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In unpublished work, Macdonald gave an indirect proof that the connexion
coefficients for certain symmetric functions coincide with the connexion coefficients
of the class algebra of the symmetric group. We give a direct proof of this result and
demonstrate the use of these functions in a number of combinatorial questions
associated with ordered factorisations of permutations into factors of specified
cycle-type, including factorisations considered up to commutation in the symmetric
group. Several related properties of the symmetric functions are given. € 1994

Academic Press, Inc.

1. INTRODUCTION

Let & be the set of all partitions and if « is a partition of n we write
o bn. Let I(a) be the number of positive parts of o and m,(x) be the
number of parts of a equal to i, for i=1. Where convenient we write
A= (1"11(0!)2"12(1] e ]

Let K,e CS, be the formal sum of the elements in the conjugacy class
indexed by « |-n, consisting of all permutations in &, with cycle-type o.
Let the coefficient of K, in the product K,K; be denoted by ¢} ;, a con-
nexion coefficient in the class algebra of &,. These coefficients are rich in
combinatorial information but their determination remains difficult in all
but the most restricted cases. Clearly, from connectivity considerations,
¢y g 1s zero unless /(o) + /(B) < I(y) + n, and we call ¢}, ; a top coefficient in
the case of equality, for a, B, y - n. For example, explicit calculation yields,
fornz=17,

K[ln—ézl] K[ln—33] = 3(n - 3) K[,n—l:;] + 4(n _4) K[ln—422]
+(4K[ln—624]+K“n—7223]+5K“n—55]), (1)

where the top terms are enclosed in large round brackets.
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A compact and explicit expression for the top connexion coefficient ¢L"}
was given by Faharat and Higman [5]. Goupil and Bédard [9] rederived
this result, and extended it to give an explicit, but cumbersome, expression
for the arbitrary top connexion coefficient (see also [6]).

For partition «, let «—1 be the partition obtained by subtracting one
from each of the positive parts of a (and suppressing resulting zeros).
Macdonald [17] used Lagrange inversion to construct a basis {u,} for the
ring, A, =C[[x,, x5, ..]]1%, of symmetric functions in the indeterminates
Xy, X3, .. Using a result in [5], he observed that the top connexion coef-
ficients (indexed by 4) of the class algebra of &, are precisely the
connexion coefficients (indexed by A—1) for these symmetric functions.
For example (use TableI and p,p,=p,, , to verify this),

upi Uy =4upy 3y + Uz + Sugsg,

where these coefficients correspond to the top terms, enclosed in brackets
in (1). In this paper we give a direct proof of Macdonald’s result which
makes the essential role of Lagrange inversion clear and natural. We also
give an inversion theorem that permits us to use the u; in a number
of combinatorial applications. The u, have also occurred in recent work
by Haiman [10] on the module of symmetric invariants of
C[Xx15 s Xns Y15 - Vo] under the diagonal action of &,,.

In Section 2, a combinatorial construction of Goulden and Jackson [6]
is used to identify an arbitrary top connexion coefficient with the number
of 2-coloured trees of a particular type. The appearance of trees is
explained by the fact that, by the embedding theorem (see, for example,
[15]), the product of a pair of permutations encodes the embedding of a
2-face-coloured map in an oriented surface. A tree is a map with one face,
and is, of course, 2-vertex-colourable. The generating series for the set of
such trees can be expressed as WB where W and B are solutions of the
simultaneous functional equations

B=C((w,+w, WHw, Wiq o), 2)
W=é(bl+sz+b3B2+ "') (3)

in two infinite sets of indeterminates b, b,, ..., and wy, w,, ...

In Section 3, we transform these equations by replacing b, and w; with
certain algebraically independent symmetric functions, thereby expressing
the number of trees as a coefficient in a symmetric function. The algebrai-
cally independent symmetric functions form a basis for 4, whose dual is
Macdonald’s {u;}. A property of coefficients in dual bases then allows us
to establish Macdonald’s result. To this extent, the u,’s may be said to be
naturally related to the class algbra. For information on symmetric func-
tions additional to that given in Section 3, the reader is directed to [18].
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In Section 4 we give a general result for determining the coefficient of u;
in certain functions of the u,’s as the solution of a functional equation. The
solution can be obtained by Lagrange’s inversion theorem [7].

Many combinatorial questions can be translated to the class algebra and
the main theorem therefore gives a way in which some of these can be
treated in the ring of symmetric functions. We have not studied this
exhaustively, but instead illustrate the principle on some particular
problems concerning ordered factorisations of permutations. Some typical
questions of this type are considered in Section 5, where attention is restricted
to factorisations of a generic cycle of length » in &,. By using the class
algebra, it is also possible to count inequivalent ordered factorisations,
namely those distinguished only up to commutation of the factors. A bijec-
tive approach to a special instance of this question has been given by
Eidswick [4] and by Longyear [16].

Although such questions can also be addressed using characters of
irreducible representations of &,, it does not seem possible to reduce the
resulting expressions to the elementary forms which have been obtained in
Section 5. In this sense, the role of u, appears to be significant. This point
is amplified in Section 6.

It is shown in Section 7 that there is a particular involution, considered
by Macdonald [17], defined by its action on the complete symmetric
functions. It may be thought that other involutions on A, can therefore
serve a similar purpose. The fundamental involution is considered in this
context. A brief table of resolutions of power sums in terms of the u,’s and
vice versa, is given.

Finally, no insight has been gained into constructing a comparable set of
symmetric functions to account for the nontop terms in the product of K,
and K;. For example, such terms appeared with coefficients 3(n—3) and
4(n—4) in (1). The effectiveness of the combinatorial construction used in
Section 2 appears to be confined to the top case.

2. A CoMBINATORIAL CONSTRUCTION

Goulden and Jackson [6] have given a bijection between 2-coloured
plane edge-rooted trees on n+ 1 vertices and pairs of permutations in &,
whose product is an arbitrary permutation of cycle-type [#], and whose
cycle-types «, f, respectively, are such that /() + /(f)=n+1=n+I([n]).
This yielded (Theorem 2.2 [6]) an expression for the top connexion
coefficient [K;,;] K,Kgz, where [ 4] B denotes the coefficient of 4 in B. The
bijection easily can be extended to yield a bijection between pairs of
permutations whose product is an arbitrary permutation of cycle-type
y= (7, ¥2» ) and an ordered list of 2-coloured plane edge-rooted trees on
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v:+ 1 vertices, i = 1. Furthermore, as shown in [6], the generating function
for these 2-coloured trees is WB, where W, B satisfy the Eqs. (2) and (3).
Thus we deduce the following expression for an arbitrary top connexion
coefficient.

LEmMma 2.1, Let a, B,y —n with l(a) + I(B)=[(y)+n. Then

(K, K.Kg=L[w,bs] [] [&"*'] WB,

iz1
where B=E(w +w,W+w, W2+ ...), W=E&(b,+b,B+b3B*+ --.).

The bijection has been used by Hanlon er al [11] to provide a
combinatorial proof of a symmetric function result arising from an integral
representation,

3. SYMMETRIC FUNCTIONS AND THE MAIN RESULT

The complete symmetric function of degree i in the set x =(x,, x,, ...)
of indeterminates is denoted by h,=h,(x) so A,=Z[h, h,, ..} If
o= (o, ,,..), let h,=h, h, ---. The h, are algebraically independent and
{h,:2e P} is a multiplicative basis of A,. The generating series for the
complete symmetric functions is H(#; x)=[T];,, (1— 1x) =%, 0hi(x) 1.
Let y=(y,, y5,--) and z=(z,, z,, ...) be sets of indeterminates. Clearly,

H(s; x, y)=H(t; x) H(t; y) 4)

The monomial symmetric functions are denoted by m,, and form a basis of
A,. For symmetric functions in x, the usual inner product {, >, on A, is
defined by (m;, h,>, =96, ,, making {h,:ae?} and {m,:acP} dual
bases of A,. When the context permits, the suffix x of {, ), and 4,, and
the argument of the symmetric functions are suppressed.

The power sum symmetric functions, p,=p, p,, ---, are orthogonal
with respect to this inner product, and {p,, ps>=g '(«)d, s, where
g@)=T1;5, (i"®m,(2)")~". The Schur symmetric functions, s,, are
orthonormal with respect to this inner product.

Let u and ¢ be related by

u=tH(t; x). (5)
Then ¢ is implicitly a power series in u so we may write

t=uH*(u; x), (6)
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where H*(u; x)=3Y,,, h¥(x)u'is uniquely defined. Note that H* does not
satisfy (4), and that

H*(u; x)=H(t, x) . (7)

Now
1
h:f=h,’.“(x)=[u"“]t=m[t"]H(t)‘"“, (8)

by Lagrange’s implicit function theorem applied to (5), so is a symmetric
function of degree n.

It follows from (8) that A¥=(1/(n+1))[s"] exp(—(n+ 1), 5, (1/k) ps©),
$O

hr= 11 (=) (n+ 1)1 g(2) p;. 9)
Abn

The A} are algebraically independent. Let A} = h¥ h},---. Then {h}: 1 2}
is a basis of A.

Let {u;,: A€} be the basis dual to {h}:ieP}, so (u;, h¥>=9, ,.
Note that a,, ,=a;a, for a,=h;, p;, h¥, but not for m, s;, u;.

Our main interest in this paper is the connexion coefficients for the u,.
The following result expresses connexion coefficients for an arbitrary set of
symmetric functions in terms of operations on the dual basis.

ProposiTioN 3.1. Let {a,:ae P}, {b,: a€ P} be dual bases of A. Then,
for A, u,ve?,

[a:(x)] a,(x)a,(x)=[b.(y)b,(2)] b;(, 2).

Proof. First note that 3 _,a,(x)b,(y)=TI, ;5 (1—x,)"', by
Cauchy’s theorem [18]. Then
[ai(x)] a,(x)a,(x)
= <b).(x)’ au(x) av('x)>x

— [5,(3) ,(2)] <bi(x), Y a,(x)b,(y) ¥ aﬂ,(x)bw(z>>

peP weP

— [5,(y) b(z)] <bz(x), T (=x )" (1 —xiz,)-1>

hjz1

=[b(y)b(z)] by, 2). |
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The following result of Macdonald [17] states that the top connexion
coefficients in the class aigebra of &, are the connexion coefficients for the
symmetric functions ;.

THEOREM 3.2. Let A, p, v |-n, with l(u)+1(v)=n+ K1). Then

[K:] KyKv= [u;_,] Uy, _1Uy_y.

Proof. Let B, W be as defined in Lemma 2.1. Since the AX(z) are
algebraically independent, let w,=h¥*_,(z) so B={H*(W;z) since B=
{wi+w, W+ ---). Let t= WH*(W, z). Then WB={_t, and W=tH(t; z).

Since the AX(y) are algebraically independent, let b,=h* (¥) so
W=(H*(B;y) since W={(b,+b,B+ ---). Let t'=BH*(B;y). Then
WB={(t,sot'=t, and B=tH(t, y).

Now [t=WB=1*H(t, y) H(t;z) so {=tH(t, y,z), from (4), whence
t={H*({; y,z). Tt follows that WB=(*H*(;y,z) so [(""']WB=
h*_(y,z). This allows us to deduce from Lemma 2.1 that [K,] K, K,=
LhX (z)h}_({(y)]1hF_ i(y,2z), and the result follows from Proposi-
tion 3.1. |

In combinatorial applications, it will be convenient to use the following
equivalent form of Theorem 3.2.

COROLLARY 3.3. For a polynomial @ and o |- n,
[ M=K, ] D" " K A bn)=[u,_ ] DP(u, :4+n).

Proof. Note that the restriction on A, g, v} n in the statement of
Theorem 3.2 can be written as (n—[Hu))+(n—1I(v))=(n—1IA}), so
applying Theorem 3.2 iteratively gives

(KKK, =Lug o Jug o oruy,

for n—a)=3"T_, (n—1I(4;)). The result follows by linearity, since @ is a
linear combination of terms of the form K, ---K; . ||

4. RESOLUTION WITH RESPECT TO THE NEW BASIS

In applications of this theory to combinatorial questions, through
Corollary 3.3, we shall need a few technical results about the symmetric
functions u,. The first is an explicit expression in terms of power sums for
u; when / has a single part.

ProPOSITION 4.1.

Uty = — Pn-
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Proof. [u;] p,=<h¥, p,) =<8, (a1h¥, p,, from (9), since A} is multi-
plicative. The resuit follows from (9). §

The next results reduce the extraction of the coefficient of u, from
symmetric functions of a particular form to solving a functional equation.
The functional equation is precisely of the type to which Lagrange’s implicit
function theorem can be applied. The mappings used here between power
series rings are defined elementwise, and extend to homomorphisms. The
coefficient rings under this action are recoverable trivially from the
appropriate ring isomorphism and, for brevity, these, the domain and
codomain are suppressed. Such isomorphisms are generalisations of the
natural isomorphism R{[x,, x,11=(R[[x,1]1)[[x;]1], where R is a ring.

LEMMA 4.2. Let F(t) be a power series with constant term equal to 1.
Then

[ui(x)] l_l F(x,)=c;,
Szl
where 3., c:s't ! =v satisfies the functional equation v=sF~'(v), and
C).=CAIC)_2"‘, CO=1.

Proof. Let F(s)=1+fis+ f,5*+ --- and f, =/, f,, -+, where we may
regard the f; as indeterminates. Then

[, ()} [T Flx) = [ui(x)] 3. fumu(x)

izl He P

= Z f,,(h;*(x), mu(x))

pe?

=Y fu[h(x)]h}(x)=06h}(x),

pneP

where 0: h,(x)— f;, extended as a homomorphism to 4,. Now define
w=sH*(s;x) so v=0sH*(s;x)=Y,545"'0h*(x) where v=06w. But
s=wH(w; x) and, under the action of 0, this gives s =vF(v), a functional
equation for v with a unique solution, and the result follows with
c;=06h¥(x),iz1. |

THEOREM 4.3. Leta,=a;a,, -+, ap=1. Let A(t)=1+a,1+a, >+ ---
and 1 + ¢, 5+ c,82+ - = A”(r), where r satisfies r = sA" ~ '(r). Then, for an
indeterminate w,

(Z aiul(x)> =Y cu(x)

AeP rAeP



SYMMETRIC FUNCTIONS 371

Proof. In Lemmad4.2, let F(x,)=H(x,;y). Then v=sH(v; v)~!, so
v=sH*(s; p)=Zis0c(y)s'! whence c(y)=h* Let £:h*(p)—a,
extended as a homomorphism. Then &c;(y) =a,. From Lemma 4.2 we have,
S e (3 ,(x) =TT, Hi(x,; »). Thus, applying ¢ to this, ¥, , a,u,(x) =
ETLiz1 H(x;; ) Then [u, 1(Z; 5 a;u;(x))" = [u, 11151 EH(xi5 y)Y =c,,
from Lemma 4.2, where 3., ¢;s'" ' =v and

v=sEH(v, y) " (10)
Note that v does not depend on y, and is therefore invariant under ¢. Let
t=vH(v; y) (11)

so v=tH*(t; y). Applying ¢ to this gives
v=rA(r), (12)

where r = £¢. But, from (11), r = v H(v; y), so eliminating £H(v; y) between
this and (10) gives »* = sv” ~ . Finally, eliminate v between this and (12) to
give r=sA""1(r). |

5. ORDERED FACTORISATIONS OF PERMUTATIONS

If p, 04, ..,0, are elements of &, such that p=¢,---g,, we say that
(64, .., ;) 1s an ordered factorisation of p, and the o, are the factors. Let the
cycle-type of p be y and the cycle-type of g, be o, for i=1, ..., k. Then, from
connectivity considerations,

!

Y (n=Ha))=n—1(y)

i=1

and, in the case of equality, we say that the factorisation in minimal. Thus
we can use Corollary 3.3 to calculate the number of minimal ordered
factorisations by extracting a coefficient from symmetric functions {u,}.
Factors with cycle-type [1” "%~ 'k + 1] are called (k + 1)-cycles, and n-
cycles are referred to as full cycles. We first consider minimal factorisations
into (k + 1)-cycles. The case of transpositions (k= 1) was first solved by
Dénes [3], who showed that the number of such factorisations is #"~2,
which is also the number of labelled trees on » vertices. Bijective proofs of

this coincidence have been given by Moszkowski [19] and Goulden and
Pepper [8].
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COROLLARY 5.1.  The number of minimal ordered factorisations of a full
cycle in S, into (k + 1)-cycles is

m—1

n

if n—1=km for a positive integer m and zero otherwise.

Proof. The required number is
[u[n— 1]](1 _'4[1(])7l = <h:71, u'["k]> = <h:‘71, (_l)m PT)

from Corollary 3.3 and Proposition 4.1, where km=n—1. The result
follows from (9). §

COROLLARY 5.2.  The number of minimal ordered factorisations of a full

cycle in ©,, into [ factors which together contain i; cycles of length j+1,
j=1,is

I(n(l—1))!
=D+ 1=3,0 i} TLs 47

where 3. ji;=n— 1.

Proof. Let a,,a,,.. be indeterminates. From Corollary 3.3 and
Theorem 4.3 with w =/, the desired number is

{

[aﬂ‘a?'-ﬂ[nf]](x)] { Z alui(x)} = [a;la?"‘sn_l] Al(r),
ieP

where r=s54'""(r). The result follows directly from Lagrange’s implicit

function theorem. ||

COROLLARY 5.3. The number of minimal ordered factorisations of a full
cycle in &, into [ factors containing cycles of length k + 1 and 1 alone is

{ (n(l—1)
m\ m—1)’
if n—1=km for a positive integer m, and zero otherwise.

Proof. Leta,=46, ;for j>1. Then, from Corollary 3.3 and Theorem 4.3
with w=/, the desired number is [u,_(x)1{X, s auix)} =
[s" "J(1 +r*)" where r=s(1+r*)"'. The result follows directly from
Lagrange’s implicit function theorem. ||
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We again consider the minimal ordered factorisations of a full cycle in
&, into (k + 1)-cycles, whose total number was given in Corollary 5.1. Two
such factorisations are said to be egquivalent if one can be transformed into
the other by permissible commutation of the adjacent factors. Of course,
two (k + 1)-cycles commute only when there are no common elements in
the cycles of length k+ 1. Let 4, , be the number of inequivalent minimal
ordered factorisations of full cycles in &, into (k + 1)-cycles. The case of
transpositions, where k=1, has been considered by Eidswick [4] and
Longyear [16].

First we show how Cartier and Foata’s commutation monoid can be
used to give an expression for d, , in terms of the class algebra.

LEmMMA 5.4
Ln/tk+ 1) . -1
dn’kz[tnilK["]]< Z (_1)'/tij[l"’[k*“j(k-f—l)/]) .
j=0

Proof. Let 7, be the ith (k+ 1)-cycle in a canonical ordering of the set
of all (k+ 1)-cyclesin &,. Then d, ,=[=]1Y,., 2: ws1 a7, where
7 is the full cycle and ¥ * is over all inequivalent products of n,’s. Let

C={{i1,ni}:1520,ii< - <i,mm,=n,n for 1<j#I<s}.

Fora={i,,.,i,}Je¥ letn,=n,---n, and ¢,= 3 n,. Then, by a

theorem of Cartier and Foata [2],

€€, |xj=1s

da=tn1( T (=1c)

j20

But clearly, ¢, =Kpn-uwensg 1y 80 {250 (—1)¢;} 7 '€CE, and [n] can
be replaced with [K,;]. The result follows. ||

We can now apply Corollary 3.3 to convert the determination of d,, ,
into a calculation with symmetric functions, and hence evaluate 4, ,.

THEOREM 5.5. The number of inequivalent minimal ordered factorisations
of a full cycle in S, into (k + 1)-cycles is

l((2k+l)m)

m m—1

if n—1=km for some positive integer m, and zero otherwise.
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Proof. Let a;= -4, ; for j=1. Then from Lemma 5.4, Corollary 3.3
and Theorem 4.3 with w= —1,

dy =g ()] (z (—1y um(x))

/20

—1
=[u[,.g,](x>]{z a,;qu)} LY =)

ieP

where r satisfies r = s(1 —r*) 2 To solve this, let 1+ R=(1—r*)~! Then
d, =1s""'1(1 + R) where R satifies the functional equation

R=s"(1+ R)*+! (13)

The result now follows from Lagrange’s implicit function theorem. [

Eidswick [4] and Longyear [16] have determined d, , by different
means. When k=1, (13) is the functional equation derived by Longyear
[16] with a direct combinatorial construction. It is resonable to ask
whether there is a generalisation of Longyear’s construction to give a direct
proof of (13). In looking for such a construction, it may be worthwhile to
note that one combinatorial interpretation of (13) is that R is the gener-
ating series for planted plane trees, with vertices of degree 1 and 2k + 1
only, with respect to half the number of edges.

It should be noted that we have considered only minimal factorisations
of a full cycle in the above example. However, the product form of the coef-
ficients of u; in Theorem 4.3 make it clear that the number of minimal
factorisations of an arbitrary permutation is simply a product of terms of
the type given above. Thus there is no loss of generality, but rather only
simplification in notation, in considering only full cycles in the above
examples.

6. A CHARACTER THEORETIC EXPRESSION

An alternative means of using the class algebra of &, to solve com-
binatorial problems such as those of Section 5 (see, for example, Jackson
[12,13,14], Stanley [20]) is through orthogonal idempotents and the
characters of irreducible representations of S,,.

Let x? be the character of the ordinary irreducible representation, of
degree f?, of &,, indexed by 0 |-n, evaluated at an element of the
conjugacy class indexed by « —n. The size of the conjugacy class indexed
by 6 is denoted by A°.



SYMMETRIC FUNCTIONS 375

LEMMA 6.1. The number of ordered factorisations of an arbitrary
permutation with cycle structure y into factors in the conjugacy classes
indexed by a,, ..., 2, is

1
[K,]K,, ”'K“”zﬁhal ...hapgg (f)-tr-1 XS, -"Xgpr-

Proof. Let F,=(f%n!)Ys, ,x2Ks. {F,:al-n} is a set of orthogonal
idempotents [1] spanning the centre of C&,. The inverse relation is
K,=h*34, . (1//%) xiF,, and the result now follows. [

In attempting to apply this methodology through Lemma 6.1 to the
examples given in Section 5, however, we have found that the resulting
expressions are intractible. For example, consider the problem treated in
Theorem 5.5. First, note [ 1] that

n—1

Ty =) L= (e

i=1

In particular, 1"~ =("_"). Also x{,;=(—1) ifa=[1"n—k] and is 0
otherwise. Thus, from Lemmas 5.4 and 6.1, after manipulation

1
d 1_"‘,[1"71]
n!

x"f (=% ("¢H
W LD DMl (14 p)" e (exp (Ju’t 22)— 1)

It is unclear how this expression can be be simplified to the one given by
Theorem 5.5, so it appears that the simplification for minimal factorisations
afforded by the use of the symmetric functions u, has been significant. This
is particularly striking in view of the close connexion between characters
and symmetric functions given by {s4, p,> = x2.

7. A PAIR OF INVOLUTIONS ON A

The following mapping on A was considered by Macdonald [17]. Let
Y:h;— hr, extended as a homomorphism to A. Then, from (5) and (6),
h,=1/(n+ 1) ["JH*()"""'=yh¥* from (8), so i is involutory and
degree-preserving. The adjoint Y * of i is therefore also an involution, and
is linear but not necessarily multiplicative. Now (u;, yh,> =6, , since
fu,} is dual to {h}}, so (Y*u,,h,>=0, ,={m;, h,>. Thus m;,=y*u,,
and since * is involutory we have

U, =4*m,. (14)
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TABLE 1

Representation of u; in terms of p,, and p; in terms of u,

p) Rep. of u; in {p,: pe 2} Rep. of p; in {u,: pe P}
(1 —Pm —Um
[2] — P2 —Ur2
[1?) 1P+ 1Py 3upy+ 2upy
[31 — P U3
[21] 4t P dupsy+upn
[1*] —BPp1— 3P~ 8PLY — 1613y —9uga 13— bups
[4] —Pra) — U4y
[31] 5P+ P Supgy+upan
[2°] iPca+iPen Supay + 2up2y
(2 iz] ‘15P5§]—4P[3m1]’%P[z‘:J_%P[z It —25upqy — Bupy 1y — btz — 2ups 17
[1%] 71’[4]}*’ Tp[3,]l+ i 125047 + 64up; 3 + Sdupyy
+3P021 Py +36up; 2+ 24p 14

This provides an alternative compact characterisation of the u;. From
Proposition 4.1 and (14), y*p,= — p,,. It is readily shown that

Yp.= ), (=n)"™ g(2) p;,
ibn
so yp, #Y*p, if n= 1. Thus ¥ #y* so ¥ is not self-adjoint.

The following result gives the resolution of u, with respect to the power
sum symmetric function basis. Table I gives «; and p, in terms of each
other for |4| <4. Since the p, form an orthogonal multiplicative basis for
symmetric functions, this may provided a convenient means of making
calculations involving the u;.

LeMMA 7.1, If yp, =3 g alh, then u,=Y ;5 g(B) alp,.

Proof. Let u,=%,clp,, so ci=g(a)<u;, p,>. But from (14),

<u}u pa> = <l//*m/19 paz> =R<mb lﬁpz> Let l//pfz=2ﬂ a; hﬂ‘ Then <u}.’ pa> =
{m,, ¥p,> =a’ whence ¢ = g(a) aj. The result follows. |}

Note that p, can be computed in terms of the 4, by means of the
following result.

LemMa 7.2.

Wp.= H ([Sj] H}(s)>uj, where o=[192%...7.

=1
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Proof. First note that (3, ;p,4’/) =log H(x; x), so

1 i
Y. —yp;u’ =log Yy H(u; x) =log H*(u; x)= —log H(t, x)

jz1

from (7). Thus yp,= —n[u"]log H(z)=[s"] H "(s), by Lagrange’s
implicit function theorem. ||

We may regard the defining Eqs. (5) and (6) as the means by which the
involution ¥ is realised, and the main theorem as a combinatorial result
about . It is therefore appropriate to determine whether other involutions
can be given a combinatorial interpretation in this way. The obvious
candidate is the fundamental homomorphism [18], defined by w: A;—e,.
It is degree-preserving and involutory, and although it shares these
properties with i, we have been unable to obtain further combinatorial
information by reversing the argument given here, with w replacing . It
seems that the delicate functional equational structure in the symmetric
function ring in the case of y disappears in the case of w, since the latter
is self-adjoint. We obtain simply that [m,1m, m,=[f,] f.f,, where f, is
a forgotten symmetric function, and seem to have no prospect of providing
a compact combinatorial interpretation of £, in this way.
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