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ABSTRACT

Certain enumeration problems may be expressed in terms of sequences possessing a specified number of
subsequences which are elements of a prescribed set of distinguished sequences. We obtain an inversion
theorem which expresses the required generating function in terms of one connected with the set of
overlapping distinguished sequences called clusters. Techniques are given for determining the cluster
generating function both in the general case and in the case in which combinatorial methods are more
effective. By specialising the set of distinguished sequences we may solve a number of classical permutation
and sequence problems. A number of other examples is also given.

1. Introduction

The enumeration of sequences with specified frequencies of occurrences of
distinguished subsequences occurs typically when sequences are used for encoding
combinatorial configurations. The general problem is solved in an explicit form which
takes account of the distinguished sequences and the precise way in which they overlap.
In certain instances the distribution of overlaps between distinguished sequences is
regular enough to permit the generating function to be expressed as an explicit rational
function.

A particular type of sequence, called a cluster, which is a linearly ordered collection
of overlapping distinguished sequences, emerges as a useful combinatorial device. The
value of the approach lies in the fact that the overlapping structure of distinguished
sequences is accounted for in a natural way. Accordingly, once appropriate clusters
have been defined in terms of some set of distinguished sequences, the clusters may be
enumerated separately, without reference to the manner in which they are distributed
in actual sequences. The main counting lemma, given in Section 2, expresses the
required generating function in terms of the generating function for clusters. A general
expression for the cluster generating function is given in Section 3. In certain cases it is
possible to obtain the cluster generating function by combinatorial means. This is
discussed in Section 4, where a number of applications is presented.

We solve a number of sequence problems which have been treated already by a
variety of methods. The solutions presented here, however, are motivated directly from
the common combinatorial structure of the problems. The inversion theorem, which
connects the desired generating function with the cluster generating function, rests only
on the Principle of Inclusion and Exclusion. Moreover, the cluster generating function
often may be written down immediately by purely combinatorial reasoning using
elementary arguments. This fact is reflected in the exposition by our deliberate
suppression of the routine algebraic details of substituting the cluster generating
function into the inversion theorem, since these details may be supplied by the reader
and their inclusion merely obfuscates the essential simplicity of the arguments.

2. Preliminaries

Throughout this paper x\l...xk
n
n is denoted by xk where x = (xl5.. . , xn) and

k = (k i,..., kn), and [xk](...) denotes the coefficient of xk in the formal power series (...).
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Let Jf = {1,2,...,«} and let JT* be the monoid of sequences over JV with
concatenation (denoted by juxtaposition). The type, T(<T), of a is (fc,,..., kn) where a has
exactly /c, occurrences of i, i = 1,..., n. Let JV+ = J /"*\{e} where e is the empty
sequence. If a, (i,y,de JV* are such that a = /ty<S then we shall call y a subsequence of
a.

Suppose that s/ = {A{,..., ^/;}is a set of distinguished sequences in Jr+. If stf has
the property that there are no A, B e s& such that X is a subsequence of B, then it
is called a reduced set of distinguished sequences. The j^-type of a sequence c is
K(O) = (mj,..., mp) where m; is the number of occurrences of Ax as a subsequence of a.
We next define a ^-cluster in terms of a sequence and an ordered set of overlapping
elements of s4 which cover the sequence.

Definition 2.1.
(1) A q-cluster {q ^ 1) on the alphabet Jf, and associated with the reduced set s#, is

a triple (o{...or, Ah...Aiq, (llt..., y)such that ^ . . . a ; e Ĵ "1" and (/l5..., /„) satisfies the
following conditions where r} is the length of Aipj = l,...,q:

0 ) OljOlj+l-Olj + rj-l = Aij, J = l , - , 9

(ii) 0 < lJ+1-lj<rj, j = l,...,q-l
(iii) r = lq + rq-l and /j = 1.

(2) 9{sf) is the set of all ^-clusters on the alphabet JV, and associated with J / , for all

We next define the cluster generating function C(x, y) as an ordinary generating
function of the set

Definition 2.2. The cluster generating function is

C(x,y)= X xr0..

where a(^i2) = (ml5..., mp) and m; is the number of occurrences of A; in JX2, i = l , . . . ,p .

We remark that there may be many clusters {^1,^2^3) with the same /ix but
different (fi2, ^3) and for each of these ya<"2)|yK<"»). There is, however, a unique (^2, ^3)
such that oi(fi2) = K(^I)-

The set <$(s/) is often combinatorially convenient since it may be constructed by
arranging the elements of s/, with duplication permitted, in all possible ways so that
adjacent elements of $0 overlap (viz. conditions (i)-(m) of Definition 2.1.1 are satisfied).

Occasionally we shall have cause to consider C(x, yl) and C(xl, yl) where 1 is a unit
vector of the appropriate length. To avoid proliferation of notation we permit ourselves
the minor abuse of notation of denoting C(x, yl) by C(x, y) and C(xl, yi) by C(x, y),
and since this is only in the sections on specific examples, where of course the cluster
generating functions are calculated ab initio, no confusion arises.

The following lemma gives the connexion between the desired generating function
and the cluster generating function.

LEMMA 2.3. The number of sequences in JV* of type k and $4-type m is
[xkym]O(x,y) where
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Proof. Consider the set ${srf) consisting of all triples of the form
(a, . . .or , Air..Aiq, (/,,..., /,)) for all q ^ 1, or (ov...ori 0, 0), where

(i) <7,,...<ro+rj_i = AhJ = l,...,q, and

(ii) 1 ^ / , < . . . < /„ ^r-rq+l
in which r} = |/1.-.| for; = 1,..., q. Let

where a(^2) = (ml5..., mp) and m, is the number of occurrences of >!,• in ju2, i = I,..., p.
Thus, by the Principle of Inclusion and Exclusion we have <t>(x,y) = ¥(x ,y — 1).
However, ¥(x, y) may be derived from C(x, y) by the following construction on 3)(s0).

Select t elements of 3>(stf) and order them linearly. There are t +1 positions into
which sequences from Jf* may be inserted independently. The positions are the t — 1
gaps between adjacent pairs, the beginning of the sequence of clusters and the end of the
sequence of clusters. The generating function for JV* with respect to sequence type
alone is

so'the generating function for the inserted sequences is S' + 1. The generating function
for the ordered set of t clusters is C so

¥(x,y)= X St + 1C = S(l-CS
r = 0

1

and the result follows.
Our strategy is accordingly to determine the cluster generating function C(x, y) first

and to use Lemma 2.3 to obtain the desired generating function O(x, y).

3. The cluster generating function for arbitrary sets

We now develop a general expression for the cluster generating function. The
following definition is required.

Definition 3.1. The connector matrix W is such that

W = [wlV]pxp where w,v = £ xT(0"
a

where the sum is taken over all a e JV+ such that Ax = a/? for /? e Jr+ providing that
Aj = fly for some y e JV+.

In other words /? is an initial segment of Aj which is identical to a terminal segment
of Ah and a is the portion of At which remains when this terminal segment has been
detached. Clearly, there may be a number of ways in which At and Aj may overlap.

PROPOSITION 3.2. The cluster generating function is

C ( x , y ) = t r a c e { I - ^
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in which Y = diag (y1,..., yp), L = diag (xT(c/l),..., \^p))and J is the pxp matrix all of
whose elements are'I.

Proof. Let f = £ \T('")ya(/'2) where the summation is over all (/Xj, \i2, JI3) e
such that nx has an initial segment Ah and where a(^2) = K.-.- .m,,) in which m,- is the
number of occurrences of At in fi2 for i = 1,..., p. Thus C(x, y) = fl + . . .+ / p . Then
each element of the set enumerated by /j may be constructed by prefixing n^ in an
arbitrary cluster (fil, ^2, /x3) with /4,- in such a fashion that a terminal segment of At

overlaps with an initial segment of nx. Accordingly f = (/l5 ...,/p) satisfies the following
system:

which may be rewritten

fT = Lyr +YWfr where y = (ylt.... yp).

Thus

fT = (I-YWJ-^y7" since I -YW is non-singular.

So fx +... + fp = trace (I — YWJ^LYJ and the proposition follows.

COROLLARY 3.3. The number of sequences in J/"* of type k with no distinguished
subsequences is

Proof This follows directly from Lemma 2.3 with y = 0, and Proposition 3.2.

COROLLARY 3.4. The number of sequences in J/~* of length I with no distinguished
subsequences is

where

in which the sum is over all /? e JV+ such that A( = a/?, a e Jf* providing that Aj = /?y
for some y e Jf*.

Proof Clearly I + W|x = Jtl = A(x)x(x"!) where A(x) = diag (xa',..., xa") where
a, = |/4,|, i = l,...,p, and the corollary follows from Corollary 3.3 with x = x l .

The matrix x occurs in the work of Guibas and Odlyzko [3, 4] where it has been
termed the correlation matrix (for distinguished sequences). Kim, Putcha and Roush
[8] give an expression for the number of sequences with no distinguished subsequences.
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The method is entirely different from the above.
The next example gives an instance of the use of the general expression for the

cluster generating function.

EXAMPLE 3.5. The number of sequences of type 1 with m,- blocks of adjacent numbers i
of length k,for i = 1,2,..., n is

[x'y-]jl-if {xXl-^xJ + ^

k-l

Proof Let si = {111...1, 222' ..2, nnn...n}, each of length k. Then W = £ X'

and L = Xfc where X = diag (xl9.. . , xn).

From Lemma 2.3 and Proposition 3.2 we have

and the corollary follows.

We may use the methods of this section to obtain generating functions which are
not necessarily obtained from clusters. The following proposition demonstrates the
method for the case of alternating sequences. Andre [1] considered alternating
permutations.

PROPOSITION 3.6. The number of sequences al...al in Jf* of odd length I such that
aY < a2 ^ o"3 < .. ^ ah and type k is

f ( - IYVIJ* i (*)}{ f ( - Vvi/}

where

n(l+xx<)= £ y/xjx'.

fVoo/ Let a be such a sequence beginning with k. Then i/<7 is also a sequence of
this type providing i < j andj ^ /c. Let 3;, be the generating function for all sequences of
this type beginning with t. The required generating function is accordingly
£ = yi+-.. + yn. By considering the concatenation of ij and a we have
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Let y = {ylt..., yn)
T, X = diag (xu..., xn) and let A = [a( j] and B = [6 ,J be n x n

matrices such that

'1 if i < ;

v0 otherwise '•' ) 0 otherwise.

Then

y = x + XAXBy

where x = ( x 1 , . . . , x n ) r so £ = t r a c e ( I - X A X B ) ~ 1 X J where J is the nxn matrix

all of whose elements are 1. Thus

£ = trace { I -

But if C is a square matrix of rank one, then

(I + C)-1 = I - ( l + t r a c e C ) - 1 C .

Thus applying this to the evaluation of £ we have

£ = trace {i + Cl

= {1 - trace XA(l + (XA)2)"* Xj} " l trace (I + (XA)2)"l XJ .

But trace (XA)fcXJ = yfc + 1(x) so the result follows.
The generating function obtained in Proposition 3.6 has been given by Carlitz [2].

Throughout §4, yk(x) is used with the interpretation given in Proposition 3.6. Other
definitions of this quantity may be furnished for other combinatorial situations.
However, we do not enlarge upon this point here, but further details are given in
Jackson and Goulden [7]. Where the context allows we replace yk(x) by yk, the
dependence of yk on x being understood.

4. Combinatorial methods for determining the cluster generating function

For certain sets stf of distinguished sequences the cluster generating function may
be determined by combinatorial means. The first result is for a special case of the open
problem of enumerating the number of sequences of length / in Jf* which contain no
subsequences of the form {wp\w e JV + } , for fixed p > 1.

COROLLARY 4.1. Let @p = {wp\weyVk} where k,p^ 1. Then the number of
sequences in Jf* of length I with q subsequences in 0&p is [ x ' y j F G " 1 where

F = (l-x)(l-nx)-(j;-l){x(l-x't(p-1))-nx2(l-xfc(p-1)-1)-n'txfc''(l-x)}

and

G = (\-nx){{\-x){l-nx)-{y-\)\_x{l-xk(p-1))-nx2(l-xk(p-l)-1)']}.

Proof. The set @p is a reduced set of sequences. We form the cluster generating
function C(x, y) as follows. Let [xpfc]$(x) be the number of members of 08p of length pk.
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Thus (j){x) = nkxpk. Let /(x) be such that [x'"](/>(x)/(x) is the number of sequences of
length m which are 2-clusters. Clearly

f{x) =

by considering the overlap of Wl and W2 where Wt, W2 e&p. Thus

f{x) = ( x - x f c ( / ' - 1 ) ) 1 ' 1 ' k

Now

C{x,y) = y(j>ix) £
t = 0

and from Lemma 2.3 the desired generating function is

{l-nx-C(x,y-l)}-1.

The result follows immediately on making the above substitutions.

The next result was given in Jackson [5] where it was obtained in an entirely
different way. The corollary may be specialised to give solutions to the Smirnov
problem, the Simon Newcomb problem and various other problems involving
partitions and compositions of integers. The details of these specialisations are given in
Jackson [5].

COROLLARY 4.2. The number of sequences in Jf + of type m with i rises, j levels and k
falls is

i = l r=l

Proof. Let s? = stf t u stf2 where

jtf, = {ij e JT2\i < j}, jrf2 = {a G JV2} and ^ 3 = {ij e J^2\i > j}.

Then jrf is a reduced set of sequences, s/t is the set of rises, s/2 i s t n e s e t of levels and
is the set of falls.

Let r, I and / be indeterminates marking the occurrence of elements of ^ l 5 s
and stf3 respectively. The cluster generating function for stf is

Ci\,r,l) =

since a cluster is a non-decreasing sequence of length greater than one. Thus, from
Lemma 2.3, the number of sequences in JV* of type m with i rises and j levels is
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where

But m, +... + mn = i +j + k +1. Thus the number of sequences in JV+ of type m with i
rises, j levels and k falls, is

where

and the result follows.

In the following example we use clusters to enumerate sequences with a prescribed
number of increasing subsequences of length p.

COROLLARY 4.3. The number of sequences in JV+ of type k with exactly i strictly
increasing subsequences of length p is [xkw']{l— yx — F ^ ) } " 1 where

1}-1F{u,x) = {u-\)xp{\-{u-\){x-xp){\-xy1}
00 00

and F(y) = J] Ffu)yj where F(u,x) = £ F}{u)xj.
7=0 j=0

Proof. Let (f* 1,^2*^3) t»e a ^-cluster on the set J / of all strictly increasing
sequences of length p. Let ^ have length m, and ^3 = (/l5..., lk), the set of starting
positions in /^ for elements of s#. Now \i2 is uniquely specified by (^1,^3). Let
d{ = /l + 1 —/,. for / = 1, ...,k — 1 where lx = 1 and lk = m—p + 1. Then because of the
conditions imposed on/i3 in Definition 2.1 we have 1 ^ d( ^ p — lfor 1 = l,...,k — l,
andc/j +... + dk_1 = m —p. But the set of all ^i3 is in [1 :1] correspondence with the set
of all (dl,...,dk_l) satisfying these conditions. The number of such (d1,...,dk.l) is

[xm-p](x-xp) ( f c~1 ) ( l -xr ( f c~1 ) = [xm]xp(x-xp) f c~1( l -xr ( ' '~1 ) -

Thus C(x, u) = Y, Z Z xT("l)Mk, from Definition 2.2, where the summation is
m2p kZl (//i,M2.H3)

over all (/^, /i2, ̂ 3) e ^(.c/) such that l/ij = m and \fi2\ = l^l = ^- It follows that

C(X,M)= Z Z «l

where the summation is over all nx such that IJUJ = m. Thus

C(X,M)= Z Z ymuk[xrr\xp{x-xpy-1(l-xylk-
m>tp k2 1

= Z ym[x"]ux'{l-ii(x-x'Xl-x)-1}-1
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and the result follows from Lemma 2.3.
We note that Example 3.5 may be obtained in the same way. The final example

concerns the enumeration of sequences with respect to strict maxima.

COROLLARY 4.4. The number of sequences in JV* of type k with I strict maxima is

[ x k / ] l - M [ ] (l+Mx,)-n (l-Mx,.)Wn (l + Mx,.)+n (l-Mxi)} \
I (.1 = 1 1 = 1 J (.1 = 1 1 = 1 J j

where M = (1 — y)112.

Proof Let s/ = {ijke Jf*\i < j ^ k}. Then jrf is a reduced set and if ijk e jaf
then; is a strict maximum. Let j / mark the occurrence of a member of stf in a sequence.
The clusters are alternating sequences of odd length greater than one. Thus, with the
appropriate modification to Proposition 3.6 we obtain the cluster generating function

C(x, y) as

C{x,y) = < E (-}0fcy2fc + i

But we know from Proposition 3.6 that

JkSsO

fc > 0 i = l

and the result follows from Lemma 2.3.

Although attention has been confined exclusively to sequences, it is nevertheless
possible to obtain corresponding results for permutations on {1, . . . , n}. The following
proposition is required.

[ xn

PROPOSITION 4.5. Let yk = [xfc] f ] (1 +xx,). Let r\ be a function ofy0,yx,...

[ x \ ( x x 2

K
Proof. See Jackson and Goulden [7].

COROLLARY 4.6. The number of permutations on {1, . . . , n] with p strict maxima is

— y" {1-MtanhMx}"1 where M = (l-y)1/2.

Proof. This follows directly from Corollary 4.4 and Proposition 4.5.
Corollary 4.6 appears in Jackson and Aleliunas [6], but is included here to

demonstrate the specialisation from sequences to permutations. Analogues of
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Proposition 4.5 for other combinatorial situations may also be obtained. The details of
these are given in Jackson and Goulden [7].
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