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Kovacs (J. Combin. Theory, Ser. A 45 (1987), 29C-299) has derived an expression 
for the number of ordered k-tuples, (A,. _.., A,). of n x n matrices over GF(q) whose 
product Ak A, has prescribed rank. We give a combinatorial construction for 
this result. !c’ 1990 Academic Press. Inc. 

Let Y” be a vector space of dimension n over GF(q). We determine the 
number, pk(n, i,j), of k-tuples of linear operators over Y such that the 
rank of the restriction of their product to a prescribed i-dimensional sub- 
space of ,Y’ is equal to j. 

The set of all linear operators on Y is denoted by Xx. If 
T= (Tk, . . . . T,) E Xk, then we denote Tk ... T, E 2 by f. Throughout, 
dim,,,,, and wnG,+,, are abbreviated to dim and span. The set of all 
i-dimensional subspaces of V is denoted by (“-). Implicit use is made of 
the fact that, if Y;, 9; are vector spaces, then q z 3; if and only if 
dim q = dim 9;, so enumerative quantities associated with vector spaces 
depend only on dimensions (and, of course, the ground field). It is well 
known (see, for example, [l, 21) that /(“,-)I =ni=, (1 -qHpkfl)/(l -qk), 
the Gaussian coefficient, which is denoted by (y),. 

We begin with a combinatorial derivation of a linear relationship 
involving Pk( n, i, j). 

THEOREM 1. For O<lbi<n, 

i pk(n, i, j) q’“-” 
/=I 
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ProoJ Let %E (I) be arbitrary but fixed. We derive two different 
expressions for I++, the cardinality of the set {(X, T) E (7) x Sk: r( Fir) = I}. 

First,bysummingover~weseethat~=C~.(p,I{TE~”:Y(~I,.)=Z)l 
=I(:,1 .IjT~~~:r(~l,~~)=I}l, h w ere E0 E (7) is arbitrary but fixed. Thus 

(1) 

Second, by summing over T, we see that II/ = cj=, Crt Jyk I {g E ( y): 
r( Fir) = I, r( fl a) =j’, ( . We now give a construction for 3. Given T, let 
&E (7) be arbitrary but fixed such that ker ?I,& @ &‘T = % where dim 
&T=j. Thus r( ply) =j. Let 9 E (.yi) have a canonical ordered basis 
(y,, . . . . y,), and let cr, . . . . C,E (ker Fl.)‘. Then 

(i) spdy, +cl,...,y,+c~)~CL 
^ 

(ii) T span(y, + c,, . . . . Yl + Cl) = i% so &m”,.,.,+q ,.., \.,+d) = 
r(fl&/j=L 

(iii) span(y,+c ,,..., y,+c,)=span(y,+d, ,..., y,+d,) if and only if 
c, = d,n for m = 1, . . . . 1. 

We may therefore suppose that % = span(y, + c1 , . . . . y, + cI) for 
some (y,, . . . . yl) and (c,, . . . . c,), so I{S?E(~):Y(~.J,~)=I, r(Pl,j=j}l= 
c /yECa;i) [(ker Tl,u)I’=~.YE~.~j~ q”+“‘= (<), q”-“‘. Thus 

q(‘-‘I’ ( { TE Yk: r( ?‘I y = j} I 

(2) 

The result follows by equating (1) and (2). 1 

To evaluate pk(n, i, j) explicitly, we invert the linear relationship given in 
Theorem 1, and evaluate pk(n, I, I), for 0 d 1 dn, using the next two 
propositions. 

PROPOSITION 2. Let fO, f, , . . . . g,, g, , . . . be formal Laurent series in the 
indeterminate u. Then 

fi= C () g, for j=O, 1, 
l2j u 

if and only if 

g,= 1 (-,y-‘u(ci) ; 
0 ,f, for I=O,l,.... 

J2l u 



COUNTING PROBLEM FOR FINITE FIELDS 159 

Proof. Let j!, denote (1 - u)( 1 - u*) . . . (1 - uj). The zeta and Mobius 
functions for the lattice of partitions ordered by refinement (Goldman and 
Rota [ 1 ] ) are, respectively, i(t) = Ck > ,, t”/k !, and p( t ) = Ck .J - 1 )k 
u(t)tk/k! and,moreover,[(t)p(t)=l. Letf(t)=Ck,,f,tkk!,andg(t)= 
&>ogkt’k!,. Thenf(t)=i(t-‘) g(f) if and only if~(t)=~(t~r)f(f), and 
the result follows by comparing the coefficients in each of these. 1 

PROPOSITION 3. For Odldn, 

pk(n, 1, I) = jqn’n - ‘1 (q”-l)(q”-q)...(q”-q’yy. 

Proof pk(n, 1, I) = I{ TE Xx”: r( FIT) = I} 1, where % E (‘,-) is arbitrary 
but fixed. Thus r( Tsl,y) = I for s = 1, . . . . k so pk(n, I, 1) =p:(n, 1, I). But 
p,(n, I, I) = qn’+” (q” - l)(q” - q) ... (q” - q’- I), since the basis*elements of 
3 must be mapped into a linearly independent I-tuple of elements of Y, of 
which there are clearly (q” - 1 )(q” - q) . . (q” - q’- ’ ). The remaining n - 1 
elements in the basis of V formed by extending the basis of X can be map- 
ped to any of the q” elements of w”. 1 

We now complete the evaluation of pk(n, i,j). 

COROLLARY 4. For 0 d j < i < n, 

Proof. Multiplying both sides of Theorem 1 by (- 1 )‘q(‘: ‘) p’i, we 
obtain 

,~,~k(~,i,j)q-(:)(-l)j(-l)j~1q(i2’) j 
0 1, 

=(-l)‘q(‘:‘)-ii ; JJk(H,i,I). 
0 Y 

Now let g,=(-l)‘q(‘Y-“(;),p,(n, 1, I) and fJ=pk(n, i,j)q-(i2)(-1)’ 
and the result follows from Proposition 2, after substituting the value for 
pk(n, I, I) given by Proposition 3. 1 

Kovacs’ [3] expression for the number of ordered k-ruples of matrices 
over GF(q) whose product has rank t is obtained by setting i = n, j = n - t 
in Corollary 4. 
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Algebraic proofs of ‘Theorem 1 and Corollary 4 can be obtained as 
follows. Let M, = Cpdn, dj)lo<i,,<.v Q = C(j)y/qi’i~i’lO~i,i~n, and 
D, = diag(p,(n, 0, O),..., pk(n, n, n)). The following facts can be verified: 
M,Q = QD,, M, = Mf, and Dk = 0';. Such a Q exists because M, is 
diagonalizable, since its eigenvalues, p,(n, i, i), for i = 0, . . . . n, are mutually 
distinct. These results may be combined to give MkQ = QDk, and thence 
Theorem 1 by comparing the (i, /)-elements of these matrices. Corollary 4 
follows by using the fact that M,= QDkQ-', where Q-’ = 
[( - l)iPj @/q(l)-(i)],,,,,,. 
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