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PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 125, Number 1, January 1997, Pages 51- 60 
S 0002-9939(97)03880-X 

TRANSITIVE FACTORISATIONS INTO TRANSPOSITIONS 
AND HOLOMORPHIC MAPPINGS ON THE SPHERE 

I. P. GOULDEN AND D. M. JACKSON 

(Communicated by Jeffry N. Kahn) 

ABSTRACT. We determine the number of ordered factorisations of an arbitrary 
permutation on n symbols into transpositions such that the factorisations have 
minimal length and such that the factors generate the full symmetric group 
on n symbols. Such factorisations of the identity permutation have been con- 
sidered by Crescimanno and Taylor in connection with a class of topologically 
distinct holomorphic maps on the sphere. As with Macdonald's construction 
for symmetric functions that multiply as the classes of the class algebra, es- 
sential use is made of Lagrange inversion. 

1. INTRODUCTION 

Let C, be the conjugacy class of the symmetric group G3n on n symbols, indexed 
by the partition a of n, for n > 1, denoted by a H n, and let ha be the size of this 
conjugacy class. Let K, be the sum in C&6 of all elements of C0, for a H n. The 
number of parts of a is denoted by 1 (a). 

The coefficient of K, in the product KOK-, for a, /, -y H n, is called the connection 
coefficient in the class algebra of en. Up to a constant depending on ha, ho and 
ht. it is the number of ordered factorisations (u1, u2) of or c C, with factors u1, u2 
in Co and C^, respectively. If the condition 

(n-l1(a)) < (n-1(3)) + (n-l~y)) 

fails, then the connection coefficient is zero. Such factorisations arise in a number 
of topological contexts, such as the determination of the Euler characteristic for 
the moduli space of curves [5, 8] and, more generally, the enumeration of two-cell 
embeddings [9]. 

In general, the connection coefficient can be expressed as a character sum, and 
this has been exploited (see, e.g. [9, 10]) to address combinatorial questions that 
can be expressed in terms of certain connection coefficients. However, the determi- 
nation of this character sum is difficult in most instances, so other approaches to 
connection coefficients are desirable. One such approach is given in [6], to evaluate 
the connection coefficient in the case that 

(n -1(a)) = (n - 1(/3)) + (n - (-y)). 

These are called top coefficients, since partitions related by this equality are on 
the boundary of the region where the coefficient is zero. A construction in [6] 
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52 I. P. GOULDEN AND D. M. JACKSON 

uses the compositional inverse of the generating series for the complete symmetric 
functions to produce a basis for symmetric functions whose connection coefficients 
in the ring of symmetric functions are precisely the top connection coefficients, 
after reindexing. The results obtained thus require the use of Lagrange inversion in 
a fundamental way, to carry out this compositional inversion. The combinatorial 
setting for this is embeddings of vertex 2-coloured trees in the sphere, a setting that 
is suggestive of constructions for other connection coefficients that are close to top. 

Recently, an interesting new group theoretic restriction on factorisations, aris- 
ing from another topological context, has been encountered by Crescimanno and 
Taylor [1]. Their work involves ordered factorisations of the identitity permutation 
into 2n - 2 transpositions, with the additional condition that the factors generate 
En. They obtain the surprising result that the number of such factorisations is 

(2n -2)!n 

Their interest in this problem arose from the fact that it equals n! times the number 
of topologically distinct holomorphic maps from S2 to S2 with 2n - 2 elementary 
branch point singularities whose images are fixed. 

It is readily seen that 2n - 2 is the minimal number of transpositions whose 
product can equal the identity under the restriction that the transpositions generate 
En. We can state the analogous question for an arbitrary permutation in the 
following way: Let c, be the number of j-tuples of permutations (91,... , aj) such 
that, for an arbitrary but fixed 7r E Cc, 

(a) Xr = a,. j, 
(b) 91, ,i Gf C[2 l n- 2] , 

(c) a1,... ,oj generate En , 
(d) j is minimal, subject to (a), (b), (c). 

We call (a1,,.. .,oj) a minimal, transitive, ordered factorisation of 7r into transposi- 
tions. (In this notation, Crescimanno and Taylor showed that C[ln] = (2n-2)!nn-3.) 
It is shown in Section 2 that the minimal choice of j in condition (d) is j = p(a), 
where 

(1) p(a) = n + 1(a)-2. 

Note that, in the case that 7r G C[n], condition (c) is forced by condition (a), so 
this problem is simply the "top" problem solved in [6]; in particular Denes [2] first 
showed that C[n] = n 

The main result of this paper is the following generalisation of Crescimanno and 
Taylor's and Denes' results, giving an explicit expression for c, when ae is arbitrary. 

Theorem 1.1. Let a= (aUi, c2,... ,ck) n, for n,k > 1. Then 
k cz 

c, = nk-3(n + k-2)! rl i 

Our method is to determine a differential equation that a generating series for co, 
satisfies. This is given in Section 2. In Section 3 we prove that the corresponding 
series for the numbers given in Theorem 1.1 also satisfies the equation, and check 
initial conditions so this is unique. This latter series is manipulated in terms of 
two functional equations by Lagrange inversion, which seems essential to provide 
tractable expressions for the quantities required. However, we have not found the 
analogous construction to that for top coefficients, in which a compositional inverse 
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TRANSITIVE FACTORISATIONS INTO TRANSPOSITIONS 53 

was an essential part of the construction from the outset. A character theoretic 
expression for c, is given in Section 4, although we have not been able to deduce 
Theorem 1.1 from this expression. 

2. A COMBINATORIAL CONSTRUCTION 

We begin with an analysis of multiplication by a transposition. For 7r E 6n let 
n(7r) denote the number of cycles in (the disjoint cycle representation of) 7r, and let 
a be the transposition (a, b). We now consider separately two cases for the product 
7ro. If a and b are on different cycles of 7r, then the cycles of 7r containing elements 
a and b are joined together in 7ru, so ,<(7ro) = i,(7r) - 1, and in this case we call a 
a join for 7r. If a and b are on the same cycle of 7r, then the cycle of 7r containing 
a and b is cut into two cycles in 7ru, one containing a and the other containing b, 
so ,(<7ro) = i,(7r) + 1, and in this second case we call a a cut for 7r. Now suppose 
that (71, ... , uj) is an ordered factorisation of 7r into transpositions (i.e., it satisfies 
conditions (a) and (b) above, but not necessarily (c) or (d)), and that r of the 
transpositions are joins and s are cuts (as they are multiplied together from left to 
right). Then by induction, starting with the identity permutation having n cycles, 
and using the relationships for r in the two cases above, we have 

(2) (7r) = -r + s. 

Proposition 2.1. If a = (a,, H2.-.. n, for n > 1, then r(ca) = n + I(c) -2. 

Proof. Suppose (u1, ... , uj) is a transitive, ordered factorisation of 7r G C, into 
transpositions (i.e., it satisfies conditions (a), (b), (c) above, but not necessarily 
(d)). Let G(ui,... ,Cuj) be the graph on vertices labelled {1,... ,n}, and edges 
labelled {1,.. , j} in which the edge labelled i joins the vertices interchanged by 
the transposition ui, for i = 1, . . . , j. 

Condition (c) means that G = G(u1,... , uj) is connected. Let T be the spanning 
tree of G formed by, for i = 1, . . . j, selecting the edge labelled i for T if and only 
if it joins vertices in two different components of G(u1,.. , oi-j) (this is Kruskal's 
algorithm with the edges ordered by their labels). Now T contains n - 1 edges, all 
of whose corresponding transpositions must be joins, by construction. Of the edges 
of G that are not in T, suppose that g are joins and h are cuts. Then from (2) we 
obtain ,(7r) = n-(n - 1 + g) + h. But the number of edges of G is n - 1 + g + h, 
and ,(7r) = l (a), so 

jh n-+g+h= n + ()-2 + 2g > n + l(a) -2, 

with equality when g = 0 (and thus h = I( a-l) . This can be achieved for any ae by, 
for instance, choosing the first n - 1 edges of G as the edges of any tree on vertices 
1,... ,n, in any order (so these are all joins); thus we will have u1 ,-l 1 C[,] 
Then choose h = l(c) - 1 edges to cut this cycle successively into cycles of lengths 
aia2, ... i SO we have u1 ... cn+l(o,)-2 G Co,. Any required 7r G Co, can be obtained 
in this way by suitably relabelling the vertices of G. El 

The analysis above can be extended to determine the cycle distribution of per- 
mutations in the product 7rK[2 ln-2] by means of a differential operator as follows. 
Let p = (P1,P2.... ) be indeterminates, and p, = PA1PA2 , for A = (A1, 2, ...), a 
partition. If T(7r) H- n is the partition listing the lengths of the cycles of 7r, and we 
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54 L P. GOULDEN AND D. M. JACKSON 

define ob(-r) = P,(,), extended linearly to the whole of C6&, then, as is considered 
in [4], 

4(7rK[2 ln-2]) =( + 01D(70 
where 

J = E Pi+jii ii92 , C = S Pj (i + j) 
i,j?1 i,j?1 

The first operator J gives the contribution from the transpositions that are joins 
for wx; the summand corresponding to i and j joins together an i-cycle and a j-cycle. 
The second operator C gives the contribution from the transpositions that are cuts 
for ir; the summand corresponding to i and j cuts an i + j-cycle into an i-cycle 
and a j-cycle. (In the case that pi is regarded as the i-th power sum symmetric 
function, then J and C are mutually adjoint operators on the ring of symmetric 
functions, equipped with the usual inner product.) 

We now use this combinatorial apparatus to determine an equation for the re- 
quired numbers c,. 

Lemma 2.2. The generating series 

n>1 a !-n 

satisfies the differential equation 

(3) L(F) = 0, 

where 

L(F) -1a ( .F aF +(i OF O aF OF 

ij(F =9pi '-pj 
+ i Pi+j az i>1 9pi 

Proof. Let F be the generating series for minimal, transitive, ordered factorisations 
(OT1,... ,coj) of permutations Ir in Un>1 n, in which pi is an ordinary marker 
for cycles of length i in 7r, for i > 1, and, in the terminology of the proof of 
Proposition 2.1, z is an exponential marker for the vertices in G, and u is an 
exponential marker for the edges in G. Thus 

F= 5 c 5 / pa = 5y 5 >)?(a(Kpn! ())! 
n>1 al-n n>l cJ-n 

Consider a minimal, transitive, ordered factorisation (l,... ,I j) of 7 G On 
into transpositions. Suppose we remove the edge of largest label (corresponding to 
transposition oj) from G, without changing 7r. This modifies the generating series 
to become 

OF 
Ou 

This may be determined in another way, by considering two cases for aj. If 
oj corresponds to a non-tree edge, then it is a cut, and thus (c,,,... , j-1) is a 
rhinimal, transitive, ordered factorisation in &n, so the contribution to the modified 
generating series from this case is 

CF. 

Otherwise, if aj corresponds to a tree edge, then it is a join consisting of vertices 
from each of the exactly two components in G(al,... , a-1), and each of these 
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TRANSITIVE FACTORISATIONS INTO TRANSPOSITIONS 55 

components corresponds to a minimal, transitive, ordered factorisation in the sym- 
metric group on its vertex set. Thus the contribution to the modified generating 
series from this case is 

ij?1l P \Pj i 3 t ) 

using the multiplication rule for exponential generating series, with both vertices 
and edges labelled, since we are joining cycles in the two components. 

Thus F satisfies the differential equation 

(4) z E (Pi~jiap jt3 j + (i + J)pip 

But F evaluated at u = 1 is F, and 

O OF O F OF 
Au u=i Oz i>1 -Pi 

so this differential equation can be rewritten in terms of F, giving the result. D 

3. PROOF OF THE MAIN RESULT 

In this section we establish Theorem 1.1 by proving that 

(5) c S S ~~l~c~)-3 
a 

pZ 
_ )_E 

E V (aj -1)!) - n! 
n>1 al-n j>1 / 

is the unique choice for the series F considered in the previous section. Our proof 
consists of a verification that G satisfies the differential equation z a9L(G) = 0, 
which F also satisfies, by Lemma 2.2. Uniqueness is then established via initial 
conditions. Two technical results are needed for this verification. Both use La- 
grange's Implicit Function Theorem ([7], Section 1.2) in an essential way. 

The first of. these technical results concerns the functional equation 

(6) s =zexp i 

and expresses each term that arises in z ' L(G) in terms of the unique solution 
s _ s(z, p) to this equation. 

Proposition 3.1. 
1. 

(z )C = 5 piss 
i>1 

2. 

*Z E i! PiS -2 (I i!Pis)2 

Oz = L ! Ps 
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56 I. P. GOULDEN AND D. M. JACKSON 

3. 

&2G k! Sk fork>1, 
aZaPk M. 

4. 

&G kk-2 Sk - kkl ii+1 sk+i 
'3G k! k! S 

i>1 k! E i! Pzk+i~ fork > 1. 

Proof. 1. From (5), with [A]B denoting "the coefficient of A in B", we have 

G=5E -zfl[An]exp nS -piAt+ 
n>1 i>1 / 

Then Lagrange's Theorem applied to (6) gives 

(7) 

G 
= 

E 
1z 

{I[Ar-l] (expS i!PiAz) 
} 

Z 

5i [z]l Q), 
and the result follows immediately. 

2. Differentiating (6) partially with respect to z, and solving for ,9, we obtain 
-1~~~a 

(8) Az = (1 
- E < azS i> 1 ) 

But part 1 of this proposition gives 

aG Zi( 2 faj\(_ 

z Z. i! az 6k= o 
~iP>1Z=KSTi> i!>-d 

from (8). Now change the variable of integration to s, giving 

az J i!P ) 1 a i! pisi)d 

and the result follows. 
3. Differentiating (6) partially with respect to Pk and solving for '9s we have, 

09Pk' 

for k > 1, 

a9s_ k k+lI 5 
aPk - ( 1- i! Pis) 

Comparing this expression with (8), we obtain 

as kk kas 

aPk k! az, 
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TRANSITIVE FACTORISATIONS INTO TRANSPOSITIONS 57 

Thus, from (7), 

DCG 1 I N as ! -nlk ki OS z z ~= @ nz [z 1-Zn k Dz k ) 
?n>1 ?n>1 

IZ n[Zn11+ ( kklk) 
?n>1 

nO 

and the result follows. 
4. Part 3 of this proposition gives 

DC k kkl zk kk1 fS ( ii+1 

OPN k! i dz 10 =k-1 - i! ds, 

from (8), changing the variable of integration to s. The result follows. E 

The second of these technical results concerns the functional equation w = zew, 
and the evaluation of two Abel-type summations that arise in our verification. The 
first of these results is straightforward, but the second seems more difficult and, as 
far as we can tell, is new. 

Proposition 3.2. 1. Form> 1 let Sm = Z i j - 1-i-- Then 
i3 M i! j! 

mm mm-1 
S. 

m! m! 

2. For k, m > 1, let Tk,m= kZi>lj> i Then 
i~j=m 

Tk,m +Tm,k 
= 

(k + 
m)k+m 

(k + m)! 

Proof. 1. By Lagrange's Theorem, 

i-i ~~w dw (9) w =SE i! zi and w = = 
i>1 i>1 

Thus, for m > 1, 

Sm [Zml 11w = [Z ] W 

and the result follows from (9). 
2. Let u = w(x) and v = w(y) for w given above, so u = xeu and v = yev. Then 

T(x, y)= 5 TkmXkyM Z k=!E xk ( !Y 3 (jo?Jjk) 
km>= k>1 _ _ d 

=Skk+lk V Ify~k- 
k>1 
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58 I. P. GOULDEN AND D. M. JACKSON 

from (9). But, from (9) and using the functional equation for v to change the 
variable of integration, we obtain 

j ~d - j vkle kvdV k-k j tk-le-tdt 
JO V- 

e- - k 

_ _ _ k k -iv k i 
_ _ 

_k_ 
_ 

kk+1 (1 (k i)! v k (+1 i=S (k i)! ) 
This gives 

T(x, y) = 1_ (- -x Ek k )!y 

iv (iX Exk[Akl (ekA A))A = v(A x ZX ! ) 

by Lagrange's Theorem. Then 

__ _ _ Yu ___ yl - yxi 
T(x, y) +T(y, x)= p- =1- 1- Y E1 

Y - X V U ~~1>1 
- 

from (9). But 
Tk,m + TM,k = [Xkym] (T(x, y) + T(y, x)), 

and the result follows. D 

We can now proceed with our verification that establishes the main result. 

Proof of Theorem 1A1. Applying z9 to L(G), substituting for the terms that arise 
using Proposition 3.1, and collecting terms, we obtain 

(G)5( rnrn rn-i1 (2mm 2 2r 

zyL-m! + m! )Pms +Q (2m)! T - 
P 

+ (k Mk+m)kmm A, (k +m) Tkm -Tmk) PkPmS 

from Proposition 3.2. But, for all monomials in F, the exponent of z equals the 
total degree in p, and F is the unique series in z and p of this type whose constant 
term is 0, and whose term of degree 1 in z is zpl. But G is of this type, with these 
initial conditions, so G must be the unique solution to z 9L(G) = 0 and hence 
L(G) = 0, and the result follows. D 

4. CONCLUDING REMARKS 

We conclude with some observations of a more general nature, and points that 
deserve further consideration. 

The product over parts of the partition given in the main result is reminiscent 
of an expression in [3] (Theorem 2.3, p. 412), as has been pointed out to us by 
Richard Stanley, but it is unclear whether this is a coincidence, or whether it has 
greater significance. 

Differential equations similar to (4) can be derived for the analogous problem in 
which the factors are from any fixed conjugacy class, although we have not been 
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TRANSITIVE FACTORISATIONS INTO TRANSPOSITIONS 59 

able to obtain explicit solutions in any case except the class of transpositions. Such 
equations are special cases of the general family 

as = H 
as 
a3s, I3 S...),Pi t) 

of first order partial differential equations, where H is an arbitrary function. This 
is called a Hamilton-Jacobi equation, and is developed by a variational argument. 
Thus the minimal transitive ordered factorisations of permutations into transposi- 
tions provides a combinatorial model for one equation in this family. 

We can also give a character expression for ca, using a series with an extra 
variable u, whose exponent marks the number of factors in a transitive, ordered 
factorisation that is not necessarily minimal. Let 0 = (01, 02,...) denote the con- 
jugate of the partition 0 = (01, 02,...). Let xo be the character of the ordinary 
irreducible representation of &6 indexed by 0 F- n, and let Xo be the value of this 
character at any element of the conjugacy class CQ. The degree of the irreducible 
representation indexed by 0 is f 0. Then, using an exponential generating function 
argument for connected graphs, in the context of the proof of Proposition 2.1, it is 
readily shown that 

Fc U'4 -C) Z 1lo zm S fosoeurl(o) 
L[ ,u(a)! n! log (a m! E ) 

where so is the Schur symmetric function indexed by 0, and (see [10] and [11], p. 
64) 

r7(0) = (2)>0 X[ -2] S (22t) S (r 2) 

Numerical computation with this expression led us to conjecture the main result in 
the first place, though we have been unable to use it as the basis of a proof. Finally, 
we note in passing that 77(0) arises in the approach of Crescimanno and Taylor [1] 
in connection with a Casimir operator arising from a sum over representations. 
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