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1. INTRODUCTION 

Let f(x) be a function of a real variable and let L,(x) = 
x-l J; f(t) c’“~ dr. As usual let 

1 box2 b,x2 ~ ~ ~ . . . 
l-a,x-l-a,x-l-a,x- 

denote the continued fraction 

1 
1 - a,x - box2 

1 -a,x-b,x2 
. . . 

In the classical literature on continued fractions there are many results of 
the form 

1 box2 b,x2 Lf(x)=- ~ ~ ... 
l-u,x-l-qx-l-u,x- (1) 

subject to conditions on x. We are interested in results of this type for the 
ring CP[ [x] ] of formal power series in the indeterminate x, where Q 
denotes the rationals. Note that if f(x) = ~i~Oofix’/i! E Q[ [xl], then 
L.CiaOf;;x’/i! =CizOfixi so in this case (1) gives a continued fraction 
representation of the ordinary generating function corresponding to a given 
exponential generating function f(x). 

A number of identities of type (1) have been established on Q[ [xl] by 
combinatorial means. This has been done by Flajolet [ 11, using continued 
fractions to enumerate lattice paths, and by using combinatorial bijections 
between these and (i) permutations (due to Fraqon and Viennot [Z]) and 
(ii) “pairings” (due to Read [6], Flajolet [ 11). 
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The following are two examples of identities in QDIC.yll of type (1). 

1 rn’ lx” (m- 1). 2x2 
L(cosh”(x)) = i _ 1 - 1 -- 

1 m.2 . . 
1 ’ (2) 

1 l’x2 , 22u2 =- -- . . 
l-x-1-2x-l-3x ’ (3) 

The analytic version of identity (2) has been given by Rogers [S], where 
it is proved by means of the Stieltjes-Rogers J-fraction theorem. Identity 
(3) is given in Goulden and Jackson [3, p. 3101, where it is proved by 
means of bijection (i), as well as the Stieltjes-Rogers J-fraction theorem. 

In this paper we consider a third bijection, between lattice paths and dis- 
tributions (i.e., ordered partitions), which enables us to obtain a com- 
binatorial proof of Rogers’ result (2). More interestingly, this leads us to a 
combinatorial derivation of the transition probabilities Z’(n, m, i, k) in the 
Ehrenfest urn model, originally proposed for resolving the apparent dis- 
crepancy between irreversibility and recurrence in Boltzmann’s theory of 
gases (see Kac [5] for a discussion of this point). The model may be 
described as follows. There are m balls, numbered from 1 to m, distributed 
between two boxes (I and II). Choose an integer between 1 and m (all 
integers are assumed to be equally probable) and transfer the ball with this 
label to the other box. Let P(n, m, i, k) be the probability that box I, 
originally containing i balls, contains k balls after n transferences. Note 
that the probability that a ball is transferred from box I to box II is i/m, 
when I contains i balls, and the probability that a ball is transferred from 
box II to box I is (m - i)/m. Thus this system may be modelled as a ran- 
dom walk in which the state of the system is the number of balls in box I, 
and the single-stage transition probabilities from state i to i- 1 and i + 1 
are i/m and (m - i)/m, respectively. The n-stage transition probability from 
state i to state k is given by P(n, m, i, k). Kac [S] originally derived an 
expression for P(n, m, i, k), and a shorter derivation was given by TakAcs 
c91. 

The Ehrenfest urn model gives a simple model of heat exchange between 
two isolated bodies of unequal temperatures. Temperature is represented 
by the numbers of balls in the boxes, and heat exchange by transference of 
balls. 

Throughout this paper we denote the coefficient of x” in the formal 
power series f(x) by [x”] f(x). 
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2. WEIGHTED PATHS AND THE PATH LEMMA 

Ifp=p,**. p,isasequenceover (-1, l),withn>Oandk+p,+ ... + 
pi 2 0 for i= O,..., n, then we say that (P)~ is a path of length II, with initial 
altitude k and terminal altitude k + p, + ... + pn. For i b 1, pi is a step in 
the path, and for k+p, + ... + piPI = t, then pi is a rise or fall at altitude 
t, if pi = 1 or - 1, respectively. 

Suppose that 7~=((p,...p~)~,w~...w,) for some n>O, where 
(pl ...pJk is a path and wi ... w, is a sequence of positive integers such 
that 1 <wid+,(k+p, + ... +piel), where $-,(j),j21 and $1(Z), 130 
are fixed nonnegative integers. Then 7-c is a weighted path of length n, with 
initial altitude k, and with possibility functions t,-,(j) and $,(l). The 
positive integer wi is the weight associated with the step pi. 

The weighted path rc = ((p, . . . P~)~, w, . . . w,) may be represented 
geometrically in the plane by the sequence v,e, u, e, u2 . . e,u, of vertices 
vi=(i,k+p,+ ... + pi) and edges (steps) ej= vi- I vi, with weight wi 
attached as a “label” to e,. Thus a step from altitude t is represented by an 
edge whose initial ordinate is t (where t >, 0). The ordinate of the terminal 
vertex is equal to the terminal altitude of the path. The empty path at 
altitude k, of length 0, is represented by a single vertex at altitude k. For 
example, a weighted path x,, with possibility functions $ _ i(j) = t,+,(j) = 
j+ 1 is illustrated in Fig. 1. 

The following enumerative result for weighted paths is well known (see, 
e.g., Jackson [4], Flajolet [ 11, or Goulden and Jackson [3]). 

LEMMA 2.1. The number of weighted paths of length n, from altitude 0 to 
altitude 0, with possibility functions $ _ ,(j), j 3 1, and $,(I), 12 0, is 

y Altitude 

A 

I -- 

cx 
0 1 2 34 5 6 7 6 SD lt 

w= ((II-ill-l-1-111-1)2, 2 41 3 5 2 31113) 

FIG. 1. A weighted path with possibility functions 1(1_,(j) =$,(j) =j+ 1 
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3. ROGERS' RESULT AND A BIJECTION BETWEEN 
WEIGHTED PATHS AND DISTRIBUTIONS 

We now introduce a combinatorial object which seems to have no 
obvious connection to weighted paths. An (n, m)-distribution of type k is an 
ordered partition (a,, ~1~ ,..., a,) of ( 1,2 ,..., n> in which exactly k of the 
(possibly empty) subsets CI, have odd cardinality, where n, m 2 k 2 0. For 
example ({3}, {1,5}, {2}, 0, (4,6,7}) . is a (7, 5)-distribution of type 3. 
Let D(n, m) be the number of (n, m)-distributions of type 0. The following 
form for D(n, m) is well known (see Riordan [7]). 

PROPOSITION 3.1. D(n, m) = [x”/n!] cash”(x). 

Proof: Clearly 

W,m)= C 
n! 

il.....im even i,!...i,! 
i,+ “’ +i,=n 

and multiplying both sides by x”/n! and summing for n > 0 yields 

.T, D(n, m) 2 = ( 1 g)“’ = cash”(x). 
ieven . 

Alternatively, an (n, m)-distribution of type 0 consists of an ordered 
collection of m even subsets that form a partition of (1,2,..., n}. The 
exponential generating function for even sets is Cieven 1 9 x’/i! = cash(x), so 
by the product lemma for exponential generating functions (Goulden and 
Jackson [3, p. 163]), the exponential generating function for (n, m)- 
distributions of type 0 is cash”(x). 1 

The second method of proof in Proposition 3.1 will be used in 
Proposition 4.2, for a generalized distribution problem. 

Next we establish a bijection 17 between these distributions and a set of 
weighted paths. For an arbitrary (n, m)-distribution d of type 0 let T(d) = 
(y,(d), y,(d),..., y,,(d)), where y,(d) is the unique (i, m)-distribution formed 
by deleting elements i + l,..., n from d. Thus y,(d) = (0 ,..., 0) and 
y,(d) =d. For example, if d,= ((4, 6}, (1, 5}, (2, 3}), a (6, 3)-distribution 
of type 0, then Wd = ((02/,0y 01, (0, {l), 01, (0, (11, P}), 
\~;i;i’ (29 3)), ((419 il>, (29 3)), ((419 (1, 53, (2, 3}), ((4961, (1, 51, 

Let the type of yi(d) be denoted by ti, so that y,(d) consists of tj odd sub- 
sets and m - ti even subsets for i = 0 ,..., n. Then Z7(d) = ((r, . . . rn)O, s, . . . s,) 
is the weighted path formed as follows. If yi+,(d) is formed from yi(d) by 
inserting i+ 1 into the kth, from the left, of the t, odd subsets in y,(d), then 
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FIG. 2. The weighted path corresponding to ((4, 6}, { 1, 5}. (2, 3)). 

ri+l = -1 and si+r = k. If yi+ i(d) is formed from y,(d) by inserting i + 1 
into the kth, from the left, of the m - ti even subsets in y,(d), then ri+, = 1 
and si+r= k. For example, if d,= ({4,6}, { 1, 5}, (2, 3)) then n(d,,) = 
(( 1 1 - 1 1 - 1 - l),, 2 2 2 1 2 l), which is illustrated in Fig. 2. 

Now rl + --. + ri = t,, since inserting i into an odd subset reduces the 
number of odd subsets by one, and inserting i into an even subset increases 
the number of odd subsets by one. Thus ri+ I is a step at altitude ti and 
rl/-,(r,)=tj, $l(ti)=m-ti, i=O ,..., n-l, so 17(d) is a path of length n 
from altitude 0 to altitude 0, with possibility functions I,$ ~ l(j) = j and 
ll/r(j) = m - j. Let W(n, m) be the number of weighted paths of length n, 
from altitude 0 to altitude 0, with possibility functions II/ _,(j) = j and 
II/ i(j) = m - j. The following result is now immediate. 

CORRESPONDENCE 3.2. D(n, m) = W(n, m) for n, m z 0. 

Proof The construction of ZZ(d), given above, is clearly reversible, so I7 
is a bijection between the set of (n, m)-distributions of type 0, and the set of 
weighted paths of length n, from altitude 0 to altitude 0, with possiblity 
functions i+-,(j) =j and $,(j) = m - j. The result follows by the definitions 
of D(n, m) and IV(n, m). 1 

But we have another way of determining W(n, m). 

PROPOSITION 3.3. 

1 m.l.x* (m-1).2.x2 
W4m)=Cx”li----j-- - 1 

2.(m- 1).x2 1 .m.x2 . . . 
1 1 . 

ProoJ Direct from Lemma2.1, with I/-,(j)=jand el(j)=m-j. The 
continued fraction is finite since rl/i(m) = 0. 1 

Combining the previous three results, we obtain a combinatorial proof of 
Rogers’ result (stated as identity (2) in Sect. 1). 



26 GOULDEN AND JACKSON 

Proof of Rogers’ Result. From Proposition 3.1 we have 

.;, D(n, m) 5 = cash”(x) 

SO 

n~oD(n,m)xn=L 

But from Proposition 3.3 

and the result follows by Correspondence 3.2. l 

The numbers D(n, m) and W(n, m) have been introduced to enable us to 
prove the power series identity between cash”(x) and its corresponding 
continued fraction. If we were interested in obtaining a closed-form 
expression for W(n, m), then the direct use of Proposition 3.3 seems dif- 
ficult. However, combining Proposition 3,. 1 and Correspondence 3.2 give 
the following expression for W(n, m). 

PROPOSITION 3.4. 

W(n,m)=D(n,m)=$.f “: 
0 

(m - 2j)“. 
/=o J 

Proof: From Correspondence 3.2 and Proposition 3.1, 

W(n, m) = D(n, m) = f$ cash”(x) = & $ (e’ + e-r)m L .I L .I 
=&!. (;)[$I e(m--2i’i 

and the result follows. 1 

4. THE EHRENFEST TRANSITION PROBABILITIES 

AND DISTRIBUTIONS 

Let W(n, m, i, k) be the number of weighted paths of length n, from 
altitude i to altitude k, with possibility functions $ ~, (j) = j and I+$ r(j) = 
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m - j. We wish to evaluate IV(n, m, i, k) because of its close connection with 
the Ehrenfest transition probability P(n, m, i, k), defined in Section 1. 

PROPOSITION 4.1. 

P(n,m,i,k)=--$,W(n,m,i,k). 

Proof. Let a( bO, b, ,...; c, , c2 ,... ) be the number of paths of length n from 
altitude i to altitude k with bj rises and cj falls at altitudej, where b, + b, + 
... +c,+cZ+ ... =n. Then 

P(n, m, i, k) = 1 a(b, ,...; cl ,... ,,n,( 1 -d”F, (A)(’ 
.a 

= f c a(b,,...; c ,,...) n (m -j)hJ n 1”’ 
i>O I>0 

=--$ W(n, m, i, k). 1 

In Proposition 3.4 we evaluated W(n, m, 0,O) = W(n, m) indirectly, by 
establishing a bijection between paths from altitude 0 to altitude 0 and 
(n, m)-distributions of type 0. The number of such distributions is denoted 
by D(n, m), and has a simple exponential generating function, given in 
Proposition 3.1. We did not evaluate W(n, m) directly by extracting the 
appropriate coefficient from the continued fraction. 

In a similar way, we can express W(n, m, i, k) as a coefficient in an 
expression involving the above continued fraction and its numerator and 
denominator polynomials. This expression is not given here, since the coef- 
ficient is difficult to extract directly, so we consider a generalization of the 
above distributions that will allow us to evaluate W(n, m, i, k) indirectly. 

An (n, m, i)-distribution of type k is an ordered partition (aI, az,..., u,) of 
(01, b.., O;, 1,2 ,..., n} in which Oi E CX~ for j = l,..., i, and in which exactly k 
of the (possibly empty) subsets uj have odd cardinality, where m 2 i, k 2 0, 
i+n>k, n>O. For example, ((01,2,6}, {O,), @, (1, 3, 5,7), (4)) is a 
(7, 5,2)-distribution of type 3. Let D(n, m, i, k) be the number of (n, m, i)- 
distributions of type k. With an arbitrary (n, m, i)-distribution d= 
(~1~,..., a,) we associate the unique (n, m)-distribution Q(d) = (/II,..., pm), 
where p, = uj - (Oj} for j = l,..., i, and pi = olj for j = i + l,..., m. We now 
enumerate (n, m, i)-distributions by considering the (n, m)-distributions 
which result from the application of Q. 
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PROPOSITION 4.2. 

D(n, m, i, k) = [ .I y’s (sinh(x) + y cosh(x))‘(cosh(x) + y sinh(x))“-‘. 

ProoJ: Let d be an arbitrary (n, m, i)-distribution. Then Q(d) is an 
(n, m)-distribution, consisting of m ordered subsets. The type of d equals 
the sum of the number of even subsets in the first i subsets of 52(d) plus the 
number of odd subsets in the last m-i subsets of Q(d). Following the 
proof of Proposition 3.1, the exponential generating function for even sets 
is cash(x) and for odd sets is sinh(x), and the result follows. i 

The equality of W(n, m, i, k) and D(n, m, i, k) is now established by 
suitably modifying the mapping 17 of Section 3. If d is an (n, m, i)-dis- 
tribution of type k, then let f’(d) = (yb(d), y;(d),..., y:(d)), where y,‘(d) is the 
unique (j, m, i)-distribution formed by deleting elements j+ l,..., n from d. 
Thus y&(d) = ({01} ,..., {O,}, 0 ,..., @) and y:(d)=d. Let t; be the type of 
y,‘(d), for j = O,..., n, so t& = i and t; = k. Define IT’(d) = ((r; . . . rk)i, s; . . . s:) 
to be the weighted path defined as follows. If $+ ,(d) is formed from y,(d) 
by inserting j + 1 into the Ith, from the left, of the 2; odd subsets in y,‘(d), 
then ri+, = -1 and sJ+~ = 1. If y;+ ,(d) is formed from y;(d) by inserting 
j+ 1 into the Ith, from the left of the m - ti even subsets in y,‘(d), then 
<;+I= 1 and $+,=E. 

For example, if 4,=({0,, 2,6}, {O,}, 0, (1, 3, 5,7), (4}), a (7,5,2)- 
distribution of type 3, then nl(d,,) = (( 1 - 1 - 1 1 1 1 - l)*, 2 1 2 4 
3 1 3), which is illustrated in Fig. 3. 

But i+ r; + ... + ri = ti, so rJ+ 1 is a step at altitude t;, and $ _ ,( 2;) = tj, 
@,(t,!) = m - t,‘, so n’(d) is a path of length n from altitude i to altitude k, 
with possibility functions I,- 1(j) =j and $i(j) = m -j. 

1 

04 : : : : : : : - 
01234567 

FIG. 3. The weighted path corresponding to ({O], 2, 6}, {0,}, a, { 1, 3, 5, 7}, (4)) 
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CORRESPONDENCE 4.3. D(n, m, i, k) = W(n, m, i, k). 

Proof: The mapping 17’ described above is a bijection between the set 
of (n, m, i)-distributions of type k and the set of weighted paths of length n, 
from altitude i to altitude k, with possibility functions II/~,(j) = j and 
el(j) = m - j. The result follows immediately. 1 

By combining the above results, we may obtain the transition 
probabilities for the Ehrenfest urn model. The following form for these 
probabilities is given in Kac [S] and Takacs [9]. 

THEOREM 4.4. 

P(n, m, i, k) =& i aiiajk 
/=O 

where Cy==, aOzj= (1 - z)~( 1 + z)+;. 

Proqf: From Propositions 4.1, 4.2 and Correspondence 4.3, we have 

P(n, m, i, k) =--$ [ .I yk 5 (sinh(x) + y cash(x))’ 

x (cash x + y sinh(x))” ~ i 

=-$ yk$ $((l+y)e-‘-(1-y)e-“)’ [ .I 
x((l+y)e”+(l-y)e-“)“-’ 

=&f Yks f a,((l+y)e”}m-j{(l-y)e-~}j 
II ‘I j=O 

and the result follows, since [yk](l - y)j(l + ~)“-‘=a~~ and mp”[x”/n!] 
,(+V).~=(l -2j/m)“. 1 

Let E(n, m, i) = x;= o k. P(n, m, i, k) be the expected value of the state 
which the system is in n stages after starting in stage i. It is straightforward 
to determine E(n, m, i) from the given generating function. 

PROPOSITION 4.5. 

E(n,m,i)=F{l-(l-z)(l--J-)l}. 
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ProoJ From Propositions 4.1, 4.2 and Correspondence 4.3, we have 

E(n, m, i) =---& 

x (cash(x) + y sinh(x))” i I r‘ =, 

(i cash(x) + (m - i) sinh(x)) e(“-“” 

1 xn =- - [ 1 2m” n! 
(me"- (m-2j) e-.Y) p-').r 

1 ( n+l =- m 
2m” 

- (m - 2i)(m - 2)“), 

and the result follows. 1 

This is equivalent to a result (Eq. (64)) of Kac [5], which in the limit 
yields Newton’s law of cooling. 

Finally, we give an explicit example of the correspondence between the 
Ehrenfest model of moving one of m balk between two boxes n times, and 
the distribution problem of partitioning n objects into m sets. For m = 6, 
n = 11, Correspondence 4.3 tells us that if we start with balls 1, 2 in box 1, 
and transfer balls 3, 1, 3, 6, 2, 5, 5, 3, 5, 6, 1, leaving 3 balls in box 1, then 
the corresponding (11, 6,2)-distribution of type 3 is ({0,, 2, 11}, {O,, 5}, 
(1, 3, 8>, 0, (6, 7,9>, C4, ‘0)). 
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