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PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 123, Number 4, Apnl 1995 

COMBINATORIAL CONSTRUCTIONS FOR INTEGRALS 
OVER NORMALLY DISTRIBUTED RANDOM MATRICES 

1. P. GOULDEN AND D. M. JACKSON 

(Communicated by Jeffry N. Kahn) 

ABSTRACT. Recent results of Hanlon, Stanley, and Stembridge give the expected 
values of certain functions of matrices of normal variables in the real and com- 
plex cases. They point out that in both cases the results are equivalent to combi- 
natonal results and suggest further that these results may have purely combina- 
tonal proofs, in this way avoiding the use of the theory of spherical functions. 
Such proofs are given in this paper. In the complex case we use the familiar cy- 
cle decomposition for permutations. In the real case we introduce an analogous 
decomposition into cyclically ordered sequences, called chains, which makes the 
real and complex cases strikingly similar. 

1. INTRODUCTION 

If Al + + A, = k for nonnegative integers A, > . > A > 0, then 
A = (Al, ...n A) is a partition of k and we write A )- k. Let a = (a,, a2, ... ) 
and b = (b,, b2, ... ) where a, , a2, ... and b,, b2, ... are indeterminates. 
Let pk(a) = ,?, a k, k > I, a power sum symmetric function, and pA(a) = 

pA,(a) A pA (a). We also use pA(A), where PA,(A) denotes trace(AAI) for a 
square matnx A. 

Hanlon, Stanley, and Stembridge [2, Theorem 2.3] prove that, for A H k 

(1 ) g'u(pA(AUBU )) = z ce vp,(a)pv(b), 
p ,. -k 

where the expectation is over n x n matrices U whose entries are independent 
standard normal random complex variables and A, B are fixed, but arbitrary, 
Hermitian complex matrices. On the right-hand side, a,, ... I an, b , ... 9 bn 
are the eigenvalues of A, B with the remaining a 's, b's set equal to zero and 
'U. is the connection coefficient for the class algebra in C!k , the group algebra 

of the symmetric group Ok on k symbols. 
The main result of [2] (Theorem 3.5) is the analogue of the above result in 

the real case and states that, for A H k, 

(2) 9'u(pA(AUBU )) - , E dA p(a)pv(b), 

Received by the editors March 4, 1993 and, in revised form, June 25, 1993. 
1991 Mathematics Subject Classification. Primary 05EO5, I 5A52, 05A 1 5. 
Research supported by grants from NSERC. 

? 1995 Amencan Mathematical Society 
0002-9939/95 SI 00 + S 25 per page 

995 

This content downloaded from 129.97.140.60 on Wed, 10 Jul 2013 08:26:46 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


996 I. P. GOULDEN AND D. M. JACKSON 

where the expectation is over n x n matrices U whose elements are independent 
standard normal random real variables and A, B are fixed, but arbitrary, real 
symmetric matrices. In this case, d is the connection coefficient for the 
Hecke algebra of the Gel'fand pair (02k, Ok) , where Ok is the hyperoctahedral 
group. 

The proofs given in [2] use the theory of spherical functions. However, alter- 
native evaluations of these expected values (the left-hand sides) as combinatorial 
sums are also given there, leading those authors to suggest that (1) and (2) may 
have purely combinatorial proofs. 

The following definitions are needed in the description of these sums, which 
are given below as (3) and (4). Let k be the set of all words of length 2k 
in the elements of a and b, starting with an element of a and alternating 
thereafter between b and a (so that they end with an element of b). For a 
partition A, let VA = , x ...x . For w = (w,..., w) E A, let y,(w) 
be the commutative image of w (so it is a product of all the ai 's and bj 's in 
WI, ... ., wn) . Let mi j,(w) be the number of times aibj appears consecutively 
as a subword among w1, .. ., , and let m1 j(w) be the number of times bjai 
appears consecutively as a subword among wI, ..., wn, with the convention 
that the last letter of each w1 is followed by its first letter (so from this point 
of view the w1 are circular words). 

Let I' consist of the words w E VA' such that mjj(w) = m1j(w) for all 
i, j > 1 . Let I" consist of the words w E V such that mi, j(w) + m j(w) = 

ijij(w) is even forall i,j> 1. 
The alternative evaluation [2, Proposition 6.2] of the left-hand side of (1) is 

(3) Z Vg(w) fJ miLj(W)! 
wEBt i j, 1 

for which the only integration required is F(urus) = r!krs, where u is a stan- 
dard normal complex variable. Similarly, the alternative evaluation [2, Propo- 
sition 6.2] of the left-hand side of (2) is 

(4) E: VWw) II (qi y(w)- 1! 
wEn't ij>l 

for which the only integration required is F (U2r) = (2r - 1)!!, where (2r - 1)!! 
denotes (2r)!/2rr!, and where u is a standard normal real variable. 

Hanlon, Stanley, and Stembridge's [2] suggestion is that combinatorial proofs 
(avoiding spherical functions) of (1) and (2) would be obtained if we could 
establish combinatorially that (3) is equal to the right-hand side of (1) in the 
complex case and that (4) is equal to the right-hand side of (2) in the real case, 
for sets of indeterminates a and b. 

Such a combinatorial proof is given in [2] for the complex case with single- 
part partitions. In this paper, we provide combinatorial proofs for general A in 
the complex and real cases. 

The result for the complex case is given in Theorem 2.1 and, for the real 
case, in Theorem 3.1. These theorems are shown directly by combinatorial 
constructions applied to two natural combinatorial structures associated with 
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INTEGRALS OVER NORMALLY DISTRIBUTED RANDOM MATRICES 997 

permutations. In the complex case, the structure is the familiar disjoint cycle 
decomposition. In the real case we introduce a new object, called a chain, for 
which there is an analogous disjoint decomposition. It is sufficient to work with 
the representations of these structures as linearized circular sequences rather 
than with the richer structure of faces of embeddings of graphs. The latter was 
used in [1] for the determination of certain connection coefficients and then as 
the basis for the proof of the complex single-part case cited above. 

The proofs are presented in a parallel way to show their similarity at the com- 
binatorial level. It is hoped that the constructions may find further application. 

For further details on the background to the question addressed here, and 
for details of the integration theory, the reader is referred to [2]. 

2. THE COMPLEX CASE 

For a permutation a E Ok, let T(Or), called the cycle-type of a, be the 
partition of k giving the lengths of the cycles in the disjoint cycle decomposition 
of a. In this paper we adopt the convention that cycles are listed in weakly 
decreasing order of lengths and, within those of the same length, in increasing 
order of smallest element. The elements on each cycle are listed in the order 
in which they appear around the cycle, with the smallest element first, and 
enclosed in round brackets. Let CA be the sum in the group algebra of Ok of 
all permutations with cycle-type A, for A a partition of k. The C-span of the 
C, 's generates the class algebra of the group algebra. 

We now give the combinatorial theorem of Hanlon, Stanley, and Stembridge 
[2] arising from their expected value in the complex case. Their theorem has 
been rewritten using the fact that the connection coefficients ct,, are given by 

,= C cj ,V CA and that the Cv commute. Combinatorially, the connection 
coefficient A is the number of ways (el, e2) in which an arbitrary element 
with cycle-type A can be written as el e2, where el has cycle-type ,u and e2 
has cycle-type v. The proof is bijective, involving a construction on words in 
W'At. A brief numerical example is carried along to illuminate certain points of 
the exposition. 

Theorem 2.1. 

( VP b) ( up (a) PI CA 1: (W) II mi j (w)! 
0-k Ar-k A~-k WEll i, j>1 

Proof. First we give the left-hand side of the result a combinatorial interpre- 
tation as follows. For p E Ok, a cycle a-labeling a of p is a mapping from 
the cycles in the disjoint cycle decomposition of p to the elements of a. In 
such a mapping, we say that a cycle is a-labeled (or labeled where the context 
permits) by the element of a to which it is mapped. Let wt(&) = H1>1 af 
where fi is the total number of elements on cycles labeled ai in a. Then 
clearly , wt(&) = Pr(p) (a), where the sum is over all cycle a-labelings a of 
p, and thus 

Z E p wt(a) = ZCupu(a). 
PE k a W'k 
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998 I. P. GOULDEN AND D. M. JACKSON 

This means that the left-hand side of the result is the generating function 

(5) E E a p wt(fl) wt(x), 
rPEek fka 

where ft is summed over all cycle b-labelings of a. 
For the right-hand side, let Y(w) be the set of infinite-dimensional matrices 

indexed by the positive integers, whose (i, j)-entry is some permutation of 
{1, ... , mij(w)}, for i, j > 1 . Thus I,(w)l = H1ij>1 mi,j(w)!, so the 
right-hand side of the result is the generating function 

(6) E E yV(w)lgY(w)1. 
YE~k WET' t (y) 

We now give a combinatorial proof of the result by comparing the generating 
functions (5) and (6), and by considering each pair a, p E .k* All we need, 
for each cycle b-labeling fl of a and cycle a-labeling a of p, is to construct 
Y E 0k, WEE t(y), and PE' 9(w) such that ap = y and wt(f) wt(a) = (w) 
and in such a way that this construction is reversible. The three quantities are 
constructed as follows. 

(i) For y: Compute the product ap to obtain y2. 
(ii) For w: Let the cycles of y , in the order specified by the above conven- 

tion, have lengths AI, . .. , A, . For each j = 1, . .. , n, construct a word uj of 
length 4Aj by concatenating Aj strings of length four where the Ith such string 
is 

g ad p(g) bh, 

in which g is the /th element on the jth cycle of y2, ad is the label of the 
cycle containing g in a, and bh is the label of the cycle containing p(g) in 
1 . 

For example, with k = 10 and 

a = (1 2 8 5 10 3)(4 9 6)(7), p = (1 5 2)(6 7 10)(3 9)(4 8), 

let 

fl = (1 2 8 5 10 3)b, (4 9 6)b2(7)b, and & = (1 52)a,(67 10)a3(39)a2(48)a2 

where the subscript on a cycle is its label. Thus wt(fJ) = b 7b3 and wt(&) = 
a3a 4a3 . Then y = (1 10 4 5 8 9)(3 6 7)(2), so we construct 

ul = 1 a, 5b, IOa36b24a28b, 5a, 2b, 8a24b29a23bj, 
U2= 3a29b26a37bj 7a3 lOb1, 

U3= 2a, lb1. 

We obtain w = (w , ..., w) E 7j by retaining in u = (u ,...,un) only 
the a 's and b 's, in place. (Thus we immediately have wt(fJ) wt(a) = (w).) 
We now show that w is in W'.. For i, j > 1, let R? j be the set of elements 
of { 1, . .. , k} on a cycle labeled ai in a and on a cycle labeled bj in fl . An 
occurrence of aibj as a subword in some w1 corresponds to an occurrence of 
aitbj as a subword in ul, where t E i j, so mi,j(w) = 1ijl. Similarly, 
an occurrence of bjai as a subword in some w1 corresponds to an occurrence 
of bjtai as a subword in ul, where t E 'i j (where the ul are circular when 
appropriate, to match the wl), so m1 j(w) = '?I j I . Thus, mi, j(w) = m', j(w) 
for i, 1 > l, so w e W' with A= T(y). 
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(iii) For P: Finally, we obtain P as the matrix of permutations whose (i, j)- 
entry, i, j > 1, is the permuted order in which the elements of 2 i,j appear 
from left to right in the third positions (mod 4) in u I, followed by u2, . . ., Un . 
Since ij, j I = m , j (w) and each element of { 1, . . . , k} occurs exactly once in 
the third positions (mod 4), then P E 39(w) and the construction is complete. 

To conclude the above example, we obtain 

w = a, ba3b2a2b1 a, b1 a2b2a2b1, 

W2= a2b2a3b1 a3b1, 

W3= a, bi, 

so 

-{1,2,5} 0 0 3 21 0 0 * 
13, 8} {4, 9} o 2 1 1 2 o 

[.2;,j]= {7, 10}{6} 0 K.] and P 12 1 0 
0 0 0 * 0 0 0 * 

where each entry of P is the second row of the two-line representation of the 
corresponding permutation. 

To reverse the construction, we start with y, w, P and proceed to determine 
u . The second and fourth positions (mod 4) of u come immediately from w . 
The first positions (mod 4) come immediately from the successive entries in the 
cycles of y . We now find the 2i, j by analyzing substrings bjtai (which involve 
only positions 1, 2, and 4 (mod 4)). The third positions (mod 4) now follow 
by applying, for i, j > 1, the (i, j)-entry of P to Oij, thereby specifying, in 
order, the entries between a1 in the second positions (mod 4) and bj in the 
fourth positions (mod 4). Clearly, u uniquely determines p, a, a, fJ. n 

3. THE REAL CASE 

Let V~k = {{1, II, * I, {k k}} . In this section, we now use 02k to denote 
the symmetric group acting on { 1, 1, . .. , k, k}, whose elements are ordered 

by 1 -< I < D < k -< k. For a E 02k, a chain is an ordered list of an 
even number of ordered pairs ((ij , j1) *.. (i2m, a2m)) such that js = a(is), s = 

1, ..., 2m, with left-links {i2t1, I12t} E gk , and with right-links {i2t, 12t+I} E 

.A4, t = 1, ... , m (where i2m+l = il, so these are interpreted circularly) and 
iI is the smallest of il. ... , i2m The i's are called the left-elements of the 
chain and the j's are called the right-elements of the chain (thus, il is the 
smallest left-element on the chain). The length of a chain is the number of 
ordered pairs it contains. 

The permutation a is completely specified by its set of chains, which form 
the chain decomposition c(a) of a. We adopt the convention that in c(a) 
the chains are written in weakly decreasing order by length and, for those of 
the same length, in increasing order of smallest left-element. The tth chain 
in this decomposition has 21, ordered pairs for t = 1, ... , n for some A = 

(A, ... , An) H k and has chain-type denoted by K(a) = A. 
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For example, with k = 5, a = (1 5 4 3 2) (1 2 3 5 4) has chain decomposition 

c(a) = ((1, 5)(1, 2)(3, 2)(3, 5)) ((2, 1)(2, 3)(4, 3)(4, 1)) ((5, 4)(5, 4)) 

and chain-type K(C) =(2, 2, 1). 
Let KA be the sum in the group algebra of 02k of all permutations with 

chain-type A. Certain algebraic properties of the hyperoctahedral group are 
needed for discussing KA, and we establish these combinatorially. The hyper- 
octahedral group Ok is isomorphic to the wreath product 02 1 Ok and can be 
embedded in 02k as the centraliser subgroup {a E 02k: ad = 3a}, where 3 
has disjoint cycle decomposition (1 1)... (k k) . Thus qk is the automorphism 
group of Vk and lqkl = 2kk! For 3l, 32 E Ok and a E 02k, the chain 
decomposition of 61 c32 can be obtained from the chain decomposition of a 
by applying 31 to the right-links of a and 3-1 to the left-links of a. Thus 
Kc(61 C32) = Kc(C), so the KA are precisely the double cosets of OVk in 02k . The 
C-span of {KA: A F- k} generates a commutative subalgebra of C02k called the 
Hecke algebra of the Gel'fand pair (02k, Ok) . For further discussion, see [2]. 

A matching on a set of even cardinality is a (set) partition of the set into 
disjoint unordered pairs. For example, sgk is a matching. The number of 
matchings on a 2m-set is (2m - 1)!!. 

We now give the combinatorial theorem of Hanlon, Stanley, and Stembridge 
[2] arising from their expected value in the real case. Their theorem has been 
rewritten using the fact that the connection coefficients dAl, are given by 
Kl, K = dA, vKA and that the Kv commute. Combinatorially, the connection 
coefficient dA is the number of ways (el, e2) in which an arbitrary element 
with chain-type A can be written as el e2, where el has chain-type #u and e2 
has chain-type v. The proof is bijective, involving a construction on words in 

Theorem 3.1. 

(z Kvpv(b) Kuipu(a)) =IIk Z E KA E V/(w) 17 (I1i, j(w) - 1)!!. 
\vk / -k AJ-k wE0111 i, >1 

Proof. We begin with a combinatorial interpretation of the left-hand side. For 
P E 02k, a chain a-labeling a of p is a mapping from the chains in the chain 
decomposition of p to the elements of a. In such a mapping, we say that a 
chain is a-labeled (or labeled where the context permits) by the element of a 
to which it is mapped. Let wt(a) = rHi> 1 afi where Jo is half the total number 
of ordered pairs on chains labeled a1 in a. Then clearly , wt(&) = p,,(p)(a), 
where the sum is over all chain a-labelings a of p, and thus 

Z E p wt(&) = Z Kp, (a). 
PE02k a W-k 

This means that the left-hand side of the result is the generating function 

(7) E: E: ap wt(fl) wt(x), 
aspE02k P, a 

where ft is summed over all chain b-labelings of a. 
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For the right-hand side, let YX(w) be the set of all infinite-dimensional ma- 
trices indexed by the positive integers, whose (i, j)-entry is some matching on 
{1 , ... , i1, 1(w)}, for i, j > 1 . Thus V((w)l = jl(jjj(w) - 1)!!, so the 
right-hand side of the result is the generating function 

(8) I-kI E E MMI(w)V(W)I 
YE02k WET"K(y) 

We now give a combinatorial proof of the result by comparing (7) and (8) and 
considering each pair a, p E 02k . All we need, for each chain b-labeling fl of 
a and chain a-labeling a of p, is to construct d E ?k, Y E 02k, W E t'/y 

and M E YX(w) such that ap = y and wt(fJ)wt(a) = ql(w) and in such a 
way that this construction is reversible. The four quantities are constructed as 
follows. 

(i) For y: Compute the product ap to obtain y. 
(ii) For w: Let the chains of y , in the order specified by the above conven- 

tion, have lengths 2AI, ... , 2A, . For each j = 1, ... , n, construct a word vj 
of length 4Aj by concatenating Aj strings of length four, where the lth such 
string is 

g ad g' bh, 

in which g = (s, p(s), t), g' - (s', p(s'), t') where (s, t) and (s', t') are the 
(21 - 1 )st and 21th ordered pairs on the jth chain of y, ad is the label of the 
chain in a containing s (and s') as a left-element, and bh is the label of the 
chain in fl containing t' as a right-element. 

For example, with k = 8 and a = (123243)(1)(4), p = (1142 34)(2 3), 
let 

ft = ((1, 1)(1, 2)(3, 2)(3, 1))b2((2, 3)(2, 4)(4, 4)(4, 3))b, 

Cr = ((1, 1)(1, 4)(3, 4)(3, 2)(4, 2)(4, 1))a,((2, 3)(2, 3))a2 

where the subscript on a chain is its label. Thus wt(fJ) = b2b2 and wt(&) = 

a~a2 . Then y =(1 2 1 3 4)(3 4)(2), so 

c(y) = ((1, 2)(1, 3)(4, 3)(4, 1)(2, 1)(2, 2)) ((3, 4)(3, 4)) 

and we construct 

VI = (1, 1, 2)aI(1, 4, 3)bl(4, 2, 3)al(4, 1, 1)b2(2, 3, 1)a2(2, 3, 2)b2, 

V2= (3, 2, 4)al(3, 4, 4)bl. 

We obtain w = (w , ..., w) E VA by retaining in v = (v,...,v) only 
the a 's and b 's, in place. (Thus we immediately have wt(fJ) wt(a) = (w) 
We now show that w is in W". For i, j > 1, let Fjj = {(sj, rl, tj), * . 
(Sq, rq, tq)}, where s1 < . < Sq, be the set of ordered triples (s, r, t) occur- 
ring between ai and bj in the (vI , ..., v,), either as a subword ai(s, r, t)bj 
or bj(s, r, t)aj (circularly). 

Consider an arbitrary triple (sr, rx, t,) in F j. From the construction of 
the v's, s, is a left-element on a chain labeled ai in a, so r, = p(sx) must 
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be a right-element on that chain. Similarly, t, is a right-element on a chain 
labeled bj in /1, so r, = a-'(tx) is a left-element on that chain. Thus r, 
appears as a right-element on a chain labeled ai in a and as a left-element on 
a chain labeled bj in /1 and s_ = p-(rx), t, = a(r,) can be obtained from 
r, by means of p and a. This characterises the triples in Fjj. 

Now for such an rx, the pair {rx, 3(r,)} is a right-link on a chain labeled 
ai in a and is a left-link on a chain labeled bj in /1. This in turn means that 
3(r,) is a right-element on a chain labeled ai in a and a left-element on a 
chain labeled bj in /1, so by the above characterisation, 3(r,) = ry for some 
(sy, rd,, ty) in Fi j, where y :$ x. Thus the number of triples, q, in Fij 
must be even. Moreover, by construction q = mi, j (W) + m', j (w) = j (W) 
so w E ", with A = K(y)). 

(iii) For M: The (i, j)-entry of M is the matching on {1, ...,j(w) 
consisting of all pairs {x, y} such that ry = 3(rx) in the above analysis. 

(iv) For d: Consider the matching Y on { 1, , ... , k } consisting of 
all pairs {s., sy} such that ry = 3(rx) in the above analysis for all i, j > 
1 . Suppose that Y = {{gI, hi},..., {gk , hk}} where g, < -< gk and 
g1 < hi, i = 1,..., k. Then d is obtained as d(i) = p(gi), d(i) =p(hi), 
i = 1, ..., k. Clearly, d E aVk since p(gi) = 3(p(hi)), i = 1,..., k, by 
construction. 

To complete the above example, we obtain 

W1 = albjajb2a2b2, 

W2 = al b , 

{(1, 4, 3), (3, 2, 4), (3, 4, 4), (4, 2, 3)} {(1, 1, 2), (4,1 11 i)} 0 

[ti~j] = 0 {(2, 3, 1), (2, 3, 2)} 0 ... 

{1, 31, 12, 411 I{{1, 2}} 0 
M= 0 {{1, 2}} 0 

Y = {{1, 4}, {1,3}, {2, 2}, {3, 4}}, 

and finally 

I 1 2 2 3 3 4 48 
I 1 4 4 3 3 2 2J 

To reverse the construction, we start with y, w, M, d and proceed to de- 
termine v. The second and fourth position (mod 4) of v come immediately 
from w . The first and third entries in the triples occupying the first and third 
positions (mod 4) of v come immediately from the chain decomposition of 
y . These give the first and third entries of the triples in F j for each i, j > 1, 
depending between which ai and bj they lie. This portion of the F X together 
with M give the matching Y. Finally d and Y together allow us to deter- 
mine the second entries of the triples in F j and thence recover v . Clearly, 
v uniquely determines p, a, a, /3. o 
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