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Transitive Factorizations in the Symmetric Group, and Combinatorial
Aspects of Singularity Theory

IAN P. GOULDEN AND DAVID M. JACKSON

We consider the determination of the numbglw) of ordered factorizations of an arbitrary permu-
tation onn symbols, with cycle distribution, into k-cycles such that the factorizations have minimal
length and the group generated by the factors acts transitively on $iyenbols. The cask = 2
corresponds to the celebrated result of Hurwitz on the number of topologically distinct holomorphic
functions on the 2-sphere that preserve a given number of elementary branch point singularities. In
this case the monodromy group is the full symmetric group k=er3, the monodromy group is the
alternating group, and this is another case that, in principle, is of considerable interest.

We conjecture an explicit form, for arbitraky for the generating series fog(«), and prove that
it holds for factorizations of permutations with one, two and three cyclea (s@ partition with at
most three parts). Our approach is to determine a differential equation for the generating series from
a combinatorial analysis of the creation and annihilation of cycles in products under the minimality
condition.

(© 2000 Academic Press

1. INTRODUCTION

1.1. Background.This paper has two goals. The first is to provide some general techniques
to assist in the solution of the type of enumerative questions about permutation factorization,
with transitivity and minimality conditions, that originate in the classical study of holomorphic
mappings and branched coverings of Riemann surfaces. Thus, we are concerned with certain
combinatorialquestions that are encountered in aspecssmfularity theory The appearance

of such questions has long been recognized, and the reader is directed to Ajnddt [
example, for further instances.

Very briefly, the classical construction concerns rational mappings from a Riemann sur-
face to the sphere. Let be the partition formed by the orders of the poles of this mapping.
Each factor in an ordered factorization is associated with a distinguished branch point, and it
specifies the sheet transitions imposed in a closed tour of the branch point, starting from an
arbitrarily chosen base point on the codomain of the mapping. In the generic case, the sheet
transitions are transpositions (2-cycles). The concatenation of the tours for each branch point,
from the same base point, in the designated order, gives a sheet transition that is the product
of the sheet transitions for each branch point. But this sheet transition is a permutation with
a as its cycle type. The transitivity condition ensures that the ramified covering is connected,
so the resulting Riemann surface is a ramified covering of a sphere. The minimality condition
ensures that the covering surface is also a sphere. The monodromy group is the group freely
generated by the sheet transitions.

The particular class of permutation factorization questions that we shall consider in this
paper involve as factors onkrcycles, for some fixed, but arbitrary, valuelofThe results
that we are able to obtain are thus extensions of HurwitiZZ fesult with transpositions as
factors, which arose in the singularity theory context described above.

The second goal is to investigate the possibility of determining analogues of Macdonald’s
‘top’ symmetric functions that will be appropriate for accommodating the transitivity con-
dition. A striking common element between the results of this paper on transitive, minimal
ordered factorizations, and Macdonald’s symmetric functions is the functional equation

w=xe?" " (1)
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that arises in both settings whércycles are factors, for apparently different reasons. The
nature of this possible connection is explored more fully in Sectién

For the most part we now regard ordered factorizations as discrete structures and we treat
them by combinatorial techniques. Throughout, we work in the appropriate ring of formal
power series. Thus, for example, the functional EtjhHas a unique solution for formal
power series ix. Although we have not completely attained the two goals, we have provided
a substantial amount of methodology for the first, and concrete evidence for the second. We
hope that the results are substantial enough to provoke others to explore further.

1.2. Minimal ordered factorizationsLet « () denote the number of cycles in € &,.
There is an obvious restriction a{r) under permutation multiplication.

PROPOSITIONL.1. Letw, 7’ € &n. Then(n — k(7)) + (N — k(")) > (n — k(w7’)).

If (01,...,0)) € G,% andoy - --oj = 7, then(oy, ..., o}) is called arordered factorization
of 7. Immediately from Propositiofi.1, we obtain the inequality

j
Y (n—k(0) = n— k(). @)

i=1

In the case of equality, we calby, ..., o)) € &}, aminimalordered factorization of .

Such factorizations have an elegant theory and many enumerative applications (see, for
example, Goulden and Jacks@h)[ including permissible commutation of adjacent factors. In
particular, P] contains an explicit construction for a set of symmetric functions (Macdonald’s
top symmetric functions) that we shall return to in Sectiosof the Introduction. Now we
turn to the topic of the present paper.

1.3. Minimal, transitive ordered factorizationsWe write « + n to indicate thalx is a
partition ofn, andC,, for the conjugacy class @, indexed byx. Let| («) denote the number
of parts ine. If w € C, thenk () = I («). An ordered factorizatioioy, . . ., oj) is said to be
transitiveif the subgroup of5, generated by the factors acts transitively{an. .., n}. We
consider the case in which each of the factors i§;jnn-«;, and is therefore a putecycle.
A transitive ordered factorization af € C, into purek-cycles with the minimal choice of
consistent with the other conditions is said tobi@imal In this casej = uk(«), where

| -2
@) = %

3
as we shall prove in Propositichl For example, whek = 3, suppressing 1-cycles in the
factors,

(247)(586) (479 (136)(239) = (1386 (254 (79), 4)

and ((247), (568), (479, (136), (235) is a minimal, transitive ordered factorization of the
permutation(1386)(254)(79) into 3-cycles with five factors (minimality holds in this example
sinceus([4, 3, 2]) = 5).

Such factorizations are encountered in a number of contexts. These include, for example,
the topological classification of polynomials of a given degree and a given number of critical
values, and the moduli space of covers of the Riemann sphere and properties of the Hurwitz
monodromy group, and applications to mathematical phy&ic3 he reader is directed t&]

4,14 for further background information.
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The number of minimal, transitive ordered factorizations of an arbitrary but fixedC,
into purek-cycles is denoted bgk (). Hurwitz [13] conjectured the expression fog(«), as
a consequence of his study of holomorphic mappings on the sphere, to be

I(a) a‘?‘i

o) = N @=3(n + (@) — 2)! 1_[1 m (5)
j=

(See also Strehl7] for the proof of an identity that completes Hurwitz's treatment.) A shorter
and self-contained proof of this result has been given by Goulden and Jadi@oifHe
special case,([1"]) was derived independently by Crescimanno and TaybrHor related
work, in the language of singularity theory, sdé][

The cas&k = 3 is also of considerable interest, since the subgroup generated in this case is
the alternating group.

1.4. A conjecture and the supporting result§he main conjecture of this paper concerns
the form of the generating series for thgw). Letu, z, p1, p2, ... be indeterminates and let

Pe = Poy Pay - - -+ LEL

u#k(a) zn

FOWzpLp2.. )= Y Y &@)[Cal Pp— . 6
pP1, P2 2 2 P @i (6)
k—1jn+m-2 l(e)=m

ThenF (™ is a formal power series inwith coefficients that are polynomial in py, p, ...,
and we will be working in this ring. The choice of this generating series to be exponential in
u andz, and ordinary inp1, pz, ..., will become apparent in Sectiéh

It is more convenient to work with a symmetrised form of the generating series, defined in
terms of the following linear symmetrization operatigs. If | («) = m, let

Ym(peU'Z) = Y X" ™ = (]_[ vr!)ma(xl,...,xm), (7)

0eSm r>1

wherem,, is the monomial symmetric function indexed dyandv; is the number of parts of
a equal tor, for eachr > 1. If | (@) # m, then the value of/y, is 0. Now let

PM™(x1,..., Xm) = Yym(F™). (8)

In the main conjecture that follows, we lat = w(x;) fori > 1, wherew(x) is the
unique power series solution of the functional equation giverLyn@f coursew1, ... are
algebraically independent.

CONJECTUREL.2 (MAIN CONJECTURE. Form > 1,

m

m 5 3—-m dw
X — PM(xq, ..., %m) = S™(wq, ..., ¥ L
(2 I3Xi> (X1 m) (w1 wm)il:!L ldXi

where ™ (w1, ..., wy) is @ symmetric polynomial imy, . .., wm.

The conjectured form for the seri®™ therefore involves rational expressionsun, . . .,
wm. To see this, differentiatel) with respect tok, to obtain the rational form

dw w

*OX T I- k= Dwk T ©
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Note that the dependence kmot only resides in the coefficients of the symmetric polyno-
mial (which we conjecture to be polynomials ki, but also in the functional Eqri). The
dependence of the explicit formal power seriesifoon k through this functional equation is
actually straightforward, and is seen immediately by Lagrange’s Theorem to be

_ m—1
wx) = Z 1+ k m'l)m) I (k=Dm (10)

m>0

In this paper, we determine explicitlp™ for the casesn = 1, 2, 3. These are all of
a form that supports the above conjecture. Explicit expression§frin these cases are
stated below. Le¥ (wy, ..., wj) denote the Vandermonde determinantuip . .., wj, and
lethj (wy, ..., wj) denote the complete symmetric function of degreews, . .., wj.

THEOREM1.3. SD(wq) = 1.
THEOREM 1.4. S® (w1, wp) = (wk™1 — wk ™12/ V (w1, w2)? = h2_, (w1, wy).

THEOREM1.5. S® (w1, wo, w3) = GZ/V(u)l, wo, w3)2 = (hk_z+(k—1)hx_4)2, where
G=w1<1—<k—1>w§*1><wk*l b+ wal — (k= Duws Hwf Tt - wih
+wa(l — (K — Dw§ Hws * - 5 Y, and  h = hi(wy, wo, wa).

The proofs of these results are given in SectlorThe method is to solve a partial dif-
ferential equation foP(™ that is obtained in SectioB. This equation is itself deduced by
symmetrizing a partial differential equation f6f™ that is obtained in Sectio The latter
is determined by a combinatorial analysis of minimal permutation multiplication. The deter-
mination of further cases, at present, seems to be intractable, despite the fact that we have a
general solution scheme, as we will discuss in Sedion

The forms obtained above in the first three cases are remarkably simple, although it has
not been possible to conjecture a general form based on this evidence. AltBdughy
default,5® andS® are perfect squares, we do not believe that this holds in general. Note
that S™ does not restrict t&™Y throughwm = 0, in the casesn = 2 andm = 3. Also
note that if we substitutk = 2 in Theoremsdl.4 and1.5above, then we immediately obtain
S@ = 5@ = 1. In the following result, we demonstrate that this is true wkea 2 for an
arbitrary choice ofn as a direct consequence of Hurwitz’s resBijt (

LEMMA 1.6. Ifk = 2, then $™ (w1, ..., wm) = 1form > 1.

PrRooOF From (), for k = 2, we have

m 5 3-m c, Otj+l
(ZX‘3?> PO Xm) = 2 Z | '(H o ) >
i=1 ! I o

n>1 akn i eGm

1 T atjxj %o (1) X (m)

Ly (%) 5
at,...,am>1 \j=1 ! 0eGny

lm[ dwj

i1 deJ

The result now follows. O

We note that, in the case of transpositions, together with VainsHtéjnye have recently
been able to obtain similar results in the case where there are two more than the minimal
number of factors. These correspond to holomorphic mappings from the torus.
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1.5. Symmetric functions and minimal ordered factorizatiohs[9] (see also 15]) an ex-
plicit construction is given for Macdonald’s ‘top’ symmetric functiams indexed by ~ n.
They have the property that the number of minimal ordered factorizatians. ., o) of 7,
whereoj € Cg,i =1,..., j, and for eachr € C,, is given by

[Up—1]Upy—1---Ugj—1, (11)

whereg; —1 is the partition obtained by subtracting one from each past.@everal examples
of their use in enumerative questions is givengdh [

The symmetric functions;, wherex + n, are constructed as follows. Lé&t(t; x) be the
generating series for the complete symmetric functigris) of degred in x = (Xg, X2, ...).
Then the functional equatio® = t H(t; X) has a unique solutioh = t(s, X) given byt =
s H*(s; X) whereH*(s; x) = ijo sl h?(x), andh* (x) is a symmetric function ix of total
degreej. Leth} = h;lh;2 -+..Then{u,}is definedJ to be the basis for the symmetric function
ring that is dual to the basigh}} with respect to the inner product for which the monomial
and complete symmetric functions are dual (see, e.g., MacdaohE)d [

Thus, for minimal ordered factorizations in which all factorslai®ycles, then in Eqni(l),
we haveug _1 = uk—g foralli = 1,..., j. But, as is shown ind], ux_1 = —pk—1, So for
minimal ordered factorizations in which all factors &reycles, we can restrict our attention
to a symmetric function algebra in whigh = 0 if i # k — 1. In this case, we have

s=tH(; x) = exp(Z %tm) =t exp(%tk_l).

m>1

Thus, ifz is substituted for%, in this equation, we obtaih= st Butthis is precisely
the functional Eqn X), whose solution features so centrally in our results for the transitive
case above.

We conclude from this that there must be an important relationship between the transitive
case of minimal ordered factorizations for which we have obtained partial results in this paper,
and minimal ordered factorizations themselves, that have such an elegant theory based on
symmetric functions. Although we have been unable to find a direct link between these two
classes, we hope that the results of this paper will provide a good starting point for such a
direct link, and a similarly elegant theory for the transitive case.

2. THE PARTIAL DIFFERENTIAL EQUATION

In this section we derive a partial differential equation for the generating series

o= FM™, (12)

m>1

where F(™ is given in @), by a case analysis of the creation and annihilation of cycles in
products of permutations subject to the minimality condition. We begin with a discussion of
permutation multiplication. First, we prove the express@yfdr k().

PrROPOSITION2.1. Leta - n, and letr € Cy. Thenuk(w) = uk(a), where

[ -2
pi(er) = %
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PROOF. Let (o1, ..., 0j) be a minimal, transitive ordered factorizationointo k-cycles.
Let 7' and be in the same conjugacy class, 80 = g~'xg for someg € &,. Then
(9 Y010, ...,9710jg) is a minimal, transitive ordered factorization of, so uk(7’) =
uk (), and we denote the common value by(x) wherer € C,. Now eachk-cycle in
&k has a minimal, transitive ordered factorization ipte([k]) transpositions, s@2(«) =
w2([K]) uk (). But [10, Proposition 2.12(a) = n + I (@) — 2, and the result follows. O

2.1. A characterization of minimal, transitive ordered factorizatiomdext we give a com-
binatorial characterization of minimal, transitive ordered factorizations. The following lemma
characterizes the relationship betwegrando; - - - oj for a minimal, transitive ordered fac-

torization(oy, . .., oj) of m € & intok-cycles. Some notation will be useful, and will be used
throughout this section. The muIti—grapﬂn,l_,___,gj has vertex-setl, ..., n}, and edges con-
sisting of the edges of tHecycles in the factorization. Lé1y, . . ., )V} be the vertex-sets of the
connected componentsBf, ., so{Vi, ..., W}isapartition of{1, ..., n}into non-empty
subsets. For = 1, ...,1, leto; consist of allt € {2, ..., j} such that all of th& elements
onot belong toV, so{ay, ..., o} is a partition of{2, ..., j}. Supposey = {wi1, ..., dis }
with a1 < -+ < ajg;, @aNdog,, - - - O, = i, fori =1,...,1. Then clearly, by construction,
(O-ozil’ ceey Gaisi ) (13)
is a minimal, transitive ordered factorizationmf, fori = 1, ...,1, and we have
T =017 7. (14)

Moreover,o,,, ando,,, commute fora # ¢ and allb, d, since the elements on thdseycles
are disjoint.

For example, in the minimal, transitive factorization given &), (we havel = 2, with
V1=1{1,2,3,56,8 andV, = {4,7,9}; a1 = {2,4,5} andao = {3}; 71 = (1386 (25) and
o = (479.

Fors € 6,andA C {1, ..., n}, the A-restrictionof § is the permutation onl obtained by
deleting the elements not iA from the cycles of. For example, it = (1538 (27469 and
A=1{1,4,6,7, 8}, then thed-restriction ofs is (18)(467).

LEMMA 2.2. Let (01, ..., 0j) be a minimal, transitive ordered factorization of ¢ &y,
into k-cycles, and letq, ..., m be constructed as above. Then:

(1) o1 has at least one element in common with eaciof. . , 7.

(2) The elements @f; in common withr; lie on a single cycle of;, fori =1,...,1I.

(3) Let!f denote the k-subset @, . . ., n} consisting of the elements on the k-cyelel et
y denote thé/-restriction ofoq, let p denote thé/{-restriction of 1 - - - 7y, and lett
denote thé/{-restriction ofr (soyp = 1). Then(k — k(1)) + (K — k(p)) = k — k(y),
so(z, p~ 1) is a minimal, ordered factorization of.

PROOF. Since(oy, ..., 0j) is a transitive factorization of, thenD,, . is connected.
Thus the singl&-cycle inD,, has at least one vertex in each of the connected components of

Do,,....o» and this establishes part (1).

For part (2), from part (1) it suffices to prove thatp) = |. Now, from (14) and the fact
that (o4, - - - . aﬁtisi) is a minimal, transitive ordered factorizationaf, fori = 1,...,1, we
have

pk () = 14 puk(r) + -« - + uk(m). (15)
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But, from Propositior2.1

n+x(r)—2 Vil +«(mi) — 2
) = TEED =2 gy MR 22
fori =1,...,1.Thusn+«(m) -2 =k -1+ 2!:1(|vi| + k(7)) — 2), from (15). But
n=Y_, Vil so
[
k() =Y k() =k+1-2. (16)
i=1
Now let p; be thel{-restriction ofx;, fori = 1,...,l, sor = o171 - - - m restricts tor = yp,

wherep = p1 -+« . Thusk () — k(1) = Yj_g(k (i) — k(pi)) = X4 _q k(i) — k(p), and
together with 16) this gives

|
K(r)—/c(p):K(n)—ZK(m):k+1—2l. @an
i=1

On the other hand, singe p andr act on &-set andrp~1 = y we have from Propositioh.1
that (k — k(1)) + (k — k(p~ 1) > (k — k(y)). Butk(y) = 1 andk(p™1) = «(p), SO
k(t) + k(p) < k+ 1, and in addition, from part (1) we hawgp) > I. It follows that
k() — k() < k+1—-2(p) < k+ 1— 2. Combining this with 17) givesx (o) = I.
Together with part (1), this establishes part (2).

Part (3) follows immediately from(p) = I, «(y) = 1 and (7). |

2.2. The tree bijection.We now use this characterization as a construction for deriving a
partial differential equation fof with arbitraryk, given in Theoren®.3 below. The terms

in the equation are indexed by the §gtof plane, vertex two-coloured (black, white), edge-
rooted trees witlk edgesk > 1, together with canonical labellings of the vertices and edges,
described as follows.

Let T be such a tree. Now is the boundary of an unbounded region of the plane. De-
scribe the boundary by moving along the edges, keeping the region on the left, beginning
along the root edge from its incident black vertex to its incident white vertex. Each edge is en-
countered twice, once from black vertex to white vertex, and once from white vertex to black
vertex. Assign the labels, 1. ., k to the edges, in the order that they are encountered from
black to white vertex. LeB(T) andW(T) denote, respectively, the number of black vertices
and white vertices ifT . The black vertices and white vertices are labebed . ., bg(t) and
wy, ..., Ww(T), respectively, where for each colour, the subscripts are in increasing order of
the smallest label on the edges incident with the vertices they index. Fod, ..., B(T),
let 8j be the set of labels on the edges incident with vebiexSimilarly, letw; be the set of

labels on the edges incident with vertex. Then{y, ..., Bgm} and{wy, ..., ow()} are
set partitions off1, ..., k}, and the blocks are indexed in increasing order of their smallest
elements. Lety, ..., ik be positive integer-valued indexed variables, and define
Ob) =Y is,  Ow) =) s
SepBy Sewr

The setly is in one-to-one correspondence with minimal ordered factorizationk-ofale,
as was shown ing, Theorem 2.1]. The correspondence, which we shall refer to asabe
bijection, is described as follows:g andiyy are permutations ig. There is one cycle in the
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disjoint cycle representation ag for each black vertex it ; the elements on this cycle are the
labels of the edges incident with the black vertex, where the order of these labels on the cycle
is the clockwise order in which the corresponding edges are encountered around the vertex.
Similarly, there is one cycle ofy for each white vertex ifT, giving the labels on incident
edges in clockwise order around the vertex. Tthies, Ay ) is a minimal ordered factorization

of (1...Kk). In terms of the vertex labelling o given above, note that the cyclesxd and

Aw are the elements of thgy 's andwj’s, respectively, arranged in a particular cyclic order.

2.3. The partial differential equation fab. The next result gives a non-linear, inhomoge-

neous partial differential equation fdr, defined in {2), where®, denotes %.
THEOREM2.3. Leti = (i1, ...,ix) whereh,...,ix > 1. Then
1 B(T) W(T) 9b
K > Z(H Pe(bj)) < l_[ q’e(wj)) =30 (18)
TeZx i j=1 =1

PrROOFE For each fixek, @ is the generating series for minimal, transitive ordered factor-
izations(oy, ..., oj) of & into k-cycles for all permutations € &,, n > 1. The series is
exponential inz, recordingn, andu, recordinguk(rr), which is the number of factors in the
factorization. The series is ordinary jy, recording the number of cycles of lengftin ,

j = 1. (Note thaty («) gives the number of factorizations for eachn C,, so the coefficient
ck()|Cy| in @ accounts for factorizations of all sueh)

Consider modifyingd to obtain the generating seriésfor the same set, but not recording
the left-most factows by u. The result is3®, since%“h—r; = (ﬁfll), h > 1. This gives the
right-hand side of the equation.

We now determine another expression darto obtain the left-hand side of the equation.
This is carried out by reconstructing the cycle lengtha dfom the left-most factos; and
the cycle lengths af, . . ., 7, where we are using the notation of Leméha Letuy, ..., Uk
be distinct elements dfl, . . ., n}, in any permuted order. We now consider the contributions
to & of all factorizations witho1 = (uy .. . ux), and since th&-cycleso are created exactly
k times in these ordered lists, we will divide the resulting generating functidatbyobtain
an expression fod. In the notation of Lemma&.2, we havel{ = {u, ..., ux}. Then from
Lemma2.2(3) and the tree bijection described aboge,p 1) = (Ag, Aw) for some unique
treeT in 7k (replace in the construction for factorizations of the canonical cydle- - k) by
uj, fori =1, ..., k). Moreover, the black vertex-degrees are given by the cycle lengths of
and the white vertex-degrees are given by the cycle lengtps bf

We now observe that, in the produgp (recall thaty is thel/-restriction ofoq), cycles
with lengths equal to the degrees of the white vertices are annihilated, and combined to create
cycles of lengths equal to the degrees of the black vertices. This observation permits us to
reconstruct the cycle lengths offrom o1 and the cycle lengths aofy, ..., 7.

Now t is thel{-restriction ofr, and from Lemma&.2(2), each cycle op is thel{-restriction
of asingle cycle in some uniqug . We call this cycle thactivecycle ofzj in the construction
below. Suppose that on the active cycle containing elemgrthere aré; — 1 elements of
{1, ..., n} betweeruj and the next element &f (which may beu; itself) around the cycle.
Theniq, ..., ik > 1.

In terms of the tred, there is one active cycle corresponding to each white vertéx, of
sol = W(T), and for convenience, we suppose that the subscriptg on ., 7; are chosen
so that the active cycle ot corresponds to vertewj, for j = 1,..., W(T). Then the
cycle inrj that is annihilated has lengéh(w;). Moreover, once we identify this cycle, then
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the elements o#/ on the cycle are all uniquely determined by specifying any ofatqe;)
elements on the cycle to be a canonically chosen elemeht(sty, the element dif with
smallest index on the cycle), since the other elements are then determined by the values of
i1,...,Ik. But, from 13), (0qjq ...,oajsj) is a minimal, transitive ordered factorization of

7j, so the contribution tab from the annihilated cycles i]§[\j’vzq) Py(w;)- Also, a cycle of
lengthé (bj) is created for each black vertéx in T, so the contribution from cycles that are
created is]’[?fl) Po(b)-

Multiplying these contributions together, dividing iy and summing over all € 7y
andiy, ...,ix > 1 gives the left-hand side of the equation. This is an expressio fdne
contributions from the cycle lengths as recordedby. . . is explained by the analysis above.
The effect of labelling the elements on whiefy . . ., 7 act with disjoint subsets di, . .., n}
(whererr € &) is accounted for because the series is exponentiallihe effect of shuffling
the factors ofry, ..., m into disjoint subsets of positions chosen frd®)..., uk(x)} is
accounted for because the series is exponential (imere we use the fact that factors from
differentsrj’s commute since the;’s act on disjoint sets of elements). O

Note that, ifp; is the power sum symmetric function of degieia an infinite set of ground
variables, therjd/dp; = p]*, where pj* is the adjoint of premultiplication by; (see, e.g.,
[15] for details). The partial differential equation therefore can be rewritten in a form that
exhibits the symmetry between black and white vertices, by wriings pJ* D,

2.4. Examples.As examples, we now give the cades= 2 andk = 3 of Eqn (8). For
k = 2, there are two two-coloured trees kredges. Both are paths of edge-length two; in
one the vertex of degree 2 is black, in the other it is white. Since both trees have a single
edge-rooting, Eqnl@) fork = 2 is
9
% Z (q)ilcbiz Piy+ip + q)i1+i2 Pi, piz) = E (19)
i1,io>1

This is the equation given inlp], where we demonstrated that a series conjectured from
numerical computations satisfied this equation uniquely.

Whenk = 3 there are three two-coloured trees witledges. Two of these have a single
vertex of degree 3, adjacent to three vertices of degree 1; in one the vertex of degree 3 is
black, in the other it is white. Both of these have a single edge-rooting. The third tree is a
path of edge-length three, and this tree has three edge-rootings, sb8tépr k = 3 is (after
permuting the summation indices arising from the three edge-rootings of the third tree)

Z (3Di, ®i, @iy Pisripis + 3 Pistiptis Pia Pip Pig + iy Pigrig Pistip Pig) = 2—?- (20)
i1,i2,i3>1
We do not know of any method for solving this equation ®whenk = 3 explicitly, and
have not been able to conjecture the solution from numerical computations, as we could for
k = 2. However, as we show in the next section, we are able to determine the low degree
terms of® in the p’s, for arbitraryk.

3. RESTRICTION OF THEDIFFERENTIAL EQUATION BY GRADING

In this section we determine a partial differential equationf6P, defined in 8), that can
be used recursively to construet™ for all m > 1. Itis obtained by applying the symmetriza-
tion operator/, given in (7) to the partial differential EQnl@) given in Theoren2.3. Some
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notation is needed for this purpose. kar 1, let
W ..ox) = Y xdboxh,

Jpeenirzl
Jptetir=i
and leth{ (xa, ..., %) = 1, sohf (xq, ..., X) is the sum of the terms of the complete sym-
metric function of degreein x, ..., X with positive exponents on all variables. Let
HY(t X1, ..., %) = Zhﬁ(xl, o Xttt
i>0

If a(t) = Zizoa;ti is a formal power series, let
at) o HY (tixe. ... %) = Y _ahf(xa.....x).
i>0
This is essentially the Hadamard productagf) and H ™ (t; X1, ..., X;) with respect ta.
Throughout, the Hadamard product will be taken exclusively with respect to the indetermi-
natet.
Forl =1,..., m, let Em| be the symmetrization operator defined for formal power series
in X1, ..., Xm by
Em,l f(Xl, RN Xm) = Z f(XJ(l)’ R Xo'(m))v

o
where the summation is overe &y, with the restrictionthatr (I +1) < --- < o(m). Thus,
there areﬁ terms in this summation. Lét = {81, ...,5m}, Wwhere 1< §1 < -+ < ém.
Then, similarly toy,, we defineys by

01 1 «
Ys(paZul) = D X xge™,

O‘EGm
if I (@) = m, and is O ifl (o) # m. We denot&x;,, ..., Xs,,) by X5, and(t, Xs,, ..., Xs,,), with
minor abuse of notation, b, xs).

THEOREM3.1. Let x (wr) = {X; : bj is adjacent taw, }. Then, for m> 1,
W(T)

. LS g Z 1"[( PUSIHDt, x,, )) o H¥(t; x (wr))

TeZk
1 0 d
— Xm—— +Mm—2PM™(xq, ..., Xm),
= k= 1(1 +- +m8xm+ ) (X1 m)

where the sum is over all ordered (set) partitians= (¢1, ..., ¢wery) of{B(T) +1,..., m},
and blocks in the ordered set partition may be empty. (If T has more than m black vertices,
then the term in the summation corresponding to T.)s

ProoOFE The left-hand side of the partial differential Eqt8j is % > tez, L1, where

B(T) W(T)
Lt = Z(H Pe(br)) ( 1_[ q)o(ws))-
r=1 s=1

Then, form > Kk,

B(T) W(T)
Ymlt =) Em B(T)((l_[ Xf(br)) Z( [ Iﬂqs(q’@(ws))))'
i r=1 ¢

s=1
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If sis an edge label of, let 2(s) be the index of the black vertex incident with the edge
labelleds, and letZ (v) be the set of all labels of edges incident with the vertexhen

B(T) W(T)
(b
l_[ X =T] T 8o
r=1 seZ(wy)
so from (@2),
W(T)
Ymlt = Z Em,B(T) Z [ (( I1 st(s))% G(wr)ap F('ff“)).
r=1 seZ(wr) 0 (wr)
But, using 8),

0
wgr ap — FU&l+D [t]]t p(l{rl-i-l)(t X)),

and we thus obtain
W(T)

d
YmlT = um B(T) Z 1_[ <t8_p(|§r+l)(t Xz, )) o H+(t x (wr)).

r=1

Clearly, for the right-hand side of the partial differential EG8)( we have

0P 1 d B
— =\ xX1— 4 —— +m-2)PM(x L Xm),
1//m8u k—l( 18X1+ + X 3m+ ) (X1, - m)
and the result now follows. O

In order to use Theore®.1in practice, to determin®™ in terms ofk as a parameter, it is
convenient to refine the statement of the result to involve a smaller and more manageable set
of trees. Thus, fom > 2, letSy, be the set of plane, vertex two-coloured (black, white) trees
with at least one edge, at mastblack vertices, and no monovalent white vertices. These trees
are not edge-rooted, and we |aut(S)| denote the number of automorphisms of such a tree
S. Let B(S) andW(S) denote the numbers of black and white verticeS,inespectively, and
label these verticely, . . ., bps) andws, ..., ww(s), respectively, arbitrarily. LeG(t, z) =
Yi-10 (t)Z 1, and define the linear operatb, | to act on any finite product af’s by

S
Pt [ ) =) ]_[ar P“')(ar, X5,

r=1 ¢ r=1

where the summation is over all ordered set partitipes (¢, . .., ¢s) of {| +1, ..., m}, with
gl =ir—1,forr =1,...,s,and) ;_;ir—1=m—I,foranys > 1.1f > 7 _;ir —1# m—I,
then the value of'y is 0.

COROLLARY 3.2. Let d(v) be the degree of vertax Then, for m> 1,

Elmes [ x " y dibj)\ /WS
- m - o H*(t:
Z laut(9)| z ]<1_[ z(i—yG(xj,z)) )(rl:[l Gt,2oH (t,X(wr))>

j=1

1 1 0 0
~ EBlma 2" NG (xg, 2K = — Xm—— + M =2 P™(xq, ..., Xm),
+k m,1 [ 1G(X1, 2) - 1< 18X1+ -+ maxm+ ) (X1 , Xm)

whereElNy | denotesEm  'm, -



1012 |. P. Goulden and D. M. Jackson

PROOF We begin by re-expressing the left-hand sideof the partial differential equation
given in Theoren8.1, using the operatdrm, | defined above. Thus we obtain

W(T)
1 _
L=1 > 8lmem (2" 2] [T G(t,2) 0 H¥ (¢ x(wr)).
TeTx r=1
But symmetry implies that the vertices Bfcan be labellet,, . .., bg) andws, ..., ww(T)

arbitrarily. In particular, all edge-rootings of the same plane tree give the same contribution
to L; thus let7y consist of plane, vertex two-coloured (black, white) trees kitges, with
vertices labelled arbitrarily, and le{T) be the number of edge-rootings bfe Zx. Then

(M) e
L= Z — Elmem (2721 [T G(t,2) 0 H (¢ x(wr).
TG']I( r=1

Now note that ifw, is monovalent (of degree 1), ther(w;) = {X;}, wherebj is the unique
black vertex adjacent ta;, so we obtainG(t, z) o HY(t, x(wy)) = G(Xj, 2). Thus the
contribution toL for T with a single black vertex, adjacent komonovalent white vertices

(a black-centredtar), is EI'm 1 2" 11G(xq, z)"/k. Moreover, each other trek in ﬁ is
constructed from a unique tré&ein Sy, by embedding a black-centred star in some subset of
the corners ofS at each black vertex, and identifying the black centre vertex with that black
vertex, so that there is a total kfedges in the resulting plane trée (The trees with more
thanm black vertices contribute 0 th. A corneris an open region of the face bounded by
two edges that are encountered consecutively when traversing the outer face.) The generating
series for the possible embeddings at each corner at vgrtex1 — yG(x;, 2))~1, wherey
records the number of additional edges in this construction, and thedg@pesuch corners

at vertexb;. The number of edges i8is given byZ}g(Sf d(bj), whereB(S) = B(T). Thus

B(S y dbj\ /WO
L= aElmas [ykzm]<]_[ z(m) )(]"[ G(t.2) o HT(t; x(wr))>

SESm J:]. r=1
1
+ Elma 271G, 2"
wherea = ¢(T)B/k, andg gives the number of times that is constructed by embedding

black-centred stars in all possible ways. B(T)8 = k/|aut(S)|, and the result follows. O

The following result gives an explicit expression for the Hadamard product of a formal
power series withH*. This will be useful in the next section to evaluate the Hadamard prod-
ucts that arise when we apply Coroll&@8)2 for small values ofn.

ProPOSITION3.3. Let f(t) be a formal power series in Then

k
f) o H txe....x) =Y o) [] Xp
i=1

1=<p=k Xi—Xp
pA

where empty products are equallo

4. PROOFS OF THESUPPORTINGTHEOREMS

It is convenient to identify the trees 8 in order to identify how the terms in the partial
differential equations for various choicesmof < 3 arise. LetS; be the plane tree with two
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black monovalent vertices adjacent to a single white vertex of degree & st the plane

tree with three black monovalent vertices, adjacent to a single white vertex of degree 3. Let
S be the path on four edges, with vertices alternately black and white, where the monovalent
vertices are both black.

4.1. Proof of Theorem 1.3Consider the casm = 1 in Corollary3.2 Then since contribu-
tions on the left-hand side come only from the last term, we obtain the differential equation

1/ dPONK 1 d
- — — _1\p®D
k(xl dx ) k—1(x1dx1 )

for P, To solve this equation, differentiate the equation with respegt tnd multiply by
x1. Then, with f = x;d P® /dx;, we obtain

L af f
Yaxg — 1= (k—1)fk1

It is now straightforward to determine, for formal power serieg ithat f = w1, by com-
paring this differential equation witt®), and using the initial conditiori (0) = 0. The result
follows immediately. ]

4.2. Proof of Theorem 1.4Consider the case = 2 in Corollary3.2 Now contributions
on the left-hand side come from the last term, and from the $ied hus, substituting the
expression foP® from Theorem.3, and applying Propositiod.3to evaluate the Hadamard
products, we obtain

k—1 d P(Z) k—1 d P(Z) Xowq — Xqw2 wlf_l - wlz(_l
wy X1 + Wy X2
0X1 X2 X1 — X2 w1 — w2

1 a 0
= x1=— +x— )PP,
—l( 13X1+ 23X2>

S0, rearranging, we have

1 k-1,, O k-1,, 0 2
—(1-(k-1 Xi— + (1 —(k—1 xo— |P®
k_1<( (k= Dl x4+ (@ k= Duf e

_ Xow1 — X1w2 wlf_l — wlé_l
- X1 — X2 w1 — w2

It is now straightforward to verify that

k

k
w1 — w2 wy — w
P®@ (x1, x2) = log -t 2
X1 — X2 w1 — w2

by confirming that it satisfies the above differential equation, and the initial cond#®r0, 0)
= 0. (Note that the constant term in the expansiotuaf — w2) /(X1 — X2) as a formal power
series inx, X is 1, so the logarithm exists.) Finally, apply the operadgj% —|—xzaix2 to P@,
and the result follows. a
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4.3. Proof of Theorem 1.5Consider the case = 3 in Corollary3.2 Then contributions
on the left-hand side come from the last term, together with the 8%, S3. Substituting
the expression foP® from Theorentl.3, it follows that

N )
831w, X1—P
3,1W, 1a 1

d d
+E31(k — Dk 2 xg— PP (x1, x2) ) X172 P@ (x4, X3)
' 0X1 0X1
— d
+33,2<—7> (X137 P@(xq, xS)) (w(t) o HT(t; X1, X2))
1

k—1 k—1

1 w —w 0

+= Bz +—2— ) (t-P@(t, x3) o H¥ (t; X1, X2)
2 w1 — w2 at

+2hk_3(w1, w2, w3)(w(t) o H(t; X1, X2, X3))

1 0
+= 33,3(—hk—3(U)1, w2, w3)> (w(t) o HT(t; X1, X2)) (w(t) o HT (t; X2, X3))

2 dw?
1 ad d ad
= —(x1— +x0— +x3— + 1| PO,
k—l( 13X1+ 23X2+ 33X3+ )

The third and fourth expressions on the left-hand side arise Bgrand the fifth and sixth
expressions arise fro® andSs, respectively. Note that, in the fifth expression, we have used
the fact that all six terms that arise in the symmetrizatiorEgy are equal. (In general, there
will be at leastaut(S)| symmetries among the firsvariables that arise when applyi&gn,,
wherel = B(S).) Now apply Propositiof3.3to evaluate the Hadamard products, and use the
fact that 5

d
k—1 _
1-—(k-Dw )X_Z)X = w—aw (21)

(this latter follows from 9)). Simplifying (with the help of Maple), we obtain

3
1 Gl _ - -
= (Z Wi+ 1) P® = (k - D} ?Ar2A1s + wh 2 Ao1 Az + w * AsiAz2)
i=1
w‘fl - wg_l w'l(*l - wl:,(fl
+ 5 (w2A13 — w1A23) + ———— 5 (w3A12 — w1A32)
(w1 — w2) (w1 — wa)
w;_l — wg_l
+—=——5 (w3A21 — w2Aa),
(w2 — w3)
where
Wi Wi wikil - wlj“l

Ai = 1—k=—Dwt (wi—wp?’

The solution to this equation is given in Theordn, and has been verified with the aid of
Maple, giving the desired result. O

5. COMPUTATIONAL COMMENTS AND CONJECTURES

We have shown in Sectiohthat PV, P@ and P® can each be obtained as the solutions
to first-order linear partial differential equations. We believe tREP, for m > 4, can be
obtained in a similar way as the solution of such an equation. Moreover, we conjecture that
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the equation for anyn > 3, (obtained from Corollarg.2, and applying 21) as described for
m = 1, 2, 3 in Sectiord) after multiplying through bk — 1, is of the form

m
(Z wi = 4 (m— 2)) P = Ry(ws, ..., wm),
o dwi

whereRy, is a rational function invy, . . . , wm, obtained fromP® ..., P(M=D Thatis, there
is no dependency dRy On X1, . .., Xm except through¥0). Now let Q™ (t) be obtained by
substitutingtw; for wi in P™ for 1 = 1, ..., m. Then the above partial differential equation
is transformed into the first-order linear ordinary differential equation

%(tm—ZQ““) (1) = t"S3Rp(twy, ..., twm), (22)
which can be solved routinely, in theory. In practice, this is precisely how we obt&ifed
with the aid of Maple, in Sectiod. However, even in this case, the simplification of the
equation was difficult; we provided human help by proving that the rational expression on the
right-hand side of the equation is independent ofxise and then replaced eash by w; to
evaluate it. This explains how th& arise, asx; &P(Z) (Xi, Xj) evaluated akj = wj and
Xj = wj.

JForrT{ = 4, the expressions became too big to be tractable, and we have not found a conve-
nient way of circumventing this. We conjecture that, for each 3, P(™ is a rational func-
tion of w1, ..., wn, Wwhose denominator is consistent with Conjectir2 using ©). (Note
that form = 2, the right-hand side of the equation, as obtained in the Proof of Thebrgm
is not a rational function ofv1, w2 alone, but rather involves, x, as well.)

Note added in press.An independent proof off), from the point of view of singularity
theory, has been given iB][

ACKNOWLEDGEMENTS

This work was supported by grants from the Natural Sciences and Engineering Research
Council of Canada. An anonymous referee was very helpful in pointing out gaps in a previous
version of the paper.

REFERENCES

1. V. I. Arnold, Topological classification of trigonometric polynomials and combinatorics of graphs
with an equal number of vertices and eddesnc. Anal. Appl.30(1996), 1-14.

. M. Crescimanno and W. Taylor, Lardé phases of chiraQ C D», Nucl. Phys. B437(1995), 3-24.

3. M. el Marraki, N. Hanusse, J. Zipperer and A. Zvonkin, Cacti, braids and complex polynomials,
Semin. Lothar. Comb37 (1996), Art. B37b, 36pp.

4. M. Fried and R. Biggers, Moduli spaces of covers and the Hurwitz monodromy glo&gine
Ang. Math, 335(1982), 87-121.

5. V. V. Goryunov and S. K. Lando, On the enumeration of meromorphic functions on the line, in:
The Proceedings of the Conference Dedicated to V.I. Arnold’s 60th Birthday (Toronto, 2983)
1999, pp. 209-224.

6. I. P. Goulden, A differential operator for symmetric functions and the combinatorics of multiplying
transpositionsTrans. Am. Math. Soc344(1994), 421-440.

N



1016 |. P. Goulden and D. M. Jackson

7. 1. P. Goulden, J. L. Harer and D. M. Jackson, A geometric parameterization for the virtual Eu-
ler characteristics of the moduli spaces of real and complex algebraic clirees, Am. Math.
Soc, to appear, math.AG/9902044.
8. I. P. Goulden and D. M. Jackson, The combinatorial relationship between trees, cacti and certain
connexion coefficients for the symmetric grofurop. J. Combinatoricsl 3 (1992), 357—365.
9. I. P. Goulden and D. M. Jackson, Symmetric functions and Macdonald’s result for top connexion
coefficients in the symmetric grou, Algebra 166 (1994), 364—378.
10. I. P. Goulden and D. M. Jackson, Transitive factorizations into transpositions and holomorphic
mappings on the spher@roc. Am. Math. Soc125(1997), 51-60.
11. 1. P. Goulden, D. M. Jackson and A. Vainshtein, The number of ramified coverings of the sphere by
the torus and surfaces of higher genéran. Comh.4 (2000), 27-46.
12. J. Harer and D. Zagier, The Euler characteristic of the moduli space of cumvest. Math, 85
(1986), 457-485.
13. A. Hurwitz, Ueber Riemann’sche &then mit gegebenen Verzweigungspunkidath. Annal, 39
(1891), 1-60.
14. A. G. Khovanskii and S. Zdravkovska, Branched cover$gfand braid groups). Knot Theory
Ramifications5 (1996), 55-75.
15. I. G. Macdonald Symmetric Functions and Hall Polynomialarendon Press, Oxford, 1981.
16. B. Shapiro, M. Shapiro and A. Vainshtein, Ramified coveringS%fiith one degenerate branching
point and enumeration of edge-ordered graptusy,. Math. Scj.34(1997), 219-228.
17. V. Strehl, Minimal transitive products of transpositions—the reconstruction of a proof by A. Hur-
witz, Semin. Lothar. Comb37 (1996), Art. S37c, 12 pp.

Received 1 October 1997 and accepted in revised form 29 March 2000

IAN P. GOULDEN AND DAVID M. JACKSON

Department of Combinatorics and Optimization,
University of Waterloo,
Waterloo, Ontario,
Canada N2L 3G1



	Introduction
	The Partial Differential Equation
	Restriction of the Differential Equation by Grading
	Proofs of the Supporting Theorems
	Computational Comments and Conjectures
	References

