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Shanks developed a method for accelerating the convergence of sequences. When 
applied to classical sequences in number theory, Shanks’ transform yields some 
famous identities of Euler and Gauss. It is shown here that the Pad&. approximants 
for the little q-Jacobi polynomials can be used to explain and extend Shanks’ obser- 
vations. The combinatorial significance of these results is also discussed. 0 1986 
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1. INT~0Ducr10N 

In the early 1950’s, Shanks [lo] studied the following convergence 
acceleration method: Let A, be a sequence converging to the limit L. 
Define for n > k, 
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A,-, ‘.. An-, AlI 
AA n--k ..’ AA n-l AAn 

AA,-k+l ... AA,, AA,,, 

AA n-l AA n;k-2 AAn;kl, 
&,n = 

1 1 1 ’ 
AA n-k ... AA n- 1 AAn 

AA,-,+, ... AA, AA,+1 

AA n-1 ... AAn+k--2 AAn+k-, 

(1.1) 

where A is the (forward) difference operator AA, = Ai+ 1 - Ai. 
Under appropriate conditions lim, _ ‘x) B,,, = L, and the convergence of 

B,,, to L is more rapid than that of A,. 
We shall be concerned with one aspect of Shanks’ transform: namely, his 

applications to number theory [lo, p. 34; 9, 111. In particular, if 
A; l= n;=, (1 - q$ then 

Brim’ = 1 + (- 1)’ qjc3’- ‘)“( 1 + q’), [ 10; p, 34, Eq. (1.2.3)] (1.2) 
j=l 

and if A-‘=n’= (1 -q”)/(l -q”-’ n J 1 
), then 

B;,, = 
j=O 

[9; p. 7491. (1.3) 

Thus Shanks’ transform not only increases convergence in these two 
instances, but it also provides resulting sequences which yield immediately 
the famous corollaries: 

“G*(l-q”)=l+ f (-1)Jq”3jp1)‘*(1+qj), 
j= I 

(1.4) 

Euler’s pentagonal number theorem [2; p. 11, Corollary 1.71, and 

j?, (l-$“-1) j=oq 

O” (1-q2”) = f j(j+l)/Z 

’ 
(1.5) 

Gauss’s theorem [2; p. 23, Eq. (2.2.13)]. 
A number of natural questions arise. First, what’s going on here anyway? 

Also, what is the extent to which Shanks’ transform will apply to other 
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q-products? We study this question analytically in Sections 2 and 3. We 
rely on the close relationship of Shanks’ transform to Pade approximants 
[lo; p. 211, and reveal that the little q-Jacobi polynomials and the 
PadC approximants related to their moment generating function lie behind 
(1.2) and (1.3). In Section 4 we consider and make rigorous Shanks’ 
application of his transform to a sequence related to the Sieve of 
Eratosthenes. In Section 5 we present the combinatorial aspects of the 
identities arising from our analytic studies. 

2. SHANKS' TRANSFORM AND PADB APPROXIMANTS 

Shanks himself proved the main result on which our work is based. 
Namely he proved [ 10; Theorem VI, p. 221 that if A, = C;=O cizi, then B,,, 
is the Pade approximant [k/n] to 

f(z) = f CiZ’. (2.1) 
i=O 

We are using the notation of [4] for Padt approximants. In addition, 
Wynn [14; p. 881 (see also [6, 133) has effectively made possible the 
explicit construction of the PadC approximants for the case of (2.1) when 

1-1 Amq”+/ 
cj= n 

j=. B-q’+“’ 
(2.2) 

In fact the relevant orthogonal polynomials discovered by Wynn 
[14; p. 88, Eq. (46)] are the little q-Jacobi polynomials first studied by 
Hahn [S]. The important details about these polynomials were presented 
in [3]. Given this information about the little q-Jacobi polynomials, we 
can make explicit the Pade approximants for Wynn’s series (2.1) whose 
coefficients are given by (2.2). We shall restrict our construction to Shanks’ 
sequence B,, so that we can see the general series acceleration 
phenomenon explicitly. 

The following lemma is a reformulation of standard results related to 
PadC approximants for moment generating functions. 

LEMMA [4; Sect. 5.31. Let p,(x) be a family of orthogonal polynomials 
on [a, b] relative to the distribution dw, where 

p,(x) = i c,(n) xi. 
j=O 

(2.3) 
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Define a sequence A, by 

A,=A,+& s 
b 1 - (Ax)~ 

a l-Ix 
dw. 

Then in the notation of (1.1) 

B,,=A,+& 
s 

b dw ~1” h 

Krx-jpq o s x”P,(x) dw 
u 

=LEn 
PEW’) i=o 

.+ici(n) Api, 

(2.4) 

(2.5) 

(2.6) 

provided det(AifjP2)nxn exists and is nonzero for each n. 

Remark. We note that st dco/( 1 - Ax) is the moment generating function 
for the distribution do, and A, is merely a linear shift of the nth partial 
sum of this function. 

Proof: For any sequence y,, we recall 

dYi=Yi+ I -Y,. 

Returning to (1.1) we note that B,, = l/x0, where x0, x,,..., x, are defined 
by the system of n + 1 equations: 

Ajx,+.4Ajx,+dAi+,x,+ ... +AA,+.-,x,=1, 0 <j 6 n. (2.7) 

This system is of course equivalent to 

AjdX,+Aj+l AX;+ .‘. +A,+.~x,= -1, O<j<n (2.8) 

(where x n + , = 0, so Ax, = -x,), which is in turn equivalent to 

AA, Ax, + AA,, 1 Ax,+ ... +dAi+,dx,=O, 

A,dx,+A,+,dx,+ ... +A,,dx,=-1. 
0 bj<n, (2.9) 

Furthermore each of these systems has a unique solution because 
det(A , +jP 2) # 0 for each n by hypothesis. 

The solution of (2.9) is given by 

Axi= c,(n) Api/ci,, (2.10) 
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a,= -pn(lZrl)A,+& s 
b xn~“Pn(x) -P,V - ‘) do 
a 1 -Ix 

=- f A,+,c,(n) A-‘. 
i=O 

The orthogonality property of the p,(x) and the fact that 

(2.11) 

s b 

AA,, = EL” x” do (2.12) 
ll 

is the appropriate multiple of the nth moment of the distribution yields the 
first n equations of (2.9), and 01, is chosen to force the nth equation to 
work. 

Finally we note that 

R”, = L = 
-1 En 

xo C:=oAx; = -ml 

thus (2.5) and (2.6) now follow from (2.11). 1 

3. APPLICATION TO THE LITTLE q-JACOBI POLYNOMIALS 

In the lemma of Section 2, let us take 

A,= 1, 

A= 4, 

p (x)= -f w”)jw+l&qY 
n 

j=O (4)jtaq)j ' 

where, using standard notation 

n-1 

(A), = (A; q)n = n (1 - 4% 

j=O 

and 

(A), = (A; qL = lim (A), 
n-m 

(2.13) 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 
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The p,(x) are the little q-Jacobi polynomials of Hahn [5]. The relevant 
distribution is discrete and consists of weights wi at the points q’(i = 0, l,...), 
where 

a’(q’+ ‘)m qi( 1 - q) 
w;= 

(bq’+ ‘/a), ’ 
[3; p. 13, Eq. (3.8)1. 

Hence in this instance 

w (l-(q’+‘)“)/z’(q’+‘),qL(l-q) 
A,=&+& 1 

i-0 (1 -q’+‘) (bq” ‘/4m 

= 1 

(as)n =- 
C&L 

Therefore by line 2 of (2.11) 

(3.8) 

a,= - 
i; (uq)n+j, (qp”)i(W’+‘)i 

i=o (bq),+, (4)i(“q)r 

(aq)n i (4 -?,(uqn + ’ h 
=-- 

(bq), L=o (qMaq)i 

(uq)n lim i (4p”)i(uq”+ ‘)i(c)i 4’ 
=-- 

tbq)tt (‘+x i-0 (q)itaq)i(cq)i 

(aq)n . (~q/cL(q-“L =-- 
(bq), k!! (aqMq-“lc)” 

(by the q-Pfaff-Saalschutz summation, [2; p. 38 (3.3.12)]) 

(4-“)I2 =-- 
(bq), 

=(-l)~+lq~n(n+l”*(q)” 

t&/L . 
(3.9) 

These observations now leave us in position to prove our main result. 
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THEOREM 1. Zf A, = (aq),/(bq),, then Shanks’ transform B, given by 
(1.1) is 

1 (-1)“4 n(n + 1 ‘/‘(bq), n 
-= 
B (4)n 

1 (q-“Jib”+ ‘)i 

n,n i=~ (q)i(aq)i 
(3.10) 

_ (bq), i (b/a), aiqicn + ‘) 

(aq), i=O (4)i 
(3.11) 

n 
=1+x 

(bq), ~ 1( 1 - bq”)( b/a), qJ2aJ 

(q)j(aq)j ’ 
(3.12) 

j=l 

Proof Eq. (3.10) follows immediately from (3.9) and (2.13). Identity 
(3.12) requires Watson’s q-analog of Whipple’s theorem [12; p. 100, 
Eq. (3.4.1.5)]: 

(3.13) 

In (3.13) set N= n, 6 = bq”“, y = b/a, a = b, and let E, /I -+ co. This yields 
the identity of (3.10) with (3.12). To obtain (3.11) we note by (3.10) that 

1 (bq), 
n (q-“)iW+‘)i 

-=-lim 1 
B n.n (qp”)n e4o i-0 (q)i(aq)i(e)i 

(by [S; p. 174, Eq. (lO.l)]) 

_ (bq), i (b/a),a’q’“’ ‘ji , 

(WI” i-0 (q)i ’ 
(3.14) 

We conclude this section by noting that the identities Shanks derived via 
his transform in [9, 111 are merely special cases of portions of Theorem 1. 
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If we set b= 1 and let a -+O, then (3.11) and (3.12) yield 

(q) 
n 

i (~l)iqn’fici+‘)‘2= 1 + f  (-j)lq~u-1)/2(1 +qj) (3 15) , . 
i=o (4)i j=l 

which is Shanks’ result in [9], see also [7]. 
If we replace q by q* and then set b= 1, a= 4-l in (3.11) and (3.12) we 

obtain 

(q2; q2)n n c (q; q*)i qQn+ 1) 

(4; i-0 (4*; 4*)i 

=go qs(s+ 1)/Z, (3.16) 

which is the main result of Shanks’ in [ 111. 

4. SHANKS' SIEVE OF ERATOSTHENES APPLICATION 

Let us quote Shanks [ 10; p. 351 as he considers “...a sequence akin to the 
Eratosthenes Sieve. Let the decimal number A,(n = 1,2,...) 

A, =0.111111111111111.... 

A, = 0.1212121212121212.... 

A, =0.1222131222131222.... 

A, =0.1223131322141223.... 

A, =0.122323132314,1233.... 

A, =0.1223241323151233.... 

represent the number of pebbles in contiguous boxes after n stages of the 
following operation. First a pebble is dropped into every box, then a peb- 
ble is dropped into every second box, then into every third box, etc. It is 
seen that the ultimate population in box n is d(n), the number of divisors of 
n. The number A,[for n -c: 481 yields d(n) correctly up to but not beyond 
the first n integers...“. 

As Shanks then notes he is considering 

A,=iQ’ 
j=, l-q” 

for q = &, and, as in the other cases we have considered, his transform 
greatly speeds convergence. 

Surprisingly (perhaps not) this application is explained with little dif- 
ficulty using Theorem 1. First we observe that if A,, is replaced by aA, + b 
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then Bk,, becomes aBk,, + /I; this is immediate from (1.1) or from the 
lemma of Section 2. Let us consider then 

A = (4)n/(bq)n- 1 
n 6-l ’ 

which is a linear shift of A, = (q)n/(bq)n. By Theorem 1, 
related B,, is given by 

(4.1) 

Eq. (3.12), the 

Bn,, = 
- CT= I tbq)j- l(l - bq2J)(b!, 4'*/(4$ 

(b-1)(1 +~~=l(bq)j~l(1-bq2’)(b)jqj2/(q),2)’ 
(4.2) 

Now when b + 1, we see that 

while 

(4.3) 

(4.4) 

Thus while A, differs from A, at qn+‘, B,, differs from A, at q”2+2”+‘; 
this is in complete agreement with Shanks’ numerical table [ 10; p. 351. 

We should add that this result is not terribly surprising. It is merely the 
analytic counterpart of the fact that we can determine d(n) by counting 
twice all the divisors of n less than & and adding 1 if n is a perfect square. 

5. COMBINATORIAL ASPECTS 

Identity (3.15) has been proved in an elegant combinatorial manner by 
Knuth and Paterson [7]. Knuth and Paterson study the Franklin 
involution F very carefully. We begin by recounting their definition of F. 

Let 17 be a partition of n into m parts, so that n= {CC, ,..., a,} for some 
integers c1r > ... >a,>O, where rxl + . . . + CI,,, = n. We shall write 

Z(n) = n, v(ZZ) = m, 4m=%, 

o(IZ)=I{q a,=1 (mod2)}], 
(5.1) 

for the sum, number of parts, largest part and number of odd parts of Z7, 
respectively; if 17 is the empty set, we let Z(ZZ) = v(Z7) = A(Z7) = o(Z7) = 0. 
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We alo define the base b(U) and slope a(n) when 17 has distinct parts as 
follows: 

fl(Z7)=min{j lj~17) =a,, o(n) = min{ j ) A(ZZ)-j$Z7}. (5.2) 

Note that if IRJ is nonempty we have 

qm 2 P(U) + v(n) - 1 and v(n) 2 a(U). (5.3) 

The Franklin involution F is a mapping from the set of all partitions 
with distinct parts to the set of all partitions with distinct parts. The par- 
tition F(U) corresponding to ZZ under Franklin’s transformation F is 
obtained as follows: 

(i) If /I(Z and b(Z7) < v(n), remove the smallest part, 
/I(n), and increase each of the largest P(Z7) parts by one. 

(ii) If fl(Z7) >o(n) and a(n) < v(Z7) or o(Z7) #b(n)- 1, decrease 
each of the largest a(n) parts by one and append a new smallest part, 
Go 

(iii) Otherwise F(l7) = Z7. [This case holds if and only if 17 is empty 
or o(n) = v(n) 6 fl(Z7) < a(Z7) + 1.1 

It is not difficult to verify that F is an involution on the set of partitions 
with distinct parts, i.e., that 

F(F(Z7)) = IZ (5.4) 

for all such 17. Moreover, we shall see that on a certain set of partitions, 
the involution F is sign reversing. 

For each 1> 0 there is exactly one partition Z7 such that A(n) = I and 
F(ZZ) = Z7. We shall denote this fixed point of the mapping by f,; it has 
[ (1+ 1)/2] consecutive parts, 

fi= {I, I- l)...) [l/2] + l}. 

Let 

(5.5) 

(5.6) 

be the set of all such partitions. 
Finally if S is any set of partitions, we define the generating function of S 

by formula 

G( S; x, y, z, u) = c x=(~)~~(~)z”‘~)u~(=). (5.7) 
I7E.s 

582a/43/1-6 
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All of the above notation is taken essentially from Knuth and Paterson 
[7]. In their paper, they use the Franklin mapping F to establish nicely our 
(3.15). 

We point out that the other portion of Theorem 1 when b = 1 and a = 0 
(namely (3.10) = (3.12)) follows from this approach as well: 

i (-l)k-jq(k-$+l) (5.8) 
j=O i= -k 

where 

O<B<A 

otherwise. 
(5.9) 

To see (5.8), we let gj denote the set of partitions into distinct parts with 
exactly k-j parts of size < k, while all other parts lie in {k + 1, 
k + 2,..., k +j}. Immediately from well-known properties of the Gaussian 
polynomials [“,I [2, Chap. 31, we see that 

G($S:q -1 1 ,” 33 l)=(-l)k-iq (5.10) 

Clearly also for ~4~ = {fo, f, ,..., f2k} 

G(c&;q, -1, 1, l)= i (-l)iqi(3i-1)‘2. 
r=-k 

(5.11) 

If we define z?S = Ufi=, S;, then it is clear that we need only show 

i G(L&;q, -1, 1, l)=G(%q, -l,l,l)=G(~$~;q, -l,l, 1). (5.12) 
i=O 

Obviously d 5 9. 
Noting that for any IIE 9 - dk, F has the sign reversing property 

f-1) 
n(n) = _ (_ 1)“‘“m 

3 

we see that (5.12) will be proved if we can show that F(Zl) E 9 - dk when 
L’ELS-SXZ~. Suppose IIES~. If /3(Z7)<a(Z7) then F(ZZ)egj+, unless the 
parts larger than k are of the form k + Z, k + I - l,..., k + 1 and one of the 
parts <k is k itself, in which case FEDS++. If P(n)>o(n), then 
F(17) E gj-, unless the parts larger than k are of the form k + I,..., k + 1. In 
this case it is clear that F(17) E gji 2 unless 2 =j. If I= j then o(n) >, j, and 
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we must have o(n) =j, P(n) =j + 1 since P(Z7) <j + 1 by definition of gj. 
But b(Z7) =j+ 1 implies that the parts < k are k, k - l,...,j+ 1, so 
F(Z7) = k, a contradiction. Therefore 1 #j, and so F(U) E $9 -L&. This 
proves (5.12) and thus (5.8). 

We may also derive the identity of (3.11) with (3.12) by adapting the 
Durfee rectangle proof of the Rogers-Fine identity [ 1; Sect. 41. If in (3.11) 
and (3.12) we replace q by q*, then set a = t*q* and then set b = -at2q3, we 
obtain the following equivalent assertion: 

( - at2q3; q2)n + 1 n ( - aq; 4'). t2'q2'(" + *) 

o*q*; q2L + 1 (4*;‘4*)i 

n (-atzq3~q2)-(-aq~q2).(l+at2q4j+3 
= c ’ ‘(q2;q;).(t:q*;q2). )q2j2+2’t2j. (5.13) 

i=O J J+l 

In order to make the argument of [ 1; Sect. 43 more comprehensible we 
introduce the modulus 2 representation of partitions due to MacMahon 
[2; p. 131. This is a modified Ferrers graph in which each even part 2M is 
represented by a row of A4 2’s and each odd part 2M+ 1 is represented by 
a row of A4 2’s followed by a 1. Thus the representation of 8 + 7 + 6 + 6 + 
3+2 is 

2 2 2 2 

2 2 2 1 

2 2 2 

222’ 

2 1 

2 

while the representation of 8 + 6 + 3 + 1 is 

2 2 2 2 

2 2 2 

2 1 

1 

(5.14) 

(5.15) 

The rectangle argument of [ 1; Sect. 41 can be recast as an examination 
of the modulus 2 representation of the set partitions Q which have no 
repeated odd parts and even largest part. In particular, we look for the 
largest rectangle of 2’s and l’s in the representation with N columns and 
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N + 1 rows; we call this the RF-rectangle of order N. The only way 
a 1 can appear in the RF-rectangle of a partition from d is in the lower 
right-hand corner. Thus in the case (5.14) N= 3 and no 1 appears in the 
RF-rectangle; in the case (5.15) N = 2 and 1 does appear. 

The subsection I of [ 1; Sect. 41 considers those partitions in d with 
RF-rectangle of order N and no l’s in RF-rectangle. The generating 
function derived there combinatorially is 

( - aq; q2)J - atzq3; q2)N t’Nq2NZ+ 2N 

(q2; q2)Ntt2q2; q2)N+ 1 ’ 
(5.16) 

The subsection II of [ 1; Sect. 41 considers those partitions in d with 
RF-rectangle of order N and a 1 in the lower right-hand corner of the 
rectangle. The resulting generating function is 

( -aq; q2)N( -at2q3; q2)N ap+2q2N2+6N+3 

(q2; q2)Ntt2q2; q2)N+ 1 

(5.17) 

Adding all instances of (5.16) and (5.17) for Ndn, we find that the right- 
hand side of (5.13) is just 

WC; q, t, La) 

where 8, is the subset of d containing those partions with RF-rectangle of 
order <n. 

On the other hand there is another way of obtaining G(&,,; q, t, 1, a). 
Namely we can classify each partition Z7 in L$ by the largest rectangle of 2’s 
contained in the modulus 2 representation of 
rows. We say such partitions are in &,Ji). 

Now 

( --t2q3; q2),+ I 
w; q2L+ 1 

17 with i columns and n + 2 

(5.18) 

is the generating function G(/1,; q, 1, t2, a) where /1, is the set of partitions 
in which each even part is <2n + 2, each odd is < 2n + 3, no odds are 
repeated and 1 does not appear. By considering the conjugates of elements 
of /i, relative to the 2 modulus representation (i.e., read columns rather 
than rows of the representation), we see that 

G(A,; q, 1, t2, a) = WA;; q, t, 1, a) (5.19) 

where ,4; is the set of partitions in which the largest part is even, no odds 
are repeated, there are at most n + 2 parts and if there are n + 2 parts the 
smallest is 1. 
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Hence 

G(&(i); 4, t, 1, a) = 
(-“q;q2)i.f2iq2i(n+2).G(n:i;q, t, l,a) (5.20) 

cq2; q2ji 

where 

( - %l; q21i 
(q2; q2L 

generates the portion of each partition in 8,(,(i) below the rectangle 

2 2 2 ‘.’ 2 

2 2 2 2 

2 ... 
2 

2 2 2 
n + terms 

: : : 

2 2 2 ... 2 

2 2 2 “’ 2 

i terms 

and G(A;; q, I, 1, a) generates the portion to the right. Combining 
(5.18)-( 5.20) and summing on i = 0 to n, we find that the left-hand side of 
(5.13) also equals G(&; q, t, 1, a) thus (5.13) is established. 

6. CONCLUSION 

Our main object of explaining the mechanism behind Shanks’ transform 
for (aq),/(bq), has been accomplished. However, some questions remain. 
First, are there other families of orthogonal polynomials that lead to num- 
ber-theoretic surprises like (1.2) (1.3), or (4.4)? Second, can a general 
study be made of the little q-Jacobi polynomials based on extending the 
interpretations we have given in Section 5? 

While Shanks’ method was primarily prepared for numerical acceleration 
of convergence and was, therefore, viewed as an analytic process; non- 
etheless, the problems we have considered can be completely dealt with in 
rings of formal power series. Let R[ [q] ] be a ring of formal power series 
with S,(q)(n = I, 2, 3,...) and S(q) all in this ring. We define M(n) by the 
identity S(q) - S,(q) = cqMfn) + dqMCn)+ ’ + . . . where c # 0. We may say 
that S,(q) converges to S(q) if M(n) + cc with n. We may accelerate con- 
vergence by constructing a new sequence s,Jq) with related A(n) such that 
i@(n) > M(n) for n sufficiently large. In the actual cases we have considered 
&(n)/M(n) - An as n -+ 00. 
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