w2, w3)

)
(w(t) ◦ H+(t; x1, x2)) (w(t) ◦ H+(t; x2, x3))

=
1

k− 1

(
x1

∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3
+ 1

)
P(3).

The third and fourth expressions on the left-hand side arise fromS1, and the fifth and sixth
expressions arise fromS2 andS3, respectively. Note that, in the fifth expression, we have used
the fact that all six terms that arise in the symmetrization by43,3 are equal. (In general, there
will be at least|aut(S)| symmetries among the firstl variables that arise when applying4m,l ,
wherel = B(S).) Now apply Proposition3.3to evaluate the Hadamard products, and use the
fact that

(1− (k− 1)wk−1)x
∂

∂x
= w

∂

∂w
(21)

(this latter follows from (9)). Simplifying (with the help of Maple), we obtain

1

k− 1

(
3∑

i=1

wi
∂

∂wi
+ 1

)
P(3) = (k− 1)(wk−2

1 A12A13+ w
k−2
2 A21A23+ w

k−2
3 A31A32)

+
wk−1

1 − wk−1
2

(w1− w2)2
(w2A13− w1A23)+

wk−1
1 − wk−1

3

(w1− w3)2
(w3A12− w1A32)

+
wk−1

2 − wk−1
3

(w2− w3)2
(w3A21− w2A31),

where

Ai j =
wiw j

1− (k− 1)wk−1
i

wk−1
i − wk−1

j

(wi − w j )2
.

The solution to this equation is given in Theorem1.5, and has been verified with the aid of
Maple, giving the desired result. 2

5. COMPUTATIONAL COMMENTS AND CONJECTURES

We have shown in Section4 that P(1), P(2) andP(3) can each be obtained as the solutions
to first-order linear partial differential equations. We believe thatP(m), for m ≥ 4, can be
obtained in a similar way as the solution of such an equation. Moreover, we conjecture that
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the equation for anym ≥ 3, (obtained from Corollary3.2, and applying (21) as described for
m= 1,2,3 in Section4) after multiplying through byk− 1, is of the form(

m∑
i=1

wi
∂

∂wi
+ (m− 2)

)
P(m) = Rm(w1, . . . , wm),

whereRm is a rational function inw1, . . . , wm, obtained fromP(1), . . . , P(m−1). That is, there
is no dependency ofRm on x1, . . . , xm except through (10). Now let Q(m)(t) be obtained by
substitutingtwi for wi in P(m) for 1= 1, . . . ,m. Then the above partial differential equation
is transformed into the first-order linear ordinary differential equation

d

dt
(tm−2Q(m)(t)) = tm−3Rm(tw1, . . . , twm), (22)

which can be solved routinely, in theory. In practice, this is precisely how we obtainedP(3),
with the aid of Maple, in Section4. However, even in this case, the simplification of the
equation was difficult; we provided human help by proving that the rational expression on the
right-hand side of the equation is independent of thex’s, and then replaced eachxi by wi to
evaluate it. This explains how theAi j arise, asxi

∂
∂xi

P(2)(xi , x j ) evaluated atxi = wi and
x j = w j .

For m= 4, the expressions became too big to be tractable, and we have not found a conve-
nient way of circumventing this. We conjecture that, for eachm ≥ 3, P(m) is a rational func-
tion of w1, . . . , wm, whose denominator is consistent with Conjecture1.2, using (9). (Note
that form = 2, the right-hand side of the equation, as obtained in the Proof of Theorem1.4,
is not a rational function ofw1, w2 alone, but rather involvesx1, x2 as well.)

Note added in press.An independent proof of (5), from the point of view of singularity
theory, has been given in [5].
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