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This paper extends Flajolet’s (Discrete Math. 32 (1980) 125-161) combinatorial 
theory of continued fractions by obtaining the generating function for paths 
between horizontal lines, with arbitrary starting and ending points and weights on 
the steps. Consequences of the combinatorial arguments used to determine this 
result are combinatorial proofs for many classical identities involving continued 
fractions and their convergents, truncations, numerator and denominator 
polynomials. 0 1986 Academic Press. Inc. 

1. INTRODUCTION 

A path on the square lattice is an important combinatorial object 
because it may be used for encoding a variety of configurations such as 
partitions (Flajolet [ 1 J ), permutations (Francon and Viennot [3]), plane 
partitions (Gessel and Viennot [S]), and random walks (Takacs [9]). A 
path can be thought of as a sequence of steps, each step being an ordered 
pair of integer increments in the x and y directions. By considering paths 
on a certain set of steps, Gessel [4] obtained a path-theoretic 
generalization of the Lagrange Inversion Theorem, and hence a q-analogue 
of this theorem. 

Certain physical processes can also be represented by paths. The most 
familiar example of these is the ballot sequence. Less familiar examples 
include the Bolzmann model for heat transfer (Goulden and Jackson [6]) 
and the analysis of tile processing algorithms (Flajolet, Francon, and 
Vuillemin [2]). In the latter two examples there are physical parameters 
(resp. the amount of heat, and the number of items in a tile) which cannot 
become negative, so this imposes on the corresponding paths the condition 
that they cannot cross below the x axis. Moreover, in the former, there is 
also an upper bound which cannot be exceeded, so the corresponding path 
cannot cross above a prescribed line parallel to the x axis. It is therefore 
important to be able to enumerate paths under a variety of conditions. 
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In this paper we consider paths with only three steps, called rises, levels, 
and falls, corresponding, respectively, to the ordered pairs of increments 
(1, l), (1, 0), (1, - 1). The main purpose of this paper is to derive a general 
result for enumerating paths, on these steps, which start and end at 
prescribed points and which are confined to lie between two lines parallel 
to the x axis. 

The generating functions for certain sets of paths have particularly con- 
venient representations as continued fractions. This fact has been used to 
obtain continued fraction representations of certain special functions by 
purely combinatorial means (Flajolet [ 1 ] ). 

The other purpose of this paper is to exploit this connexion between con- 
tinued fractions and paths further to show that many of the classical results 
about continued fractions are consequences of elementary path decom- 
positions and therefore can be proved combinatorially. For example, a 
typical such result is that the kth convergent of a continued fraction is 
equal to Pk/Qk, where {Pk} and {Q,} are sets of polynomials satisfying 
the same three-term recurrence equation. 

In Section 2 we define paths, and show that particular continued frac- 
tions associated with the general continued fraction are generating 
functions for certain fundamental sets of paths. The overall strategy and the 
general enumerative results are given in Section 3, and Section 4 gives a 
number of classical identities which may be obtained by equating some of 
the earlier results. 

2. PATHS ENUMERATED BY TRUNCTUATIONS AND CONVERGENTS 

In this section we develop the generating functions for some basic sets of 
paths which will be used in the next section for more relined results. The 
following definition is needed. 

Definition 2.1. Let c(,,, c1 1 ,..., fiO, p1 ,..., be indeterminates. 

(1) J <m.n> - 1 urn a 
-- A is called a J-fraction. 

l-Pm-l-&+,- ... -1-8, 

(2) J Ck> = J<“,k> is called the kth convergent of J= J<“,m>. 
(3) J{k) = J<k.“) is called the kth truncation of J. 

Let c1= (a,, ~1~ ,... ), /3 = (/IO, /I1 ,...) and let Q denote the field of rationals. 
Then J<“-“> E Q [a, 81, whence J, Jck>, Jfkj E Cl [a, 81. It is to be 
understood that all power series we consider are members of this ring, and 
that two such series,fand g, are equal if and only iff- g is the zero power 
series in this ring. For a discussion of the ring of formal power series and 
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the combinatorics of the ordinary generating function (in particular the 
sum and product lemmas) see Goulden and Jackson [7]. 

Iffis a formal power series containing subscripted indeterminates, thenf 
denotes the formal power series obtained from f by increasing each of the 
subscripts by one. 

DEFINITION 2.2. Let P, and Qk, k B 1, satisfy the recurrence equation 

Uk=(1-Bk)Uk-l-Clk~1Uk~2, k>l 

withP_,=O,P,=1andQ_,=1,Q,=1-~,.ThenPkandQkarecalled 
the kth numerator and denominator polynomials for J. 

Thus we immediately have P, = ek _ 1. 
If w=o, “‘0, is a sequence over { - LO, 1 }, with n > 0, and 

k+o,+ * * + + wi > 0, Vi, then we say that (w)~ is a path with initial altitude 
k and terminal altitude k + o1 + ... + 0,. For i> 1, oi is a step in the path, 
and for k+w, + . ’ . + wi- , = m, then wi is a rise, level, or fall at altitude 
m, if oi = l,O, or - 1, respectively. These are denoted by (1 ),, (0), , 
(-lhm respectively. The empty path at altitude k is denoted by &k. 

The product (a),(~)~ of the path (cJ); with the path (P)~ is defined to be 
(ap),, if (o)~ has terminal altitude j. If P, P, ,P, are sets of paths such that 
P={z,TT~~(~,,~~)EP~xP~} then we write P=P,P,. 

Paths may be represented geometrically in the obvious way. Figure 1 
gives the path (1 0 - 1 - 1 1 0 1 1 )3, which has initial altitude 3; terminal 
altitude 5; rises at altitudes 3, 2, 3, 4; levels at altitudes 4, 3; and falls at 
altitudes 4, 3. 

The path 5 is formed by adding one to the altitude of each step in the 
path z If S is a set of paths then S= {ZI~~ES}. 

If a path rc contains at least one occurrence of a rise at altitude i, then we 
define 

01 ’ 8 ’ 3 3 ’ 1 ’ 
123456709 

FIG. 1. Geometrical representation of a path. 
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where a and /? are the subpaths of rc preceding and following, respectively, 
the first occurrence of (l)j in 7~. We similarly define R;.,z in terms of the last 
occurrence of (l)i. For a path r~ which contains at least one occurrence of a 
fall at altitude i, we define F,./a and Fi,,a similarly, in terms of the first and 
last occurrences of ( - 1 )i in 0. 

Let G(i, j; m, k) be the set of all paths from altitude i to altitude j with 
minimum altitude greater than or equal to m and a maximum altitude less 
than or equal to k. The set of paths in G(i, j; m, k) with the further restric- 
tion that the maximum altitude is greater than or equal to h is denoted by 
G( i, j; m, k, > h). 

Let G(i, j; m, k) be the ordinary generating function for G(i, j; m, k) with 
indeterminates a, marking a rise at altitude n and /?, a level at altitude n, 
for n 2 0. Thus the coefficient of a?a’;’ ... fl$fl;l ... , in G(i, j; m, k) is the 
number of paths in G(i, j; m, k) with a, rises at altitude n and b, levels at 
altitude n, for n 2 0. The monomial associated with the path in Fig. 1 is 
therefore a2a:a4f13/14. We do not record the falls since, given the initial and 
terminal altitude of a path, the number of falls at each altitude can be 
deduced from the number of rises at each altitude. Similarly we have the 
following result. Let cj=aOal “‘ai, i>O, cl = 1. 

LEMMA 2.3. ci- 1 G(i, j; m, k) = cj- , G( j, i; m, k). 

Proof: We note that the mapping 

G(k j; m, k) + W, i; m, k): (~1~2 .. . p/Ii -+ (q/q,- 1. . .ql I,, 

where qs = -ps for s = l,..., 1 and j = i + p1 + p2 + . . . + p,, is bijective. The 
result follows. 1 

Clearly C? is the generating function for G for all sets of paths defined 
above. 

The next result gives the generating functions for some important sets of 
paths which will be used in the next section. 

PROPOSITION 2.4. (1) G(m, m; m, co) =J{“). 

(2) G(O,O;O, m)=J. 

(3) G(0, 0; 0, k) = J<“>. 

(4) G(O,O;O,k, ~h)=J<k)-J<h-‘>. 
(5) G(m, m; m, k) = J<m*k). 

ProoJ: (1) Let Hi=G(i, i; i, co) and let ~EH~-E~. 
There are two cases: 

Case 1. The first step in c is a level. Thus CE {(0)i} Hi. 
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Case 2. The first step in Q is a rise. Then 

These decompositions are reversible, so 

If Hi = G(i, i; i, co), then 

so Hi= l/( 1 -pi- cci/Hj+ 1), and the result follows by iterating this for 
i>m. 

(2) Let m=O in (1). 
(3) G(0, 0; 0, k) consists of those paths in G(0, 0; 0, co) with no rises at 

altitude k. The result follows by setting c(~ = 0 in (2). 
(4) Clearly G(0, 0; 0, k, ah) = G(0, 0; 0, k) - G(0, 0; 0, h - 1) and the 

result follows from (3). 
(5) Proof similar to (3), using (1). 1 

3. THE MAIN RESULT 

We now derive, in a series of propositions, the generating functions for 
progressively more complicated sets of paths, culminating with the main 
result giving the generating function for paths from a prescribed origin to a 
prescribed terminus, and lying between two lines parallel to the x axis. The 
main result specialises to each of the earlier results of this section, under 
the appropriate substitutions. 

PROPOSITION 3.1. (1) G(k, k;O, k)= Qkpl/&. 

(2) G(kv j; 0, k) = Qj- JQk* 

(3) W, 0; 0, k) = l/Q,c. 

(4) G(k, I; 1, k)= l/Pk. 
(5) GtO, k; 0, k) = ck- dQ,c. 

ProoJ: (1) Let Ci = G(i, i; 0, i) and Q E Ci - ci. 
For i3 1 there are two cases. 

Case 1. The first step in (T is a level. Thus 

o E {t”>il ci. 
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Case 2. The first step in c is a fall. Then 

Ri_l,fdE ((-l,i} Cj&1 xc,. 

These decompositions are reversible, so 

cj=Eiu((o)ju(-l)iCi-l(l)j~~)Ci~ 

Let Ci = G(i, i; 0, i). Then 

Cj=l+(Bj+Ci-ICri-I)Cj 

SO Ci=(l-Di-Cri_,C;_,)-‘, ial, and C,=(l--/IO)-’ 

But from Definition 2.2 

Qi=(l-pi)Qi-l-cri-lQi~,, 
SO 

Qi-l/Qi=(l-Bi-~i-lQi-,/Qi-l)~l, iB 1, 

and Q _ r/Q,, = (1 - /$,) ~ ‘. The result follows by comparing these recurren- 
ces. 

(2) For O<j<k we have 

F ,+ l,IG(k j; 0, k) = G(k j+ 1; 0, k) x W, j; 0, j) 

so G(k, j; 0, k) = G(k, j + 1; 0, k) G(j, j; 0, j). Applying this successively, we 
obtain 

G(k, j; 0, k) = h G(i, i; 0, i) 
i=j 

= h Qi-l/‘Qi, from (1) 
i = ,j 

= Qj- JQk, as required. 

(3) Letj=O in (2). 
(4) G(k,1;1,k)=iS(k-1,0;O,k-1)so 

G(k, 1; l,k)=G(k-l,O;O,k-1) 

= 1/Qk-1 from (3) 

= l/P,. 

(5) From Lemma 2.3 

G(0, k; 0, k) = ck _, G(k, 0; 0, k) 

= ck ~ l/Q/c from (3). i 
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PROPOSITION 3.2. (1) G(0, 0; 0, k) = Pk/Qk. 

(2) WO;O,k >k)=c,-,/Q,Qk-,. 
Proof. (1) We have 

QG(k, 0; 0, k) = G(k, 1; 1, k) x G(0, 0; 0, k) 

so G(k, 0; 0, k) = G(k, 1; 1, k) G(0, 0; 0, k) and G(0, 0; 0, k) = G(k, 0; 0, k)/ 
G(k, 1; 1, k) = Pk.Qk from Proposition 3.1(3), (4). 

(2) We have 

F,,,G(O,O;O, k, >k)=G(O, k;O, k)xG(k-l,O;O, k- 1) 

so G(0, 0; 0, k, 2 k) = G(0, k; 0, k) G(k - l,O; 0, k - 1) and the result follows 
from Proposition 3.1(3), (5). m 

PROPOSITION 3.3. (1) G(0, j; 0, k) = Q,_ I(J(k) - J(‘- l)). 
(2) G(i,j;O, k)=(Qi_,Q~_,/ci_~)(J’k’-J’i-l’), i<j. 
(3) G(i,j;O,k)=(Q,_,Q,~,/ci~l)(J(k)-J<i-l)), iaj. 

Proo$ (1) We have 

F’.,G(O,O;O, k, >j)=G(O, j;O,k)xG(j-l,O;O, j-l) 

SO G(O,O;O,k, aj)=G(O, j;O,k)G(j-l,O;O, j-l) and 

G(0, j; 0, k) = G(O, 0; 0, k, > j) 
G(j-l,O;O, j-1)’ 

The result follows from Propositions 2.4(4) and 3.1(3). 
(2) We have 

Ri- ,,fG(O, j; 0, k) = G(0, i- 1; 0, i- 1) x G(i, j; 0, k) 

soG(O,j;O,k)=ccj-,G(O,i-l;O,i-l)G(i,j;O,k)and 

G(i, j; 0, k) = WI j; 0, k) 
CX.-~G(O, i- l;O, i- 1)’ 

The result follows from (1) and Proposition 3.1(5). 
(3) From Lemma 2.3 we obtain 

G( i, j; 0, k) = F G( j, i; 0, k) 
I 1 

and the result follows from (2). 1 
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Fkopos1~10~ 3.4. (1) G(m, k; m, k) = ck ~ ,/cc, _ 1 QkQm *(JCk> - 
J<“-2>) 

(2) G(m,j;m,k)=Qjj-,(J<k)-JJ<i~1>)/~,~IQ,_2(J’k’-J<m~2)). 

Proof We have 

R ,,- l,,G(O, j; 0, k) = G(0, m - 1; 0, k) x G(m, j; m, k) 

so G(0, j; 0, k) = CI,,- I G(0, m - 1; 0, k) G(m, j; m, k) and 

G(m, j; m, k) = W, j; 0, k) 
L7 ,+,G(O,m-l;O,k)’ 

(1) follows from Proposition 3.1(5) with j = k, and 3.3( 1). 
(2) follows from Proposition 3.3( 1) 1 

THEOREM 3.5. (1) G(i, j;m,k) = Qi_,Qj_,(J<k>-J<j~l))(J<i-l>- 
J<m-2>)/~i-1(J<k)-J<m~2)), i<j. 

(2) G(i, j; m, k) = Q,~,Qj~,(J<k>-JJ<i~1))(J(j-11)-J<m-2>)/ 
ci- I(J <k) - J<“-2)), i> j. 

Proof (1) We have 

Ri- ,,fG(m,j; m, k) = G(m, i- 1; m, i- 1) x G(i, j; m, k) 

soG(m,j;m,k)=~~_,G(m,i-l;m,i-l)G(i,j;m,k)and 

G(i, j; m, k) = Gh j; m, k) 
ctplG(m, i- l;m, i- 1)’ 

The result follows from Proposition 3.4( 1) and (2). 
(2) The result follows from (1) and Lemma 2.3. [ 

Note that all previous results are corollaries of the above theorem, with 
appropriate initial values. We conclude with two further results which will 
be used in the next section for deriving classical identities. 

PROPOSITION 3.6. (1)G(m,m;m,k)=Q,~l(J<k~-JJ<m--I))/~,~IQm-2 
(J <k) _ j<“-2)). 

(2) G(m,m;m, ~)=Q,-,(J-J<m-‘))/,m-1Qm-2(J-J<m-2)). 

Proof. (1) Let j = m in Proposition 3.4(2). 
(2) Let k + cc in (1). The result follows since lim, _ no Jck> = J. 1 
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PROPOSITION 3.7. (1) G(0, j; 0, co) = cj- 1JJ(*) . . ..J’j). 
(2) G(0, 0; 0, co, >j) = (cj- ,/Q,- ,) JJfl} . . . J(j). 

Proof (1) We have trivially 

Ri,/G(i,j;O, a)=G(i, i; i, CO)XG(~+ l,j;O, OO), 

so G( i, j; 0, cc ) = ccJ(‘)G( i + 1, j; 0, co ) from Proposition 2.4( 1). The result 
follows by iterating this equation for i= 0, l,..., j- 1. 

(2) Clearly 

f”,/G(O, 0; 0, ~0, >j)=G(O, j; 0, 00) X G(j- 1,O; 0, j- l), 

so G(0, 0; 0, co, >j) = G(0, j; 0, co) G(j- l,O; 0, j- 1) and the result 
follows from (1) and Proposition 3.1(3). 1 

4. IDENTITIFS 

We conclude by using the above combinatorial results to obtain a num- 
ber of well known relationships between J, Jlk), Jck>, Pk, and Qk. For a 
classical approach to these and other results, see Perron [LX]. 

COROLLARY 4.1. (1) Jck) = Pk/Qk. 

(2) J (k’-J<k-l)=Ckpl/QkQkpl. 

(3) PkQk-1-Pk-,Qk=Ck-I. 

(4) J(mJ=Q,_,(J-J<m~‘>)/,m-1Q,_,(J-J<m-2>). 

(5) J-J(k-l)=(Ck~,/Qk~*)JJ(lJ...J(k}. 

(6) PkQk-2-Pk--Qk=Ck-2(1-Bk). 

Proof (1) Equate the expressions for G(0, 0; 0, k) in Proposition 2.4(3) 
and Proposition 3.2( 1). 

(2) Equate the expressions for G(0, 0; 0, k, ak) in Proposition 2.4(4) 
and Proposition 3.2(2). 

(3) Direct from (1) and (2). 
(4) Equate the expressions for G(m, m; m, co) in Proposition 2.4( 1) and 

Proposition 3.6(2). 
(5) Equate the expressions for G(O,O; 0, co, aj) in Proposition 2.4(4) 

and Proposition 3.7(2). 
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(6) From (1) 

GOULDEN AND JACKSON 

Pk Pk-2 --- 
Qk Qk-2 

=J<k>-J<k--1 

from (2). The result follows from the Definition 2.2. 1 

Note that the left-hand side of Corollary 4.1(4) is independent of 
a,,,..., a,-, and PO,..., p,,, while this is not obviously the case for the right- 
hand side. Other identities of this sort can be obtained from the main 
theorem by other specializations. 
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