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Although powers of the Young–Jucys–Murphy elements Xi =
(1 i) + (2 i) + · · · + (i − 1 i), i = 1, . . . ,n, in the symmetric group
Sn acting on {1, . . . ,n} do not lie in the center of the group
algebra of Sn , we show that transitive powers, namely the sum
of the contributions from elements that act transitively on [n],
are central. We determine the coefficients, which we call star
factorization numbers, that occur in the resolution of transitive
powers with respect to the class basis of the center of Sn , and
show that they have a polynomiality property. These centrality and
polynomiality properties have seemingly unrelated consequences.
First, they answer a question raised by Pak [I. Pak, Reduced
decompositions of permutations in terms of star transpositions,
generalized Catalan numbers and k-ary trees, Discrete Math. 204
(1999) 329–335] about reduced decompositions; second, they
explain and extend the beautiful symmetry result discovered by
Irving and Rattan [J. Irving, A. Rattan, Minimal factorizations of
permutations into star transpositions, Discrete Math., in press,
math.CO/0610640]; and thirdly, we relate the polynomiality to
an existing polynomiality result for a class of double Hurwitz
numbers associated with branched covers of the sphere, which
therefore suggests that there may be an ELSV-type formula (see
[T. Ekedahl, S. Lando, M. Shapiro, A. Vainshtein, Hurwitz numbers
and intersections on moduli spaces of curves, Invent. Math. 146
(2001) 297–327]) associated with the star factorization numbers.
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1. Introduction and background

We begin with an account of the Main Theorem of this paper and its relationship to the enumer-
ation of a class of ramified covers of the sphere, a question that arises in algebraic geometry.

1.1. Young–Jucys–Murphy elements and the Main Theorem

The Young–Jucys–Murphy elements in the group algebra CSn of the symmetric group Sn on [n] :=
{1, . . . ,n}, are given by

Xi = (1 i) + (2 i) + · · · + (i − 1 i), i = 1, . . . ,n,

where X1 = 0 (see, e.g., [VO] for a detailed description and further references). Let Z(n) denote the
center of CSn , n � 1. Then the algebra generated by Z(1), . . . , Z(n) is called the Gel’fand–Tsetlin al-
gebra, and one of the key results described in [VO] is the fact that this algebra is also generated by
X1, . . . , Xn , despite the fact that Xn is clearly not contained in Z(n) for any n > 2.

For A ∈ CSn and positive integer r, we define the rth transitive power A〈r〉 of A = ∑
σi∈Sn

aiσi by

A〈r〉 =
∑

ai1 · · ·air σi1 · · ·σir ,

where the summation on the right-hand side is restricted to σi1 , . . . , σir ∈ Sn such that 〈σi1 , . . . , σir 〉,
the group generated by σi1 , . . . , σir , acts transitively on [n]. The subject of this paper is the transitive

power X 〈r〉
n of the Young–Jucys–Murphy element Xn for arbitrary positive integers n, r.

Our main result, Theorem 1.1, is that the transitive powers of Xn, unlike powers, are contained in
Z(n). Moreover, since a basis for Z(n) is given by the set of all Kα where Kα = ∑

π∈Kα
π , and Kα

is the conjugacy class of Sn (naturally) indexed by the partition α of n, then Theorem 1.1 expresses
the transitive power X 〈r〉

n as an explicit linear combination of the Kα . (Note that an explicit expression
for X 〈r〉

n can be obtained immediately from the Principle of Inclusion–Exclusion, since the transitivity
restriction simply says in this case that the surviving products contain at least one occurrence of (i n)

as a factor for every i ∈ [n − 1]. The resulting expression is

X 〈r〉
n =

∑
γ ⊆[n−1]

(−1)|γ | Xn(γ )r,

where Xn(γ ) = ∑
j∈γ ( j n). However, we have been unable to use this explicit expression to prove

Theorem 1.1.)
We use the following notation and terminology for partitions. If α1, . . . ,αk are positive integers

with 1 � α1 � · · · � αk and α1 + · · · + αk = n, then α = (α1, . . . ,αk) is a partition of n with k parts,
and we write α � n and l(α) = k, for n,k � 0. Let α \α j denote the partition obtained by removing the
single part α j from α, for any j = 1, . . . ,k. Let α ∪m denote the partition obtained by inserting a sin-
gle new part equal to m into α (placed in the appropriate ordered position). Let 2α = (2α2, . . . ,2αk),
and aα = aα1 · · ·aαk for any indeterminates a1,a2, . . . . Let P denote the set of all partitions, including
the empty partition ε, which it a partition of 0 with 0 parts. If α has f j parts equal to j for each
j � 1, then we also use (1 f1 2 f2 · · ·) to denote α, and we write |Autα| = ∏

j�1 f j !
We now state our main result. The notation pi ≡ pi(α) is used to denote the ith power sum of the

parts of the partition α, i � 1, and qi ≡ qi(α) := pi + p1 − 2, i � 2, and we define ξ2 j and ξ by

∑
j�1

ξ2 j x
2 j := log

(
ξ(x)

)
, where ξ(x) := 2x−1 sh

(
1

2
x

)
, (1)

where sh and ch denote, respectively, hyperbolic sine and cosine.
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Theorem 1.1 (Main Theorem). For r � 0, X 〈r〉
n is contained in the center Z(n) of CSn. Moreover, the resolution

of X 〈r〉
n with respect to the class basis of Z(n) is

X 〈r〉
n =

∑
α�n,
g�0

ag(α)Kα

where the range of summation on the right-hand side is restricted by the condition n + m − 2 + 2g = r, with
m = l(α), and ag(α) is a polynomial in the parts of α given by

ag(α) = 1

n! (n + m − 2 + 2g)!α1 · · ·αm Q g(α), where Q g :=
∑
β�g

ξ2βq2β

|Aut β| , g � 0.

For example, the explicit expressions for small genera g = 0, . . . ,5 are

Q 0 = 1, Q 1 = 1

24
q2, Q 2 = 1

5760
(−2q4 + 5q22 ), Q 3 = 1

239! (16q6 − 42q42 + 35q23 ),

Q 4 = 1

3 · 2710! (−144q8 + 320q62 + 84q42 − 420q422 + 175q24 ),

Q 5 = 1

3 · 2812! (768q10 − 1584q8 2 − 704q64 + 1760q6 22 + 924q422 − 1540q423 + 385q25 ),

1.2. Background

1.2.1. Minimal factorizations into star transpositions
We now turn our attention temporarily to another point of view. The transpositions (1 a), for

a = 2, . . . ,n, are called star transpositions in Sn , with the distinguished element 1 (it appears in
each transposition) referred to as the pivot element. An ordered factorization (τ1, . . . , τr) of σ ∈ Sn

into star transpositions is said to be transitive if the group generated by τ1, . . . , τr acts transitively
on [n]. For a transitive factorization of σ ∈ Kα into r star transpositions, a result in [GJ0] implies that
r = n + m − 2 + 2g for some non-negative integer g, where α has m parts. Thus r � n + m − 2, and
we refer to transitive factorizations into n + m − 2 star transpositions as minimal.

Pak [P] enumerated minimal factorizations (he called them reduced decompositions) into star trans-
positions for permutations fixing the pivot element 1, with exactly m other cycles, each of length
k � 2. More recently, Irving and Rattan [IR] generalized Pak’s result by considering minimal factoriza-
tions of arbitrary permutations into star transpositions, and proved the following elegant result.

Theorem 1.2. (See [IR].) For each permutation σ ∈ Kα with α = (α1, . . . ,αm), α1 + · · · + αm = n and
m,n � 1, the number of transitive factorizations of σ into n + m − 2 star transpositions is

(n + m − 2)!
n! α1 · · ·αm.

Because of the apparent asymmetry of these factorizations (i.e., the pivot element 1 appears in
every factor), the fact that Theorem 1.2 is constant on conjugacy classes is particularly surprising (we
shall refer to this fact as the centrality property of Theorem 1.2). The proofs given in [P] and [IR] are
bijective, involving restricted words and plane trees.

In terms of factorizations into star transpositions, the number ag(α) given by the Main Theorem
clearly can be interpreted as the number of transitive factorizations of each σ ∈ Kα into n+m−2+2g
star transpositions, with pivot element n. We shall call ag(α) a star factorization number. Thus Theo-
rem 1.2 is precisely the case g = 0 of Theorem 1.1 (the necessary relabeling of the pivot element is
justified by the centrality of these results). The investigation described in this paper answers Pak’s [P]
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question about an explicit expression for the general case. It was motivated by Irving and Rattan’s
paper, in our attempt to determine whether the centrality of their remarkable result for star factor-
izations with a minimum number of factors persisted for star factorizations with an arbitrary number
of factors.

1.2.2. Connections with algebraic geometry
The connection to algebraic geometry is made through Hurwitz’s encoding [H] of an n-sheeted

branched cover of the sphere in terms of transpositions that represent the sheet transitions at the
elementary branch points. In this context, the transitivity of the factorizations corresponds to the
connectedness of the cover. From this perspective, the coefficient ag(α) in Theorem 1.1 counts genus
g branched covers of the sphere in which the branching over the point 0 is specified by α, and there
are n + m − 2 + 2g other simple branch points, each of which corresponds to a transition between
sheet number n (the pivot sheet) and another sheet. For the corresponding transitive factorizations
into star transpositions, we therefore also refer to g as the genus of the factorization (e.g., Theorem 1.2
counts genus 0 factorizations). For further details about branched covers, see, for example, [GJ0,GJVn,
GJV] and [H].

The double Hurwitz number H g
(n),α is equal to the number of genus g branched covers of the sphere

in which the branching over the points 0 and ∞ is specified by (n) and α, respectively, together with
m − 1 + 2g other simple branch points. A scaling of this double Hurwitz number to

bg(α) := α1 · · ·αm H g
(n),α

gives the number of transitive factorizations of each σ ∈ Kα into m − 1 + 2g transpositions and a
single n-cycle. There is a striking similarity between Theorem 1.1 and the following result, in which
the notation q̂i := pi − 1, i � 1 is used.

Theorem 1.3. (See [GJV].) For r � 0, the resolution of Kr
(1n−2 2)

Kn with respect to the class basis of the center

Z(n) of CSn is

Kr
(1n−2 2)

Kn =
∑
α�n,
g�0

bg(α)Kα, (2)

where the range of summation on the right-hand side is restricted by the condition m − 1 + 2g = r, with
m = l(α), and bg(α) is a polynomial in the parts of α given by

bg(α) = (m − 1 + 2g)!nm−2+2gα1 · · ·αm Q̂ g(α), where Q̂ g :=
∑
β�g

ξ2β q̂2β

|Autβ| , g � 0.

Theorem 1.3 is a restatement of Theorem 3.1 in [GJV], which gives a formula for the double Hur-
witz number H g

(n),α . (Note that this double Hurwitz number is given by the products on the left-hand
side of (2) for which the subgroup generated by the factors acts transitively on [n]. However, each
term in Kn acts transitively on [n], so the transitivity condition holds for all products on the left-hand
side of (2).)

1.2.3. Two relationships between Theorems 1.1 and 1.3
To explore a more direct relationship between Theorems 1.1 and 1.3, we now give two expressions

for ag(α) in terms of the bh(γ )’s.
The first is very simple and expresses ag(α), which enumerates factorizations in Sn, directly in

terms of bg(α ∪ 1n−1), which enumerates factorizations in S2n−1.
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Corollary 1.4. For g � 0 and α a partition of n with m parts, we have

ag(α) = 1

n!(2n − 1)n+m−3+2g
bg

(
α ∪ 1n−1).

Proof. In the notation of Theorems 1.1 and 1.3, clearly qi(α) = q̂i(α ∪1n−1), so Q g(α) = Q̂ g(α ∪1n−1).
The result follows immediately from Theorems 1.1 and 1.3. �

The second expresses ag(α) as a linear combination of bg−h(α), 0 � h � g , each of which enumer-
ates factorizations in Sn .

Corollary 1.5. For g � 0 and α a partition of n with m parts, we have

ag(α) = 1

n!
g∑

h=0

bg−h(α)

nm−2+2g−2h

(
n + m − 2 + 2g

n − 1 + 2h

) n−1∑
j=0

(
n − 1

j

)
(−1) j

(
1

2
(n − 1) − j

)n−1+2h

.

Proof. In the notation of Theorems 1.1 and 1.3, clearly qi(α) = q̂i(α) + n − 1. Then from Theorems 1.1
and 1.3, and (1), we have

∑
g�0

Q g(α)x2g = exp

(∑
j�1

ξ2 jq2 j(α)x2 j
)

= ξ(x)n−1
∑
g�0

Q̂ g(α)x2g . (3)

But, for h � 0, we have (using the notation [A]B to denote the coefficient of A in B)

[
x2h]

ξ(x)n−1 = [
xn−1+2h](

e
x
2 − e− x

2
)n−1 =

n−1∑
j=0

(
n − 1

j

)
(−1) j (

1
2 (n − 1) − j)n−1+2h

(n − 1 + 2h)!

and, together with (3), this gives

Q g(α) =
g∑

h=0

Q̂ g−h(α)

(n − 1 + 2h)!
n−1∑
j=0

(
n − 1

j

)
(−1) j

(
1

2
(n − 1) − j

)n−1+2h

.

The result follows immediately from Theorems 1.1 and 1.3. �
1.3. Outline

In Section 2, we introduce a generating series for the number of transitive factorizations into star
transpositions in arbitrary genus, and prove that it is the unique formal power series solution of a
linear partial differential equation that we call the Join–Cut Equation for this class of factorizations.
The proof is based on a join–cut analysis of these factorizations, since the left-most factor σ either
joins two cycles of the product π of the remaining factors to form one cycle or cuts one cycle of π
into two, depending on whether the two elements moved by σ are, respectively, in different cycles
of π, or in the same cycle. This approach has been applied previously where the factors are arbitrary
transpositions, for the genus 0 case in [GJ0], and for higher genera in [GJ1,GJ2,GJVn] and [GJV].

In Section 3, we solve the Join–Cut Equation to obtain the generating series for transitive fac-
torizations into star transpositions in arbitrary genus. Then, by determining the coefficients in this
generating series, we prove Theorem 1.1 (and hence also give a new proof of Theorem 1.2).

In Section 4, we pose some questions that arise from this investigation, but that we have been
unable to resolve.
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2. The Join–Cut Equation

Let SA denote the symmetric group on an arbitrary set A. For an arbitrary set A of size n contain-
ing 1 (for convenience, we shall consider star transpositions with pivot element 1), let K(i)

α denote the
set of all permutations in SA in which 1 lies on a cycle of length i and the remaining cycle-lengths
in the disjoint cycle representation are given by the parts of α, where α � n − i, for n � i � 1. It is
straightforward to determine, independently of the choice of A, that

∣∣K(i)
α

∣∣ =
(

n − 1

i − 1

)
(i − 1)!|Kα | = (n − 1)!

α1 · · ·αk|Autα| , (4)

where α = (α1, . . . ,αk). Consider a fixed permutation σ ∈ K(i)
α in Sn , and let cg(i,α) be the number

of transitive factorizations of σ into n + k − 1 + 2g star transpositions (this number is constant for
each such σ because of the symmetry of elements 2, . . . ,n; note that σ lies in the conjugacy class
Kα∪i , which has m = k + 1 cycles). Let Ψ denote the generating series

Ψ (t, u, x; z,y) :=
∑

n�i�1,
k,g�0

ntn un+k−1+2g

(n + k − 1 + 2g)! x2g zi

∑
α∈P ,
α�n−i,
l(α)=k

∣∣K(i)
α

∣∣cg(i,α)yα. (5)

The following result is the Join–Cut Equation for the set of transitive factorizations into star transpo-
sitions. It states that Ψ is annihilated by the partial differential operator

Δ := ∂

∂u
− t

∂

∂t
t
∑
i�1

zi+1
∂

∂zi
−

∑
i, j�1

zi y j
∂

∂zi+ j
− x2

∑
i, j�1

jzi+ j
∂2

∂zi∂ y j
. (6)

Theorem 2.1 (Join–Cut Equation). The generating series Ψ = Ψ (t, u, x; z,y) is the unique formal power series
solution of ΔΨ = 0, with initial condition Ψ (t,0, x; z,y) = z1t.

Proof. Fix a triple (k, g, i) of integers with k, g � 0 and i � 1 to be other than (0,0,1). Also fix a
partition α with l(α) = k and a permutation σ ∈ K(i)

α in Sn , where α � n − i. Consider a transitive
factorization (τ1, . . . , τr) of σ into star transpositions, where r = n + k − 1 + 2g . For this factorization,
we let π = τ2 · · ·τr = τ1σ , and τ1 = (1a). There are cg(i,α) such factorizations of σ , and we obtain
a recurrence equation for cg(i,α) by considering the following case analysis for these factorizations
which is based on the left-most factor τ1.

Case 1. τ1 �= τ j for any j = 2, . . . , r. In this case, the element a is a fixed point in π , and (τ2, . . . , τr)

is not a transitive factorization of π . But, if we let π ′ ∈ S[n]\{a} , whose disjoint cycle representation
is obtained by removing the one-cycle containing a from the disjoint cycles of π , then (τ2, . . . , τr) is
a transitive factorization of π ′ . But σ is obtained from π ′ by inserting a immediately before 1 in the
cycle of π ′ containing 1. This implies that π ′ ∈ K(i−1)

α in S[n]\{a} . Note that the transitive factorization
(τ2, . . . , τr) of π ′ has r − 1 = (n − 1) + k − 1 + 2g factors and that this is reversible, so we conclude
that the number of such factorizations is cg(i − 1,α), the contribution from this case.

Case 2. τ1 = τ j for some j = 2, . . . , r. In this case, (τ2, . . . , τr) is a transitive factorization of π , since
for a product of star transpositions in Sn to be transitive, it is necessary and sufficient that each of
(1 2), . . . , (1n) appears at least once as a factor (as observed in [IR]). There are two subcases, based
on which disjoint cycles of π contain elements 1 and a.

Subcase 2(a). 1 and a appear on the same cycle of π . In this subcase, that cycle of π is cut into
two cycles in σ , one containing 1, and the other containing a. Consequently, for each factorization
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(τ1, . . . , τr) of σ , we obtain a factorization of π in this subcase by selecting a to be any element
on the k cycles of σ not containing 1. We account for the choices of a on these cycles as follows:
Suppose the cycles are indexed so they have lengths α1, . . . ,αk (the cycles are all non-empty, so they
are distinguishable, even if their lengths are equal). If a is on the jth such cycle, of length α j , then

there are α j choices of a, and the cycle of π containing 1 has length i + α j , so we have π ∈ K(i+α j)

α\α j

in Sn . Since the transitive factorization (τ2, . . . , τr) of π has r − 1 = n + (k − 1) − 1 + 2g factors
and this is reversible, we conclude that there are cg(i + α j,α \ α j) such factorizations, giving a total

contribution from this subcase of
∑k

j=1 α jcg(i + α j,α \ α j).

Subcase 2(b). 1 and a appear on different cycles of π . In this subcase, these cycles of π are joined
into a single cycle of σ , containing both 1 and a. Consequently, for each factorization (τ1, . . . , τr)

of σ , we obtain a factorization of π in this subcase by selecting a to be any other element on the
cycle of σ containing 1. We account for these i − 1 choices of a as follows: Suppose that the cycle of
σ containing 1, in cyclic order, is (1 ji−1 . . . j1) (i.e., so σ(1) = ji−1, σ( jt) = jt−1, for t = 2, . . . , i − 1,
and σ( j1) = 1). If a = jm , then π has disjoint cycles (1 ji−1 . . . jm+1) (containing 1) and ( jm . . . j1),
together with all the cycles of σ not containing 1, so we have π ∈ K(i−m)

α∪m in Sn , and the transitive
factorization (τ2, . . . , τr) of π has r − 1 = n + (k + 1)− 1 + 2(g − 1) factors. Since this is reversible, we
conclude that there are cg−1(i − m,α ∪ m) such factorizations, giving a total contribution from this
subcase of

∑i−1
m=1 cg−1(i − m,α ∪ m).

Adding together the contributions from these disjoint cases, we obtain the linear recurrence equa-
tion

cg(i,α) = cg(i − 1,α) +
k∑

j=1

α jcg(i + α j,α \ α j) +
i−1∑

m=1

cg−1(i − m,α ∪ m),

for k, g � 0, i � 1 (except for the simultaneous choices k = g = 0 and i = 1) and α with
l(α) = k. The partial differential equation follows by multiplying this recurrence equation by

ntn un+k−2+2g

(n+k−2+2g)! xg zi |K(i)
α |yα , and summing over the above range of k, g, i,α.

The initial condition follows from the fact that there is a single, empty factorization with no fac-
tors, of the single permutation (with 1 as a fixed point) in S1. Thus we have c0(1, ε) = 1. �
3. A proof of Theorem 1.1

3.1. An explicit solution to the Join–Cut Equation

The next result gives the explicit solution of the Join–Cut Equation in terms of the series ξ defined
in (1) and W ≡ W (t, u, x : z) where

W :=
∑
�1

zξ(ux)ξ(ux)−2u−1t.

Theorem 3.1. Let Z := t ∂
∂t W (t, u, x : z) and Y := ξ(ux)2u2W (t, u, x : y). Then Ψ = ZeY .

Proof. It is a straightforward matter to show that the Join–Cut Equation with the given boundary
condition has a unique solution. The remainder of the proof is a verification that Δ annihilates Ψ and
that the boundary condition is satisfied.

The operator Δ is a linear combination of four differential operators. It is straightforward to obtain
the four expressions for the application of each of these operators to Ψ. Let x̂ := ux for brevity. Then
the expressions are:
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e−Y ∂Φ

∂u
=

∑
�1

zξ(x̂)−3u−2t
(
( − 1)ξ(x̂)ξ(x̂) + x̂ξ ′(x̂)ξ(x̂) + ( − 2)x̂ξ(x̂)ξ ′(x̂)

)

+ Z
∑
m�1

ymξ(x̂)m−1umtm(
(m + 1)ξ(mx̂)ξ(x̂) + mx̂ξ ′(mx̂)ξ(x̂) + mx̂ξ(mx̂)ξ ′(x̂)

)
,

e−Y t
∂

∂t
t
∑
i�1

zi+1
∂Φ

∂zi
=

∑
i�1

izi+1ξ(ix̂)ξ(x̂)i−2ui−1ti+1
(

i + 1 +
∑
m�1

mymξ(mx̂)ξ(x̂)mum+1tm
)

,

e−Y
∑

i, j�1

zi y j
∂Φ

∂zi+ j
=

∑
i, j�1

(i + j)zi y jξ
(
(i + j)x̂

)
ξ(x̂)i+ j−2ui+ j−1ti+ j,

e−Y x2
∑

i, j�1

jzi+ j
∂2Φ

∂zi y j
= x2

∑
i, j�1

i jzi+ jξ(ix̂)ξ( jx̂)ξ(x̂)i+ j−2ui+ jti+ j

=
∑
�1

zξ(x̂)−2u−2t S, (7)

where, with r := exp( 1
2 x̂), we have

S =
∑

i, j�1,
i+ j=

(
ri − r−i)(r j − r− j) = ( − 1)

(
r + r−

) − 2
r−1 − r−+1

r − r−1
.

Now let θ := 1
2 x̂, and substituting this expression for S in (7), we obtain the revised fourth expression

e−Y x2
∑

i, j�1

jzi+ j
∂2Φ

∂zi y j
= 2

∑
�1

zξ(x̂)−2u−2t

(
( − 1)ch(θ) − sh(( − 1)θ)

sh(θ)

)
.

Combining these four expressions, and recalling the definition (6) of the partial differential opera-
tor Δ, we have

e−Y ΔΦ =
∑
�1

zξ(x̂)−3u−2tT +
∑

,m�1

z ymξ(x̂)+m−3u+m−1t+mU,m, (8)

where T, for  � 1 and U,m, for ,m � 1, are explicit polynomials in hyperbolic cosines and hy-
perbolic sines of multiples of θ , and in θ, using (1). It is readily shown, using the addition formulae
for hyperbolic sines and cosines that T = 0 for  � 1 and, similarly, that U,m = 0 for ,m � 1. Thus,
from (8), we have ΔΦ = 0. But ξ(0) = 1, so Φ|u=0 = z1t and we conclude from Theorem 2.1 and the
uniqueness of the solution of the Join–Cut Equation that Ψ = Φ , giving the result. �
3.2. An expression for the coefficients of Ψ

It is now straightforward to determine the coefficients in the generating series Ψ , and thus obtain
a proof of Theorem 1.1.

Proof of Theorem 1.1. Suppose that α is a partition of n − i with k parts. Then for all n � i � 1,
k, g � 0, Theorem 3.1 and (1) gives ([A]B denotes the coefficient of A in B)
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[
tnun+k−1+2g x2g zi yα

]
Ψ = i

|Autα|
[
u2g x2g]ξ(iux)ξ(ux)i−2

l(α)∏
j=1

ξ(α jux)ξ(ux)α j

= i

|Autα|
[
x2g]ξ(x)n−2ξ(ix)

l(α)∏
j=1

ξ(α j x)

= i

|Autα|
[
x2g]exp

(∑
j�1

ξ2 jq2 j(α ∪ i)x2 j
)

,

so, together with (4) and (5), this gives

cg(i,α) = (n + k − 1 + 2g)!
n! α1 · · ·αki

∑
β�g

ξ2βq2β(α ∪ i)

|Autβ| .

But this is symmetric in α1, . . . ,αk, i, and the result follows immediately by renaming α ∪ i as α,
which has m = k + 1 parts. �
4. Further questions

The following questions arise in the light of the results of this paper:

(1) Is it possible to find a simple proof of the centrality in Theorem 1.1, without evaluating the class
coefficients ag(α)? This might follow from a decomposition for Young–Jucys–Murphy elements,
or from a more elementary argument in the symmetric group.

(2) Is it possible to give a direct proof of Corollary 1.4 or 1.5 – i.e., to establish these relationships
between ag(α) and bg(α) without appealing, as we have, to the explicit formulae? This would
be particularly interesting, since bg(α), as defined, is clearly central. Such a proof might involve
Young–Jucys–Murphy elements, or a more elementary argument in the symmetric group, or the
geometry of branched covers. Presumably such a proof would contain a solution to Question 1
above.

(3) In [GJV], the polynomiality of bg(α) (in the parts of α) in Theorem 1.3, was the basis for a
conjectured ELSV-type formula (see [ELSV]) for H g

(n),α , involving a Hodge integral over some,
unspecified, moduli space. Does the polynomiality of ag(α) in Theorem 1.1 also lead to a similar
ELSV-type formula when ag(α) is rescaled as a covering number?
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