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An explicit expression is obtained for the generating series for the number of
ramified coverings of the sphere by the double torus, with elementary branch points
and prescribed ramification type over infinity. Thus we are able to determine
various linear recurrence equations for the numbers of these coverings with no
ramification over infinity; one of these recurrence equations has previously been
conjectured by Graber and Pandharipande. The general form of this series is con-
jectured for the number of these coverings by a surface of arbitrary genus that is
at least two. � 1999 Academic Press

1. INTRODUCTION AND BACKGROUND

Let + (g)
m (:) be the number of almost simple ramified coverings of S2 by

X with ramification type : where X is a compact connected Riemann
surface of genus g, and : is a partition with m parts. The problem of
determining an (explicit) expression for + (g)

m (:) is called the Hurwitz
Enumeration Problem, a brief account of which is given in [2]. The
terminology and notation used here will be consistent with the latter paper.

There appears to be a natural topological distinction between the low
genera instances of the problem, namely for g�1, on the one hand, and
the higher genera instances, namely for g�2, on the other hand. In this
paper we address the higher genera case of the Hurwitz Enumeration
Problem. The distinction between the low genera and the high genera cases
manifests itself in this paper in the fact that a general form can be given for
the higher genera case, but that does not specialize to the low genera case.
In this paper we prove an explicit result for g=2, the double torus. Thus
we are able to determine various linear recurrence equations for + (2)

m (1m),
corresponding to the case of no ramification over infinity. One of these
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recurrence equations has previously been conjectured by Graber and
Pandharipande [9]. Moreover, we conjecture an explicit result for g=3.
We also give a conjecture for the general form of the generating series for
+(g)

m (:) for arbitrary g�2.
Let C: be the conjugacy class of the symmetric group Sn on n symbols

indexed by the partition : of n. Let �(:)=>i�1 i mimi !, where : has mi

parts equal to i where i�1. We write : |&n to indicate that :=(:1 , ..., :r)
is a partition of n and :<n to indicate that : is a partition of n with no
part equal to one. The length, r, of : is denoted by l(:).

Let the generating series for + (g)
m (:) be defined by

Fg(x, p)= :
m, n�1

:

l(:)=m
: |&n

+ (g)
m (:)

(n+m+2g&2)!
p:xn, (1)

where pi , for i�1, are indeterminates and p:= p:1
p:2

... . Let

�i (x, p)= :
n�1

n i&1an pnxn, (2)

where an=nn�(n&1)! for n�1. Then, as we have shown in previous
work [3, 2] F0 and F1 can be expressed succinctly in terms of �i #�i (s, p)
where s#s(x, p) is the unique solution of the functional equation

s=xe�0(s, p). (3)

From [3, Proposition 3.1; 2, Theorem 4.2], the expressions for F0 and F1

in terms of the �i are given by

\x
�

�x+
2

F0(x, p)=�0 , (4)

F1(x, p)=
1

24
(log(1&�1)&1&�0). (5)

In this paper we prove the following explicit expression for F2 .

Theorem 1.1.

F2(x, p)=
1

5760 \
Q3

(1&�1)3+
Q4

(1&�1)4+
Q5

(1&�1)5+ , (6)

where Q3=5�4&12�3+7�2 , Q4=29�2�3&25�2
2 , and Q5=28�3

2 .
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The form of this theorem was arrived at through a careful examination
and further analysis of the expressions for + (2)

m (:) for m�3 that appear in
the Appendix of [5]. In addition, we make the following conjecture for the
general form of Fg .

Conjecture 1.2. For g�2,

Fg(x, p)= :
5g&5

d=2g&1

1
(1&�1)d :

d+ g&1

n=d&1

:

l(%)=d&2(g&1)
%<n

K%
(g)�% ,

where K%
(g) # Q, and �%=�%1

�%2
... .

This expression for Fg(x, p) is a sum of rational functions of the �i 's with
particularly simple denominators and with numerators of prescribed form.
For g=3 we have determined the K (g)

: explicitly, based on this form, with
the aid of Maple. The resulting expression for F3(x, p) is displayed in
Appendix A.

For l(%)=1 and for all g, K (g)
% may be obtained quite readily as follows.

From [7],

n+ (g)
1 (n)

(n+2g&1)!
=an

n2g&2

22g [x2g] \sinh(x)
x +

n&1

,

where [x2g] denotes the operator giving the coefficient of x2g in a formal
power series. But, as a polynomial in n,

[x2g] \
sinh(x)

x +
n&1

=
1

6 gg !
n g+ } } } +

2(1&22g&1) B2g

(2g)!
n0,

where B2g is a Bernoulli number. Thus, from the conjectured form, we have

Fg=
(1�24 gg !) �3g&2+ } } } +((1&22g&1) B2g �22g&1(2g)!) �2g&2

(1&�)2g&1

+ } } } +
Ag�3g&3

2

(1&�)5g&5 .

where Ag is a rational number.

2. PROOF OF THE MAIN RESULT

We use the approach that has been developed in [3] and extended
in [2] that makes use of Hurwitz's encoding [6] of the problem as a
transitive ordered factorization of a permutation with prescribed cycle type
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into transpositions. It has already been shown [5] by a cut-and-join
analysis of the action of a transposition on the cycle structure of an
arbitrary permutation in Sn , that if

F=F� 0+zF� 1+z2F� 2+ } } } ,

where F� g is obtained from Fg by multiplying the summand by un+m+2g&2,
then F satisfies the partial differential equation

�F
�u

=
1
2

:
i, j�1

\ijpi+ j z
�2F

�pi �pj
+ijpi+ j

�F
�pi

�F
�p j

+(i+ j) pi p j
�F

�pi+j+ . (7)

The techniques developed in [3, 2] enable us to confirm whether a series
satisfies the partial differential equation induced from this by considering
only terms of given degree in z, thus grading by genus, but we do not yet
possess a method for constructing the solution of such an equation in
closed form. The next result gives the linear first order partial differential
equation for F2 that is induced by restricting (7) in this way to terms of
degree exactly two in z.

Lemma 2.1. The series f =F2 satisfies the partial differential equation

T0 f &T1=0, (8)

where

T0=x
�

�x
+ :

i�1

pi
�

�pi
+2& :

i, j�1

ijpi+ j
�F0

�pi

�
�pj

&
1
2

:
i, j�1

(i+ j) pi pj
�

�pi+ j
,

T1=
1
2

:
i, j�1

ijp i+ j
�F1

�p i

�F1

�pj
+

1
2

:
i, j�1

ijp i+ j
�2F1

�pi �pj
.

Proof. Clearly,

u
�
�u

[z2] F=\x
�

�x
+ :

i�1

pi
�

�p i
+2+ [z2] F,

and the result follows by applying [z2] to (7). K

Lemma 2 gives a linear partial differential equation for F2 with coef-
ficients that involve the known series F0 and F1 (see (4) and (5)). The proof
of Theorem 1.1 consists of showing that the expression for F2 given in (6)
does indeed satisfy this linear partial differential equation. To establish this,
extensive use will be made of a number of results in [2] that were used in
the determination of the generating series F1 , the case of the torus. These
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enable us to reduce T0F2&T1 to a polynomial in a new set of variables,
and this is shown to be identically zero, with the aid of Maple to carry out
the substantial amount of routine simplification. The details of this part of
the proof are suppressed, but enough information is retained to permit it
to be reproduced.

In particular we require the following results from [2], which are
included for completeness. They follow from (2), (3), (4), and (5), with the
aid of Lagrange's Implicit Function Theorem.

x
�s
�x

=
s

1&�1

,
�s

�pk
=

1
k

aksk+1

1&�1

, (9)

x
��i

�x
=

�i+1

1&�1

,
��i

�pk
=ki&1aksk+

ak

k
�i+1sk

1&�1

, (10)

and

�F0

�pk
=

ak

k3 sk&
ak

k2 :
r�1

ar pr
sk+r

k+r
, (11)

�F1

�pk
=

1
24

ak

k
sk \ 1&k

1&�1

+
�2

(1&�1)2+ . (12)

It follows immediately from (12) that

�2F1

�pi �pj
=

1
24

ai si

i
a j s j

j \i 2+ j 2+ij&i& j
(1&�1)2

+
2(i+ j) �2&�2+�3

(1&�1)3 +
2�2

2

(1&�1)4+ . (13)

These account for all of the terms in the partial differential equation (8)
that do not involve F2 .

Proof of Theorem 1.1. Let G2 denote the series written explicitly on the
right hand side of (6). To prove Theorem 1.1 it is sufficient to show that G2

is a solution of (8), since G2 , with constant term equal to zero, clearly
satisfies the initial condition for F2 . The requisite partial derivatives of G2 are
obtained indirectly from (10) by differentiating with respect to the �i 's, giving

x
�G2

�x
= :

m�1 \
�G2

��m+\x
��m

�x += :
m�1

�m+1

1&�1

�G2

��m
, (14)

�G2

�pk
= :

m�1

aksk

k \km+
�m+1

1&�1+
�G2

��m
. (15)
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By inspection, each summand of T0G2&T1 may be expressed
through (11), (12), (13), (14), and (15) entirely in terms of qi 's where
qi=sipi for i�1. The qi 's are algebraically independent, and the
dependency on s is perfectly subsumed. Now, in terms of these qi 's, let

Mk, l= :
i, j�1

qi+ ja i aj i kj l, (16)

so Mk, l=Ml, k , and Mk, l is homogeneous of degree one in the qi 's. Let

Nk=
1
2

:
i, j�1

\qi qj a i+ j (i+ j)k&2qi+ j aj j k a i

i
:

r�1

qr
ar

i+r+ , (17)

so Nk is homogeneous of degree two in the qi 's. Then, from (12) and (13)

T1=
1

5760
:
4

i=2

S i

(1&�1) i , (18)

where

S2=240M2, 0+125M1, 1&250M1, 0+5M0, 0 ,

S3=�2(490M1, 0&130M0, 0)+120�3M0, 0 ,

S4=245M0, 0 ,

and, from (11), (14), (15), (16), and (17),

T0G2=2G2+ :
m�1

\�m+1

1&�1

(1+�0&M&2, 0&N0)

+�m&M&2, m&Nm+ �G2

��m
. (19)

But

�G2

��m
=

1
5760

:
l

Rl, m

(1&�1) l ,

where Rl, 1=(l&1) Ql&1 for l=4, 5, 6, R3, 2=7, R4, 2=29�3&50�2 ,
R5, 2=84�2

2 , R3, 3=&12, R4, 3=29�2 , R3, 4=5, and Rl, m is zero otherwise.
Substituting these into (19), and combining with (18), we obtain the
following explicit expression for the left hand side of the partial differential
equation (8)
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5760(T0G2&T1)

= :
4

i=2

S i

(1&�1) i+ :
5

i=3

2Qi

(1&�1) i

+ :
7

i=4

1
(1&�1) i :

m

�m+1(1+�0&M&2, 0&N0) Ri&1, m

+ :
6

i=3

1
(1&�1) i :

m

(�m&M&2, m&Nm) Ri, m . (20)

Then 5760(T0 G2&T1)(1&�1)7 is a polynomial of degree 6 in the q i 's, with
constant term equal to zero. Let Ci be the contribution from terms of
(homogeneous) total degree i in the qi 's for i=1, ..., 6. The explicit
expressions for these are given in Appendix B.

To complete the proof of Theorem 1.1 we show that each of these
contributions is identically zero. It is convenient to introduce the
symmetrization operator |1, ..., i on the ring Hi[q1 , q2 , ...] of homogeneous
polynomials of total degree i in q1 , q2 , ..., defined by

|1, ..., i (q:1
} } } q:i

)= :
? # Si

x:1
?(1)

} } } x:i
?(i )

and extended linearly to the whole of the ring. Since |1, ..., i f =0 implies
that f =0 for f # Hi[q1 , q2 , ...], it is sufficient to show that |1, ..., i Ci=0 for
i=1, ..., 6.

Now let w#w(x) be the unique solution of the functional equation

w=xew, (21)

and let wi #w(xi), where xi is an indeterminate for i�1. Let w ( j)
i =

xi (���xi)
j wi . Since x���x=(w�(1&w)) ���w, it is a straightforward matter

to express w (k)
i as a rational function of w i . For example,

w(1)
i =

wi

1&w i
, w (2)

i =
wi

(1&wi)
3 , w (3)

i =
wi+2w2

i

(1&w i)
5 .

Moreover, w1 , w2 , ... are algebraically independent. Now from [2]

:
i, j, r�1

a i aj ar j k

i(i+r)
x i+ j

1 xr
2=w (k+2)

1 \ x2

x1&x2

&
w (1)

2

w1&w2

&w (1)
2 + ,
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so

|1, 2Nk=
w (k+2)

1 w (1)
2 &w (k+2)

2 w (1)
1

w1&w2

+w (k+2)
1 w (1)

2 +w (k+2)
2 w(1)

1 ,

|1Mi, j =w (i+2)
1 w ( j+2)

1 ,

|1�k=w (k+1)
1 .

Each of these is a polynomial in W1 and W2 where Wi=1�(1&wi), so
|1, ..., i Ci is a polynomial in W1 , ..., Wi alone. Then |1, ..., i Ci may be
obtained from the constituents |1�i , |1Ml, m and |1, 2Nk by distributing the
indeterminates x1 , ..., xi as disjoint subsets of arguments for these constituents
in all possible ways. We have used Maple to carry out this routine but laborious
task, and have thus established that |1, ..., i Ci is identically zero as a poly-
nomial in W1 , ..., Wi for i=1, ..., 6. This completes the proof. K

3. AN EXPLICIT EXPRESSION FOR THE NUMBER OF RAMIFIED
COVERINGS OF THE SPHERE BY THE DOUBLE TORUS

In Theorem 1.1 we have determined the generating series F2 for the
ramification numbers + (2)

m (:). In this section we expand this series and thus
give an explicit expression for + (2)

m (:). The following result is needed, in
which a:=a:1

a:2
} } } and m& is the monomial symmetric function with

exponents specified by the parts of the partition &.

Lemma 3.1. For : |&n, n�1,

[xnp:]
1

1&�1

`
i�1

� ji
i

ji !
=

a:

�(:)
nl(:)&l(&)m&(:),

where &=(1 j1 2 j2...).

Proof. Let

4=[xn]
1

1&�1

`
i�1

� ji
i

j i !
.

Then by Lagrange's Implicit Function Theorem

4=[tn] \`
i�1

�i (t, p) ji

ji ! + en�0(t, p)

=[tn] : `
i, k�1

(ki&1ak pk tk) ji, k

ji, k !
`

k�1

(nk&1ak pk tk)dk

dk !
,
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where the summation is over ji, k�0, for i, k�1, and dk�0 for k�1,
restricted by �k�1 j i, k= ji , for i�1. Thus, if :=(1b1 2b2 ...), where : |&n,
then

[ p:] 4=
a:

�(:)
: nd1+d2+ } } } `

k�1

bk !
dk !

`
i�1

kiji, k

ji, k!
,

where the summation is now further restricted by �i�1 ji, k=bk&dk , for
k�1. Then

[ p:] 4=
a:

�(:)
nb1+b2+ } } } & j1& j2& } } } [ y j1

1 y j2
2 } } } ] `

k�1
\1+ :

i�1

kiy i+
bk

and the result follows. K

Applying Lemma 3.1 to the generating series F2 given in terms of the
�i 's in Theorem 1.1, we immediately obtain the following result which
gives an explicit expression for + (2)

m (:). This expression is a symmetric func-
tion in the parts of :, a linear combination of monomial symmetric func-
tions. The explicit expression for + (1)

m (:) obtained in [2] is a symmetric
function expressed in terms of the elementary symmetric functions ek(:),
where k�1. These forms are closely related since ek=m (1k) .

Corollary 3.2.

+ (2)
m (:)=(n+m+2)!

a:

�(:)
nm

5760
:

k�0
\(k+1)!

nk+1 (5m(4 1k)&12m(3 1k)+7m(2 1k))

+
(k+2)!

nk+2 \29
2

m(3 2 1k)&25m(22 1k)++
(k+3)!

nk+3 28m(23 1k)+ .

Proof. This is direct from Theorem 1.1 and Lemma 3.1. K

4. A PROOF OF THE GRABER-PANDHARIPANDE
RECURRENCE EQUATION

We conclude with an examination of the case :=(1n), corresponding to
no ramification over �. It will be convenient to denote + (g)

n (1n) by + (g)
n for

brevity. For g�0, let fg be the specialization of Fg with p1=1, and pi=0
for i>1. Then

fg= :
n�1

xn + (g)
n

(2n+2g&2)!
,
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and under these specializations of the pi 's we have s=w where w is the
unique solution of the functional equation (21) and �i=w for all i. Thus
from (4) and (5) we have

D2f0=w,

f1= 1
24 (log(1&w)&1&w),

and from Theorem 1.1

f2=
1

5760 \
4w2

(1&w)4+
28w3

(1&w)5+ .

An explicit expression can in fact be obtained for + (2)
n . The expression is

Corollary 4.1.

+ (2)
n =

(2n+2)!
1440n

(12A4+21A3+2A2),

where

Ak= :
n&k

i=0
\i+5

5 + nn&i&k

(n&i&k)!
.

Proof. The results follows by applying Lagrange's Implicit Function
Theorem to the above expression for f2 . K

Recurrence equations can be obtained for this number, and our interest
in these, or rather, the corresponding differential equations for f2 , is that
they may cast light on a more direct way of obtaining the + (2)

n . It is
convenient to introduce the operator

D=x
d

dx
,

and to change variable to W=1�(1&w). Then D=W 2(W&1) d�dW. Now
Df0=1�2&W &2�2, D2f0=1&1�W, and Drf0 is a polynomial in W for
r�2. Moreover, Drf1 is a polynomial in W for r�1 and Drf2 is a polyno-
mial in W for r�0. Then these derivatives are algebraically dependent, so
f2 satisfies a differential equation. Clearly, this equation is not unique.

To decide upon the form that such a differential equation may take we
suppose there exists a (combinatorial or geometric) construction acting on
selected sheets that decomposes a covering into two connected coverings
whose genera sum to the genus of the original covering. The combinatorial
effect of D is to select a single sheet in all possible ways. We therefore seek
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a formal linear differential equation for f2 that involves terms of the form
(D pf i)(Dqfj) where i+ j=2, with the additional condition that it suffices to
select at most four sheets, so p+q�4 and p, q�1, together with terms of
the form Drf1 where 2�r�3. Such a differential equation has the form

(b1D2+b2D+b3) f2=(b4D3+b5 D2) f1+b6(D2f0)(D2f2)

+b7(D2f1)2+b8(Df1)(D3f1)

+b9(D2f2)(Df0)+b10(D2f0)(Df2).

It follows by substituting the computed derivatives into the differential
equation, equating coefficients of powers of W to obtain a system of
homogeneous linear equations and solving this system, that the solution
space is 4 dimensional and that

b3=&4b1&2b2+240b4+120b5 ,

b6=& 11
2 b1& 3

2b2&72b4&70b5 ,

b7= 47
4 b1+ 23

4 b2&1236b4&875b5 ,

b8=& 293
4 b1& 85

4 b2&264b4&420b5 ,

b9=13b1+3b2+144b4+140b5 ,

b10= 35
2 b1+ 7

2 b2+336b4+280b5 ,

where b1 , b2 , b4 , b5 are arbitrary. The system therefore has nontrivial
solutions.

Corollary 4.2.

+ (2)
n =n2 \ 97

136
n&

20
17+ + (1)

n + :
n&1

j=1
\ 2n

2j&2+ + (0)
j + (2)

n& j j(n& j ) \8n&
115
17

j+
+ :

n&1

j=1
\2n

2j + + (1)
j + (1)

n& j j(n& j ) \11697
34

j(n& j )&
3899

68
n2+ .

Proof. By setting b1=4, b2=6, b4=97�136, b5=&20�17 we have

(4D2+6D+2) f2=( 97
136 D3& 20

17 D2) f1+8(D2f2)(Df0)

+ 21
17 (D2f0)(Df2)+ 3899

17 (D2f1)2

& 3899
34 (Df1)(D3f1),

and the result follows immediately. K
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This establishes the recurrence equation for +(2)
n (1n), corresponding to the

case of simple ramification, conjectured by Graber and Pandharipande [9].

5. A ``SIMPLER'' RELATIONSHIP FOR THE DOUBLE TORUS

In view of the combinatorial interpretation of the differential operator D,
a differential equation such as the one given in the proof of Corollary 4.2
(or, equivalently, a recurrence equation) may have a more direct
combinatorial explanation, which may in turn suggest a geometrical
explanation. For this purpose it is therefore prudent to look for a differen-
tial equation with fewer terms, and whose coefficients are, at the very least,
potentially more susceptible to combinatorial explanation. Since there are
four independent parameters b1 , b2 , b4 , b5 , we may impose three further
conditions to lessen the number of terms in the differential equation, and
then divide out the remaining parameter. The obvious conditions to apply
are those that remove terms from the differential equation. The next two
corollaries give instances where these criteria are met.

The first instance is a second order linear differential equation for f2 with
simple coefficients that has contributions from the sphere, torus and the
double torus on the right hand side.

Corollary 5.1.

(2D2&6D+2) f2=( 1
24 D3& 1

10 D2) f1+2(D2f0)(D2f2)

+25(D2f1)2+12(Df1)(D3f1).

Proof. Set b9=b10=0, and b1=2. K

The second instance is obtained by imposing conditions to eliminate the
presence of contributions from the double torus (and therefore the sphere)
on the right hand side of the differential equation. This gives a first order
linear differential equation for f2 with simple coefficients that has contributions
only from the torus on the right hand side.

Corollary 5.2.

(2D+3) f2= 1
4 ( 5

12 D3& 3
5 D2) f1+14(D2f1)2&7(Df1)(D3f1).

Proof. Set b6=b9=b10=0. K
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It remains to determine whether a differential equation can be found
with fewer terms and with equally simple coefficients. To assist in the
search, let 2f, for a polynomial f in W, be defined to be (k, l ), where k
and l are, respectively, the lowest and highest degrees of the terms of f
in W. We will refer to this as the degree span of f. Then it is readily seen
that 2Drf0=(r&2, 2r&5) for r�4, 2D3f0=(0, 1), 2D2f0=(&1, 0) and
2Df0=(&2, 0). Also 2Df1=(0, 2), 2Drf1=(r, 2r) for r�2, and 2Drf2=
(r+2, 2r+5) for r�0.

Consider (b1D+b2) f2 where b1 and b2 are generic real numbers. Then,
from the above spans, 2(b1 D+b2) f2=(2, 7). We now construct another
expression from f1 and f0 that has the same span. From the above expres-
sions for spans, 2(D2f1)(Df1)=(2, 6), 2D2f1=(2, 4), 2D3f1=(3, 6), and
2D6f0=(4, 7). Then, for generic b3 , ..., b6 , we have 2(b3 D6f0+b4(D2f1)
(Df1)+b5 D2f1+b6D3f1)=(2, 7). Therefore we consider the differential
equation

(b1 D+b2) f2=b3 D6f0+b4(D2f1)(Df1)+b5 D2f1+b6 D3f1 .

Corollary 5.3.

f2=
1
6!

(7D3&8D2) f1&
14
15

(D2f1)(Df1).

Moreover,

+ (2)
n =2 \2n+2

2 +\ 1
6!

(7n3&8n2) + (1)
n &

7n
15

:
n&1

j=1

j(n& j ) \2n
2j+ + (1)

j + (1)
n& j+ .

Proof. By the argument of the previous section we obtain a solution
space of dimension 1, for the system of linear equations, and this gives a
unique differential equation up to a normalizing factor. The recurrence
equation is obtained by comparing coefficients of xn on each side of the
equation. K

The above corollary gives an equation for f2 that certainly has fewer
terms than the differential equations of the earlier corollaries. Morover,
7=23&1, 8=23 and 15=3!!, (where n !!=(2n)!�2nn !, the number of
perfect matchings on a 2n-set) each of which is a number with a known
combinatorial interpretation.

Implicit in the above discussion is the assumption that there is no linear
recurrence equation for + (2)

n that does not involve + (1)
n and + (0)

n . This can be
verified easily through an algebraic argument that appeals to the fact that
ew is a transcendental series in w.
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APPENDIX

A. Ramified Coverings of the Sphere by the Triple Torus

F3(x, p)=
1

239!
35�7&147�6+205�5&93�4

(1&�1)5

+
1

239!
(&930�2 �3+607�4

2+1501�3
2

+2329�2 �4+539�2 �6+1006�3�5

&3078�3 �4&1938�2 �5)�(1&�1)6

+
1

239!
(13452�2 �3 �4+2915�3

3&16821�2 �3
2&12984�2

2�4

+12885�2
2�3+4284�2

2�5&1395�2
3)�(1&�1)7

+
1

239!
22260�2

3�4+43050�2
2�3

2&55300�2
3�3+10710�2

4

(1&�1)8

+
1

239!
81060�2

4�3&31220�2
5

(1&�1)9 +
245

20736
�2

6

(1&�1)10

B. The Expression for 5760(T0G2&T1)(1&�1)7

Listed below for i=1, ..., 6 is Ci , the contribution to 5760(T0G2&T1)
(1&�1)7 from terms of total degree i in the qj 's. The M l, m , Nk and �i are
series in the qj 's.

C1=&240M2, 0&125M1, 1+250M1, 0&5M0, 0&7M&2, 2+3�4

&29�3+21�2+12M&2, 3&5M&2, 4+5�5

C2=20�1 M&2, 4+29�3
2&9�1�4+87�1 �3&63�1�2

&48�1M&2, 3&490�2M1, 0+130�2M0, 0+28�1 M&2, 2

+7�3�0&7�3M&2, 0&29�2M&2, 3+5�5�0&5�5M&2, 0

&12�4�0+12�4 M&2, 0&15�1�5&29M&2, 2�3

+50M&2, 2�2&15M&2, 1�4+36M&2, 1�3&21M&2, 1�2

+625�1M1, 1&1250�1 M1, 0+25�1M0, 0&5N4+12N3

&7N2&120�3M0, 0+30�2�3&79�2
2+44�4�2+1200�1M2, 0

272 GOULDEN AND JACKSON



File: DISTL2 299315 . By:GC . Date:03:11:99 . Time:15:58 LOP8M. V8.B. Page 01:01
Codes: 3606 Signs: 1255 . Length: 45 pic 0 pts, 190 mm

C3=15�1
2�5+36�1�4 �0&36�1�4M&2, 0&15�1 �5�0+15�1�5M&2, 0

+45�1M&2, 1�4&108�1 M&2, 1�3+63�1M&2, 1�2+87�1M&2, 2�3

+20�1N4&42�1
2 M&2, 2+9�1

2�4&87�1
2 �3+63�1

2�2

+72�1
2M&2, 3&30�1

2M&2, 4&29N2�3+50N2�2&15N1�4

+36N1�3&21N1�2+1960�1�2 M1, 0&48�1N3+28�1N2

&520�1 �2M0, 0+480�1�3 M0, 0&88�1�4�2&29�3
2 M&2, 0

&58�1�3
2&116M&2, 1�2�3+86�2 �3 M&2, 0&60�1 �2�3

+44�2�4 �0&86�2 �3�0&44�2�4 M&2, 0+21�0�2
2

&21M&2, 0�2
2+158�1�2

2+100M&2, 1�2
2&84�2

2M&2, 2

+29�3
2�0&1250�1

2M1, 1+2500�1
2 M1, 0&50�1

2 M0, 0

&2400�1
2M2, 0&21�1�3 �0&150�1M&2, 2 �2+21�1 �3M&2, 0

+87�1�2 M&2, 3+40�2
3&29N3 �2&245�2

2M0, 0&5�5N0

&7�3N0+12�4 N0+200�3�2
2

C4=200�2
2�3�0&200�2

2 �3 M&2, 0&100�0 �2
3&3�1

3�4+29�1
3�3

&21�1
3 �2&48�1

3M&2, 3+20�1
3M&2, 4&140�2

3M&2, 1

+100M&2, 0�2
3+44�1

2�4 �2&2940�1
2�2 M1, 0+780�1

2 �2M0, 0

&720�1
2�3M0, 0+28�1

3M&2, 2+172�1�2�3�0+88�1�2�4 M&2, 0

&172�1 �2�3 M&2, 0+232�1M&2, 1�2 �3&200�1M&2, 1�2
2

+29�1
2 �3

2+72�1
2 N3&42�1

2N2&30�1
2 N4&88�1 �2�4�0

&58�1 �3
2�0+58�1�3

2 M&2, 0+30�1
2 �2�3&42�1�0�2

2

+42�1 M&2, 0 �2
2+86�3N0�2&79�1

2�2
2+100N1 �2

2&29�3
2 N0

&21�2
2 N0&40�1 �2

3&116N1�2 �3&108�1 N1 �3+63�1N1�2

+735�1 �2
2M0, 0&36�1�4N0+21�1�3N0+87�1N3�2

+15�1 �5 N0&45�1
2M&2, 1�4+87�1 N2�3&150�1N2�2

+45�1 N1 �4&200�1 �3 �2
2&21�1

2�3 M&2, 0&87�1
2�2 M&2, 3

+15�1
2 �5�0&15�1

2 �5 M&2, 0&36�1
2 �4�0+36�1

2 �4M&2, 0

+108�1
2M&2, 1�3&87�1

2 M&2, 2�3+150�1
2M&2, 2�2

+21�1
2 �3�0&63�1

2 M&2, 1�2&5�1
3 �5+168�1�2

2 M&2, 2
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+2400�1
3M2, 0+1250�1

3M1, 1&2500�1
3M1, 0+50�1

3 M0, 0

&84N2�2
2&44�4 N0�2+140�2

4

C5=100�2
3 N0+200�1 �2

2�3 M&2, 0+1960�1
3�2M1, 0+140�1�2

3M&2, 1

&200�1�2
2�3�0+140�2

4�0&140�2
4 M&2, 0&48�1

3N3

+28�1
3N2+20�1

3N4&7�1
4M&2, 2+12�1

4M&2, 3&5�1
4M&2, 4

&12�1
3�4 M&2, 0+100�1�0�2

3&100�1M&2, 0�2
3

&520�1
3 �2M0, 0+480�1

3�3M0, 0&36�1
3M&2, 1�3

+21�1
3M&2, 1�2+29�1

3 M&2, 2�3&50�1
3M&2, 2�2

&7�1
3 �3�0+7�1

3 �3M&2, 0+29�1
3�2M&2, 3&5�1

3 �5�0

+5�1
3 �5M&2, 0+12�1

3 �4�0&735�1
2�2

2 M0, 0

&21�1
2�3 N0&87�1

2 N3�2&15�1
2�5N0+15�1

3 M&2, 1�4

+36�1
2�4 N0&21�1

2 M&2, 0�2
2+100�1

2M&2, 1 �2
2

&84�1
2�2

2M&2, 2+29�1
2�3

2 �0&29�1
2 �3

2 M&2, 0

+86�1
2�2 �3M&2, 0&116�1

2M&2, 1�2 �3&87�1
2 N2�3

+150�1
2 N2�2&45�1

2N1�4+108�1
2N1�3&63�1

2N1�2

&86�1
2�2 �3�0&44�1

2�2 �4M&2, 0&172�1�3 N0�2

+88�1�4 N0�2+44�1
2�2�4�0+232�1N1�2�3&200�1 N1�2

2

+58�1�3
2 N0+42�1 �2

2N0+168�1 N2 �2
2+21�1

2 �0�2
2

&1200�1
4 M2, 0&625�1

4M1, 1+1250�1
4M1, 0&25�1

4 M0, 0

&140N1�2
3&200�3 N0�2

2

C6=5�1
3�5 N0&12�1

3�4 N0+7�1
3�3N0+29�1

3N3 �2

&116�1
2 N1�2�3+86�1

2�3N0�2&44�1
2 �4N0 �2+240�1

5M2, 0

+125�1
5 M1, 1&250�1

5 M1, 0+5�1
5M0, 0+100�1

2N1�2
2

&29�1
2 �3

2 N0&21�1
2�2

2N0&84�1
2 N2�2

2

+29�1
3 N2 �3&50�1

3N2�2+15�1
3 N1�4&36�1

3 N1�3

+21�1
3 N1 �2+245�1

3 �2
2 M0, 0+12�1

4N3&7�1
4N2

&5�1
4 N4+200�1 �3N0�2

2&100�1�2
3N0+140�1 N1 �2

3

&490�1
4 �2M1, 0+130�1

4�2M0, 0&120�1
4�3M0, 0&140�2

4N0
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