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PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 115, Number 3, July 1992 

IMMANANTS, SCHUR FUNCTIONS, 
AND THE MACMAHON MASTER THEOREM 

I. P. GOULDEN AND D. M. JACKSON 

(Communicated by Jeffry N. Kahn) 

ABSTRACT. The relationship between the immanant and the Schur symmetric 
function is examined. Two expressions for the immanant are given in terms of 
the determinant. Generalisations include Foata and Zeilberger's fl-extension of 
the MacMahon tvfaster theorem. The relationships to some little known results 
of Littlewood and to idempotents constructed by Young are given. 

1. INTRODUCTION 

For the symmetric group G5n on n symbols, let Xi(a) denote the value, 
at a, of the character xi of the irreducible representation associated with the 
conjugacy class indexed by the partition A of n. The )th immanant of the 
n x n matrix A, with (i, j)-element ai, j, is defined by 

n 

Imm AA= ZE X'(a) ]7 ai,a(i). 
aEon i=l 

For the purposes of this paper, a1, 1, a,, 2, ... , an, n are commutative indeter- 
minates. Imm[lIn] A = det A and Imm[n] A =per A, so ImmA A is a multilinear 
function that interpolates between the determinant and the permanent. Some 
of the combinatorial properties of immanants were considered in [3]. 

The purpose of this paper is to examine the relationship between the Schur 
function and the immanant. Section 1 gives the necessary background on the 
ring of symmetric functions. In ?2, we give a result expressing the immanant of 
A as the coefficient of z I ... Zn in the determinant of a designated matrix. It is 
shown that this gives, in ?3, a generalization of the MacMahon Master theorem 
[9]. We also show that the coefficient of zkt * zkn in the same determinant is 
expressible as the immanant of a matrix readily constructible from A. A further 
extension, in which cycles are marked, yields a generalization of Foata and 
Zeilberger's [1 ] fl-extension of the MacMahon Master theorem. The connexion 
of these results with those of Littlewood [6, 7] is given in ?4 and with the Young 
idempotents is given in ?5. 
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606 1. P. GOULDEN AND D. M. JACKSON 

The reader is referred to [8] for further details on symmetric functions and 
to [2] for further information about Young's idempotents. 

The following notation is needed. If A is a partition of n, then we write 
A H n. The number of parts of A is denoted by 1(A). We also write A = 
[li 212 nin], where A has ij parts equal to j, for j = 1,..., n . The conju- 
gate of the partition A = (AI, A2, . . . ) is denoted by i . The cycle-type of a E en 
is T (a) = (il, i2, . . . ), where a has ij cycles of length j . Since XI is a class 
function, xI denotes XI(a) where T(a) = ,u. Let 6n = (n-1, n-2, ... , 1, 0). 

Let R be a commutative ring, and let z = (z1, *-, z) In = (1,..., 1), On 
= (0, ... , 0), with n components. Also let k = (k1, ... , kn), a vector of 
nonnegative integers. When no confusion arises, in and On are replaced by 1 
and 0. Then zk denotes z k ._._. zk and [Zk]f denotes the coefficient of Zk in 
f e R[[z]]. Let kM = kI. kn! and aA = aA, aA2 ' ..for any sequence {ai:1i > 
O}. The block matrix obtained from A by replacing each element aij with 
the ki x kj matrix consisting entirely of aj, j 's is denoted by A(k) and is called 
the k-replication of A. Let Z(k) = diag(z, 1, ... ZI,ki ... Zn, --- Znk 
and Z = diag(z) = V). For ,8 C n = {1, ... , n}, let A[fl] be the submatrix 
of A with row and column labels in /1. If the elements mij e R[[z]] of an 
n x n matrix M have no constant terms, then a result of Jacobi, adapted to 
this ring, states that 

(1) trace log(I - M)= log det(I - M) 

We review some results from the theory of symmetric functions. Let AR(Y) = 

R[[y, 5Y2, . . . ]]5 denote the ring of symmetric functions in Yi, Y2, ... , with 
coefficient ring R where y = (Yi Y2, ... ). Where convenient, the name of 
this ring is abbreviated to A. It is graded by degree, so A = ji>O A(i), where 
AUi) is the set of all symmetric functions of degree i in y. The elementary, 
complete, monomial, power sum and Schur symmetric functions are denoted 
by e, (y), hA (y), m, (y), pA (y), and s,(y), respectively. Note that Ei>0 hiti = 

r1j?(lI - tyj) - I {=i>0e(-t)i}'- . The Schur functions are given in terms of 
the complete symmetric functions by the Jacobi-Trudi identity 

(2) sA(y) = det[hAi+j (Y)]mxm 

where m = l(i). Cauchy's theorem states that 

(3) EsV(ui, .)s(vl ,) = 171 (1E - 
j) 

i i,j>l 

where the sum is over all partitions. 
Let (*,*) be an inner product defined on AR by 

(4) (hA, mU) = 6A U 

where A, ,u F- n, and it follows that 

(5) (sA, pu) = XA and (hA, s,,) = KA,1, 

where KA,,, are the Kostka numbers. The Schur functions are orthonormal 
with respect to this inner product. Let wo be the ring homomorphism defined 
by wo: A -- A: ek F hk extended linearly to A. Then w(sA) = SA so w is 
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IMMANANTS, SCHUR FUNCTIONS, AND THE MACMAHON MASTER THEOREM 607 

an isometry, and, from (2), sA(y) = det[eA _i+j(y)]lx . More generally, if 
ao, a,, ... and bo, b1, ... are sequences related by 

(6) Eakt = {bk(_t)k} - 

k>0 k>0 

then det[aA,_i+j]m x m = det[bA _i+j]A xA1 . When A = [pq] F- n, this is a result 
due to Hadamard [4] concerning Hankel determinants. 

2. THE IMMANANT AS A DETERMINANT 

We begin by exploiting (5) in the enumeration of permutations to obtain the 
following result, which gives expressions for an arbitrary immanant. 

Theorem 2.1. Let Ek Aktk = det(I - tZA)- ={k Dk(-t)k}-l. Then 
(1) Imm, A = [zl] det[AA,-i+j]mxm, 
(2) ImmAA=[z1]det[D,_i+j],XA, 

Proof. (1) We work in AR (Y), where R is an appropriately chosen coefficient 
ring whose choice will be clear from the context, so no further comment will be 
made about its selection. From (5), 

/ ~ ~~~~~n \ 
ImmA A = s(y), E P(a) (Y) Ilai, a(i)). 

alE~n i= 1 

Now S(TE4; PT(T) (y) IH7 ai, a(i) is the (ordinary) generating function for per- 
mutations in &,n with respect to cycle-type in which aij marks the occurrence 
of i ~ j and Pk (Y) marks the occurrence of a cycle of length k . This is possi- 
ble since the Pk (y) are algebraically independent. Then the generating function 
for all cycles containing {al, ... , ai} C An is 

[Z'1 .z. ] E IPk (Y) trace(ZA) k. 
k>1 

Now a permutation is uniquely expressible as a product of disjoint (and there- 
fore commuting) cycles, so it can be viewed as an unordered collection of cycles, 
the disjoint union of whose elements is An . Thus 

n 

S PT(O)(Y) f|ai, a(i) = [zl] exp T Pk(Y) trace((ZA) , 
aEen i=1 k>1 

so 

(7) Imm A = [z'] KsA(y), expEtracelog(I-yiZA)-1 
i> 1 

(8) = [z'] s(y), IJ det(I - yiZA) ) 
i> 1 

by (1); but Hli>I det(I - yiZA)1 = EZAm (y), where the sum is over all 
partitions. Substituting this and (2) into the expression for the immanant and 
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608 1. P. GOULDEN AND D. M. JACKSON 

then applying (4) and the bilinearity of the inner product gives 

ImmA A = [zl] E sgn(a) ZAP(h, +a(3,)(y), mp(y)) 
UEInm P 

= [zl] E sgn(i)A,1,s+a(3) = [z1]det[AAl-i+j]mxm. 
UE6m 

(2) Direct from (1) and (6). El 

A special case of the MacMahon Master theorem now follows. 

Corollary 2.2. per A = [z' ] det(I - ZA) - 1 . 

Proof. From Theorem 2.1(1), per A = Imm[l] A = [zltn]det(I - tZA)- - 

[z1]det(I - ZA)-l. iii 
Corollary 2.2 enables us to reexpress Theorem 2.1 (1) in terms of permanents. 

Corollary 2.3. Let Zk k tk = per(I + tZA) . Then 

Imm, A = [z1] det[Pi+jI]mXm. 
Proof. By Corollary 2.2, the squarefree terms in det(I - tZA)-1 agree with the 
squarefree terms in per (I - tZA), and the result follows from the Theorem 2.1 
(1). n 

By specialising A it is possible to use these results directly to derive the 
familiar expressions for particular character evaluations. For example, let a = 
[lal2a2 ...], z(a) = a, and jn be an n-cycle. Let Ci be the i x i{O, I}- 
matrix corresponding to an i-cycle, and let 

B = (Ci 3* CO) ED .. * * (Cn E) *(*D CO) 

a, an 

Then x[In](a) = Imm[lIl]B, X[n'(a) = Imm[nl B, X&a(Wn) = Imma Cn . The de- 
tails of evaluating these immanants are left to the reader. 

By equating coefficients of fJ1nI aj,,(i) in Corollary 2.3, we obtain the ex- 
pression , (si, m,) * (h,, pT(a)) for Xz(a); however, this expression is also an 
immediate consequence of (4) and (5). 

The immanant can be also expressed as a Schur function at particular argu- 
ments. To see this, let wI, ... , wn be the eigenvalues of the n x n matrix 
ZA. Then 1 - yiwj are eigenvalues of I - yiZA for j = 1, .. ., n, so from 

(3), fji~,j det(I-yiZA)-I = Ili,,, fl~n 1 -Yiwj)-' = Es#(Y)S'(Wi, ... -, Wn) . 
Since (sA (y), sm(y)) = A,, the desired expression is, from (8), 

(9) Imm A = [z1]s(w1 , .*. , wn). 

3. IMMANANTS OF k-REPLICATIONS 

In ?2, expressions for ImmA A were given as the coefficient of z1 in various 
power series. The general coefficient is given by means of the following lemma 
for the k-replication of A. 

Lemma 3.1. If Ei2>o D(k)ti = det(I + tZ(k)A(k)) and f is a power series, then 

[Z1,1 ..Z1 ,k **Zn, l Znk,]f(D(k) , D2 ), ...) - [zk/k!]f(DI , D2, .**) 
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Proof. Let U = diag(uI..., Un) and Ui = Zi,l + * + Zik, . By expanding 
the determinant of the sum, we have det(I + tZ(k)A(k)) = det(I + tUA). Then 
[z1, 1.***zl ,k.***zf, 1 ***zf,kn] Ukn = k!, giving the result. E1 

Comparing this with the results in ?2 gives the following corollaries. 

Corollary 3.2. Let A = (AI, . . ., im) F N and k, + + kn = N. Then 

(1) ImmA(k) = [zk/k!]det[AA,-i+i]mxm 
(2) ImmA A(k) = [zk/k!] det[DEIi+j], xA 

Proof. (2) From Theorem 2.1(2), 

Imm A(k) = [zI,1.. Z1, ki 1**Zn, I Zn k. det[D. 1 _i+j]hix, - 

The result follows from Lemma 3.1. 
(1) This follows from Theorem 2.1(1) and Lemma 3.1, since a power series 

in the Ai is a power series in the Di, from (6). El 

An immediate consequence is the following. 

Theorem 3.3 (MacMahon Master theorem). 

n n \k 

[zki (1 | ai, jZ = [zk] det(I - ZA)l. 
i=l \j=l 

Proof. From Corollary 3.2(1), with A. = [N], we have 

n /n k 

k![zk] I| E ai,izijk 
- [zk/k!] det(I - ZA)-' 

i=l kj=l 

since both are equal to per A(k). The factor k! arises since, in the permanent, 
the columns are distinguishable. El 

Let 1 = (ii, . .. , ln) and i + * + In = kI + * + kn . The (k, 1)-replication of 
A is the matrix obtained from A by replacing each ai, j with a ki x bj block of 
ai, j 's and is denoted by A(k, l) . From [5], the exponential generating function 
for k, 1-replications of the permanent of A is 

pe (k,l1) 

xkyI k per k!A ! - exp xAy, 
k, 1>0 

where x = (xi, ..., Xn). We have been unable to find an extension of this 
result to the case of an arbitrary immanant, although Corollary 3.2 serves this 
purpose for the "diagonal" of this series. 

Finally, we consider 
n 

Imm(u) A = J xa)uI(T(a)) J ai, v(i) a 
Chin i=1 

a generalisation of the immanant in which an indeterminate u marks the num- 
ber of (disjoint) cycles. 
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610 1. P. GOULDEN AND D. M. JACKSON 

Corollary 3.4. Let Zk 5A()tk = det(I - tZA)u = {Ek D(u)(_t)k}1 . Then 

(1) Imm(u) A(k) - [Zk/k!1det[A(u) m _ImXm, 
(2) Imm(u) A(k) = [zk/k!] det[Diu) ]A, x J 

Proof. Follows from the methods of proof of Theorem 2.1 and Corollary 3.2, 
having replaced (7) by 

Immu) A = [z] sA(y), exp {u E trace log(I - yjZA)- } ) . 

The special case A = [n] of Corollary 3.4 has been previously obtained com- 
binatorially by Foata and Zeilberger [1]. 

4. LITTLEWOODS'S RESULTS 

The results that we have given are related to the following little known theo- 
rems of Littlewood [7, ?6.5]. 

Theorem I [7, p. 1 8]. Corresponding to any relation between S-functions of total 
weight n, we may replace each S-function by the corresponding immanant of 
complementary coaxial minors of [as, J, provided that every product is summed 
for all sets of complementary coaxial minors. 

In the following two theorems, Littlewood generalised the concept of a minor 
to permit arbitrary repetition of rows and columns. Thus A has (n r ?) r- 
rowed minors. He also attached a factor of 1 /r! to every immanant of a minor 
for each row that is repeated r times in the minor. 

Theorem II [7, p. 120]. Corresponding to any relation between S-functions we 
may replace each S-function by the corresponding immanant of a coaxial minor 
of [ast], provided that we sum with respect to all coaxial minors of the appropriate 
order. 

Theorem III [7, p. 121]. The S-function {i} of weight p of the characteristic 
roots of a matrix [ast] is equal to the sum of immanants corresponding to the 
partition {J} of all p-rowed coaxial minors of [at]I. 

The next proposition is an alternative presentation of Theorem 2.1 adapted 
to the action of OA, the linear mappings defined on A(n) by bAg(u)pu = 

~ fJn I where W is the conjugacy class indexed by . F n and 

g()= IFll/n!. 
Proposition 4.1. Let f E R[[h1, h2, ...]] and g E R[[el, e2, ***]] Then 

( 1) OASA = ImmA A, 
(2) OAf(hi, h2, *-) =[Zilf(Pl **s) = [Zl]Z(Al, *.), 
(3) k~g(ej, e2, * * *) = [zl]g(DI,***) 

Proof. (1) Follows from (5). 
(2) and (3) These follow by adapting the proof of Theorem 2.1 to show that 

bAh, = [z']A, = [z']P, and that /Ae, = [z']D,, and by then using the linearity 
of OA- L 
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Lemma 4.2. Let a F- / and fi F- m. Then, with the convention that the unions 
that appear below are to be disjoint, 

OASASa = E bA[a1SAOA[fl]Sy. 

a.Ufl=An 
lal=l, IlI,=m 

Proof. From Proposition 4.1(2) and the Jacobi-Trudi identity, 

OASASau= [z1] det[PA?-i+1]lxl det[P,-_i+j]mxm 

- Z [Za] det[PA i+]]x1[z0] det[P,ui+i]mxm 

oauf=An 

- E ImmA A[a] Imm,L A[fi] (from Corollary 2.3), 
aoll=An 

and the result follows from Proposition 4.2(1). El 

More generally, if f E Ari), g E A(n-i), then it follows immediately that 

q5Afg = E OA[a]fOA[/n-a]9- 

Ila=i 

Theorem I, in which Littlewood used the terms " S-function" for Schurfunc- 
tion and "coaxial minor" for principal minor, is obtained by applying Lemma 
4.2 to an arbitrary relation between Schur functions of total weight n. In par- 
ticular, Lemma 4.2 contains Theorem 2.1 as a special case. The appearance of 
principal minors and the role of complementarity is clear. 

Littlewood's conventions for Theorems II and III entail k-replications. Al- 
though Corollary 3.2 follows by this means from Theorem II, it is not clear how 
Littlewood would have handled Corollary 3.4. 

Remark (9) follows from Theorem III by replacing each aij with ziaij, 
and by applying [zl]. Littlewood's convention allows repeated rows, so the 
extraction of the linear term ensures that each row appears exactly once. 

Note that Corollary 2.2 is recovered by applying Theorem I to the relation 
En=oeihn-i(-1)' = 0, n > 0 with the identification of ek = S[lk] and hk = 
S[k] . Littlewood [7, p. 119] did this for n = 4. Had Littlewood given an example 
of the use of Theorem II of the type he gave for Theorem I with n = 4, he would 
have obtained an instance of the MacMahon Master theorem involving the 
coefficient of the general term x k, xk4 rather than the coefficient of x X ... x4. 
It therefore appears that Littlewood [6] had, implicitly, a symmetric function 
proof of the MacMahon Master theorem. Merris and Watkins [10] have used 
Theorem I to obtain bounds for generalised matrix functions. 

5. THE YOUNG IDEMPOTENTS 

The action of the mapping OA, defined in ?4, is related to certain idem- 
potents in C6n, for which Young [11] gave an explicit construction. Any 
f E C6n may be regarded as a function f: Gn -> C or as a formal sum 
ZEU3 f(C)( a. The centre 2n is the set of all class functions so {KA: F- n} is 
a basis of 2n, where KA = a. Also, x2 E 2n . Let tlAc = IH=1 ai,(i), 
extended linearly to C6n. Then VtAX' = Imm, A. But the Frobenius map 
is F: Yn -> Awn): KY - > g(Pu)p,, so qA = F-1 VA and, from the above, 

This content downloaded from 129.97.140.60 on Wed, 10 Jul 2013 08:28:41 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


612 I. P. GOULDEN AND D. M. JACKSON 

-A = F-'sA. Let pi = F-1hA and nA = F-1eA. Then pi, nA, xA are idempo- 
tents. From ?2, these have power series representations 
(10) 

AAPA = [Z']A,, W/An = [z']DA, VAX A = [Zl] det[AA1 i+}] = [z1] det[D 1i+j] 
and are constructed as follows [11]. Let A F- n, be an arbitrary (ordered) parti- 
tion of Aln whose ith block has size Ai, for i = 1, .. ., m, and Fix i be the 
set of all permutations in En that fix every block of f . Thus Fix r- 6A, x. x 
6im * Let i! = A1l! ... * A!, P" = ZoEFixir C/i!, and NX = ZuEFixxr sgn(a)w v/,&!, 
and N7r = EaEFix 7tsgn(a) sgn(T)oj/)!. If S is any Young tableau of shape A, 
its rows and columns, respectively, induce (set) partitions p, K of A4n whose 
block sizes are listed by A, A. Then 

P = S a P, , na n= 5 
CuE (n uE en 

Xi= -A!A!{X(e) E IPpNKvr, 
n'~~(se aEen 

independent of the choices of 7r and S. 
It would be of interest to derive the power series representations (10) for 

tVAX' from Young's constructions, but we have been unable to do so. 
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