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LABELLED GRAPHS WITH SMALL VERTEX DEGREES
AND P-RECURSIVENESS*

I. P. GOULDENf AND D. M. JACKSONf

Abstract. We show that the number of labelled graphs with vertices of degrees 1, 2, 3 or 4 only satisfy
linear recurrence equations, and are therefore P-recursive. We conjecture that the number of labelled graphs
with vertices whose degrees belong to a given finite set is also P-recursive.

AMS(MOS) subject classifications. 05C30, 05A15

1. Introduction. A sequence {a, In => 0} is said to be P-recursive if it satisfies a
homogeneous linear recurrence equation of finite order, with polynomial coefficients.
Such sequences are of interest because the n-th term can be computed in time that is
linear in n, and space that is independent of n. The formal power series A(x)=
,,>=o a,x"/nl, called the exponential generating function for {a, In->_0}, is said to be
D-finite if A satisfies a linear homogeneous differential equation of finite order, whose
coefficients are polynomials in x. Stanley [8] discusses the equivalence of the D-
finiteness of A and the P-recursiveness of {a, In->_ 0}, as well as showing that many
combinatorially defined power series are D-finite.

For a c {0, 1,... }, let Go, be the set of labelled graphs, each of whose vertex
degrees lies in a, and let GI, denote the set of simple graphs in Go,. Suppose that
the number ofgraphs on n vertices in Gi, is denoted by gi,,, (n), and that the exponential
generating function for G,,, with respect to vertices is Gi,(x)= Y’,,>-_o gi,(n)x"/n!, for

0, 1. A p-regular graph is one in which each vertex has degree p, and corresponds
to the choice a {p} above.

Read [5] has shown that G1,{3) is D-finite, and it is implicit in Read and Wormald
[6] that G1,{4 is D-finite. Goulden, Jackson and Reilly [2] have shown that G0,3) and
Go,{4} are D-finite. Stanley [8] has asked whether G,p) is D-finite for all p. In this
paper we consider sets a of vertex-degrees with more than a single element. Applying
the methods developed in Goulden, Jackson and Reilly [2], we construct differential
equations which demonstrate that G, is D-finite for 0, 1 and all choices of a whose
maximum element (denoted by rn(a)) is less than or equal to 4.

Throughout this paper we denote the coefficient of x x2 in the formal power
series f(xl, x2,’’’ by/x x2 If. For details of the sum and product lemmas for
labelled configurations see Goulden and Jackson [1].

2. Preliminary cases. Certain G, can be obtained immediately by elementary
combinatorial arguments, using only the sum and product lemmas for exponential
generating functions. The first simplification is to note that G,ou e’G,,,, for 0 a,
=0, 1. Thus Gi,{ou,, is D-finite if and only if G, is D-finite, and so it is enough to

consider only the case a c {1, 2,.. } in the remainder of this paper.
For the case m(a)= 1, we immediately have Gi,l =exp (x2/2) for i=0, 1 since,

for labelled graphs with only vertices of degree 1, the connected components are single
edges, each of which has generating function x2/2.
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SMALL VERTEX DEGREES WITH P-RECURSIVENESS 61

For the case m(c) 2, we consider labelled graphs whose connected components
are paths or cycles. Thus

( x24]’ ( x2)2Go,{2} (1 X)-1/2 exp + G1,{2 (1 x) -1/2 exp

)Go,l,/= (1 x)-/ exp +--+
4 (--GI,ll,t (l-x)-1/ exp

2 4 2(l-x)
so for m() _-< 2 and 0, 1, we have directly obtained an expression for G,. Differen-
tiating these expressions once, we immediately obtain the first order differential
equation d(d/dx)G, + boG, =0, where 41 and 4o are given explicitly for each such
and in Table 1.

TABLE
Differential equations for Gi,,(x) with m(a) <- 2.

{1}
{1}
{2}
{2}
(1,2}
{1,2}

2(l-x)
2(1 -x)
2(1 -x)
2(l--x)

tO

-x
--X

x2- 2
--X

--X q" 2X 2
x(x2-2)

For the cases m(a) 3 and m(c) 4, we have no explicit expression for Gi, (x),
so we cannot proceed as we have in the previous cases m(a)- 1, 2. Instead, we follow
the indirect procedure given in the next section.

3. Symmetric multivariate generating functions for m(t)= 3, 4. Suppose that we
are interested in the sequence {cp(n)ln->0} where Cp(n)=[tt tP,]T(t), and T(t) is
a symmetric function in the indeterminates t= (tl, rE,""" ). We say that Cp(n) is a
regular coefficient of T(t). Further suppose that T(t) is expressed in terms of the power
sum symmetric functions si j_->l tj as T(t) E (s), where s (Sl, s2," ). Then Cp(n)
[y/n!]V(yl,’.’,yp), by the H-series theorem (Goulden, Jackson and Reilly [2])
where V( H(E), the H-series of E) is the solution to a system ofp partial differential
equations derived from a system of partial differential equations for E itself. If these
equations for V can be manipulated in a way that eliminates all differentiation with
respect to Yl,’",Yp-1, we can then set Yl Yp-1 =0 to obtain an ordinary
differential equation for V(0,..., O, yp)=n>__o Cp(n)y/n!, and hence deduce the D-
finiteness of V(0,..., 0, yp). This procedure has been followed for 3- and 4-regular
graphs in [2]. The following result enables us to carry it out for sets c with more than
a single element.

PROPOSITION 3.1.

gi,(n)=[t’). t’)] I-I ( Y, t(a)-k) Ti fori=O, 1
j>=l keo

where
To I-I (1 ht)-l, T1 I-I (1 + tit ).

l<--lj l<--l<j
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62 I. P. GOULDEN AND D. M. JACKSON

Proof [td td"]T is the number of labelled graphs in which the vertex with
label k has degree dk, for k= 1,..., n, when i=0. In the case i= 1, we have the
number of such graphs that are simple. Thus

gi,(n)= Y, [td dt."]T
dea

2 Z [t(’)’’" tT()]t’()-d’’’" t’(’)-d"Ti
divot dn

and the result follows, since (Ek t;"()-k)[,j=o= 1. El
This result gives the required numbers ofgraphs as regular coefficients in symmetric

power series. For each and a, with re(a)= 3 or 4, we denote the expression for this
symmetric power series in terms of s by Ei,(s) and determine Ei.(s) by applying
exp log to the generating function in Proposition 3.1. For example,

so that

t})Togo,(,2,4}(n) =It41 t4] 1-I (1 + t +
j_>_

3 -1=[t4"’" t4] I] (l+t)(1-tj) To

=[t4"’" t4,] exp { j->l log (1 + t})+ log (1- t})-I +
t_<-j

log (1 ht) -1 }
1 2k 1 }=[t2"." t4] exp ((--1)k-lt) + t}k)+ -tkttj>- k>= l<--j k

1
)k-1 }Eo,{1,2,4}($) exp Y’, (s3k + (-1 szk + (S2k + S_k)/2)

k_>l

Similarly, for all a with m(a)=3 or 4, N,(s)= exp {a+b}, where

ao 2 (s+s2k)/2k, a,= 2 (--1)k-(S--S2k)/2k
kl kl

and the b, for re(a)= 3 or 4, are given in Table 2.

TABLE 2
Power sum representationsfor log (G,,,) at with m(a

3,4.

{3}
{1,3} ,k_l SEk/k
{2,3} ,k_l (--1)k-lsk/k
{1,2,3} ,k_ (Sk--Sak)/k
{4}
{1, 4} Yk_ s3k/k
{2, 4} k_l (--1)k-l$2k/k
{3, 4} Ek (--1)k-sk/k
{1,2, 4} k (S3k +(--1)k-SEk)/k
{1,3, 4} k (S3 S4 +(--1)k-sk)/k
{,3, 4} E (s-s3)/k
{1,2,3,4} (s-s4k)/k
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SMALL VERTEX DEGREES WITH P-RECURSIVENESS 63

Of course, g,,,(n)=[t31 t3]E,,,(s) for m(a)=3, and g,,,(n)=[t4 t4,]Ei,,(s)
for m(a) 4.

4. Univariate generating functions for m(a)=3, 4. It is now a straightforward
matter to obtain a system of partial differential equations for E,, (s). For example

I(4--2(--1)k/2+Sk)Eo,{1,2,4}, k=0 (mod6)

k--0 Eo,{1,2,4} =)(3
/ Sk)Eo,{l,2,4}, k 3 (mod 6)

OSk ](1--2(-- 1)k/2+ Sk)Eo,tl,2,4), k= 2, 4 (mod 6)
SkEo,(l,2,4), k 1, 5 (mod 6).

Carrying this out for all a with m(a)- 3, we find that the H-series V(yl, Y2, Y3)-
H(Ei,) satisfies the system

V1 (c +yl) V/y2V1 / y3 V2,

(1) 2V2- Vl,=(d+fy)V+fy3V1,

3 V3-3 V2+ V,,=(e+y3)V,

where Vi... denotes O/Oy O/Oy. V, and the values of c, d, e, f corresponding to each
(i, a) are given in Table 3.

TABLE 3
Parameter values for system (1).

a c d e

{3} 0 f 0
{1,3} 0 2+f 0
{2,3} -l+f
{1,2,3} l+f 2

f

0
-1

For m(a) 4, the H-series V(y, Y2, Y3, Y4) satisfies the system

V1 c + y,) V+ y2 V1 / y3 V2 + y4 V3,

(2)
2V2- Vl d + gy2) V/ gy3 Vl / gy4 V2,

3 V3- 3 V12+ VI,,-"(e+y3)V+y4V1,

4V4-4V3-2V22+4V112- Vllll=(f/ gy4) V,

where the values of c, d, e, f, g corresponding to each (i, a) are given in Table 4.

TABLE 4
Parameter values for system (2).

a c d e f

{4} 0 g 0
{1,4} 0 g 3
{2, 4} 0 2 + g 0
{3,4} -l+g 0
{1,2,4} 0 2+g 3 -1
{1,3,4} -l+g 4 -4
{2,3,4} l+g -2 2
{1,2,3,4} l+g -2

g

0
-1
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64 I. P. GOULDEN AND D. M.. JACKSON

The two special cases of system (1) corresponding to 3-regular graphs and simple
graphs have been given in [2]. If we remove all partial derivatives with respect to
and Y2 from system (1) by means of the elimination scheme given in [2], and then set
Yl--y2--0, we obtain a second order differential equation for Gi,(x) V(0, 0, x). If
this equation is denoted by

2(x) dx--SG,.,(x)+ ,(x) G,. (x) + o(x)G,,,(x)=0,

then the values of 0, 1, 2 for each (i, a) with m(a)= 3 are given in Table A of the
Appendix. The values of g, (n), n 0, , 10, deduced from the differential equations
are given in Table B, for checking purposes.

Similarly, two special cases of system (2) have been given in [2]. The elimination
scheme which was used in [2] to obtain a second order differential equation for
G.,(x)= V(0, 0, 0, x) will only work in 4 of the 16 cases that arise from rn(a)=4
(including the two cases reported in [2]). This is because our elimination scheme
involved finding linear equations in derivatives with respect to Yl and Y4. For 4 sets
of values of c, d, e, f, g, the two equations given in [2] involve only V44, V, V,
so Vll is eliminated to yield a second order ordinary differential equation. For the
other 12 sets of parameter values, the two equations involve V44, V4, V, Vll, V1. Thus
we derive a third equation from these, involving V444, V44, V4, V, VI, V1, and eliminate
Vii, V1 between these three equations to yield a third order differential equation.

Since these third order differential equations have large polynomials as coefficients,
we do not give them here. The four cases with second order differential equations are
i=O, 1 and a {4}, {2, 4}. The cases with a {4} have been reported in [2], so we
omit them, and give the values of o, 1, , for the differential equation

d2 d
(xl-xa,,(x)+ ,(X)x a,, (x) + Co(X),,(x)=0

with a {2, 4} in Table C of the Appendix. The values of gi,{2,4}(n) for n =0,. , 10
are given in Table D.

5. A conjecture. In general, for any a, it is routine to derive a system of m(a)
partial differential equations for V(yl, Y2,""", Ym(o,)). These can, of course, be trans-
formed into a system of simultaneous recurrence equations in m(a) dimensions, which
can be used to give the required number, g,,(n)=[y/n!]V, in time which is of
order n". To enable us to calculate gi, (n) in time which is linear in n, we must first
reduce the system of partial differential equations for V(yl,’", y,,) to a single
ordinary differential equation for V(0,... 0, Ym,), as we have done in the previous
section when re(a) 3, 4. When m(a) >_- 5, we can find elimination schemes to perform
this reduction, but the computation becomes very lengthy. For example, for the 5-regular
simple graphs, with i= 1, a {5}, we have carried out the very time-consuming
elimination, and have obtained a dillerential equation for Gl,5}(x). Unfortunately, it
is of sixth order, and the degrees of the polynomial coefficients exceed 100. The first
20 values of gl,{5}(n), deduced from this equation, agree with the results of McKay
[4]. This differential equation demonstrates that Gl,{5}(x) is D-finite, but there is
certainly no guarantee that it is the lowest-order ordinary differential equation with
polynomial coefficients which can be found for GI,{5}(x).

The differential equations that we have obtained lead us to make the following
conjecture.

CONJEC’rURE 5.1. The numbers go,(n) and gl,,,(n), of labelled graphs and simple
labelled graphs, respectively, with n vertices, each with degree in a, are P-recursive for
any finite a.
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SMALL VERTEX DEGREES WITH P-RECURSIVENESS 65

From the results of this paper, it seems that k-regular graphs are computationally
equivalent to graphs whose vertex-degrees lie in a, where a has maximum element k.
It might be that certain choices of c, say a {0, 1, , k} would be more convenient
to work with, in proving P-recursiveness, than k-regular graphs because of more
"freedom" in constructions, while yielding equivalent results.

6. Plane partitions. If p(il, in) is the number of plane partitions with ij copies
ofj for j= 1,. ., n, then

p(il,’’’, in)=[tl tn] I-I (1 tj) -1 H (1 tltj) -1
j>=l l<j

=[tl t,n] I-I (1 + tj) [I (1- tltj) -1
j>=l l<-j

from Stanley [7] or Macdonald [3]. Thus if qm(n) is the number of plane partitions
with m copies of each of 1, 2,..., n, then

qm(n)=go,{m-,,m}(n).

Thus, we have demonstrated that {qm(n)ln >= 0} is P-recursive for m -<_ 4, and conjecture
that it is P-recursive for all m.

Appendix.

TABLE A
Polynomial coefficients in ordinary differential equations for Gi, (x) when m(a)= 3.

a j dj

0 {3} x(x10- lOx + 24X6--4X4--44X2--48)
--3(xl--6X8+9x6+ 18x4+ lOx2-- 8)
9X3(X4--2X2--2)

{1,3} x(x1- 18x8+ 120x6- 272x4- 324x2-120)
-3(x1- 14x + 41x + 36x4 + 2x2- 8)
9X3(X4--4X2--2)

{2,3} X1 -F x 6X 4x + lx 15x + 8x 2x + 12X 24x 24
-3(x1-2x + 2x6- 6x + 8X / 2X + 8x + 16x 8)
9X3(X4- X X 2)

{1,2,3} x 2x 14x + 24x + 74x 61X 99x
55x4-180x -48x2-96x- 24

-3(x- 10xS- 6x + 22x + 8x + 20x4 + 26x + 16x 8)
9X3(X + 2)(X3- 2X + X- 1)

{3} --X3(X4+2X2--2)
3(X + 6X + 3X6-- 6X4- 26X + 8)
9X3(X4+2X2--2)

{1,3} --X(X4--4X + 2)(X6-- 2X + 12)
3(X-2X 5X6-18X -t- 8)
9X3(X4--2)

{2,3} -x2(x9- xSq 8x -I- 14x6+ 15x +9X4- 24X3- 22X2+ 16X + 12)
3(x1+ 10x -4x + 16x6- 2x 14x4 + 34x 24x2-16x + 8)
9x3(x4 + 3x + X--2)

{1,2,3} --X(X-2x9-- 6x 12X + X x4 + 39x 10x + 24)
3(X1 + 2X + 2X --4X + 8X 2X4 + 10X 16X2-16X + 8)
9X3(X4 + X "- X-- 2)
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66 I. P. GOULDEN AND D. M. JACKSON

TABLE B
Initial values for gi., (n) when m(a) 3.

{g,,,(n)lO<=n<-lO}

{3}
{,3}
{2,3}
{1, 2,3}
{3}
{,3}
{2,3}
{1,2,3}

1, 0, 2, 0, 47, 0, 4720, 0, 1256395, 0, 699971370
1, 0, 5, 0, 186, 0, 22960, 0, 6831650, 0, 4071581010
1, 1, 4, 23,214, 2698, 44288, 902962, 22262244, 68446612, 21940389584
1, 1, 7, 47, 521, 7233, 129443, 2811701, 73203561, 2229207953, 78389689559
1, 0, 0, 0, 1, 0, 70, 0, 19355, 0, 11180820
1, 0, 1, 0, 8, 0, 730, 0, 188790, 0, 102737670
1, 0, 0, 1, 10, 112, 1760, 35150, 848932, 24243520, 805036704
1, 0, 1, 4, 41,512, 8285, 166582, 4054953, 116797432, 3912076929

TABLE C
Polynomial coefficients in ordinary differential equations for Gi.{2,4}(x), =0, 1.

j bj

0 0

0

(--X14 + 6X13 + 2X12 76 + 112X + 96X + 356X 1320X
568X + 768X + 9248X4+ 12224X 2496X2- 3968X 768)

4(X3 4X12-- 6Xt + 36X0-- 6X9+ 24X8- 352X + 380X
+ 152X + 2104X4- 1472X3 688X + 256X +96)
16(x 2)2x2(x / )2(x5 2X4+ 2X 2X + 12X + 4)

xE(xE/6xl/ 14X+ 12X 16X8 + 24X7 + 116X6- 184X
456x4+ 480x + 512x2-- 704x + 192)

4(X3 + 4X2 2Xl 20Xlo + 2X + 40X 104X 204X
+ 200X / 328X4- 288X 208X / 320X --96)
16(X-- 1)2xE(x + 2)2(X + 2X--2)(X + 2)

TABLE D
Initial values for go.{z,4}(n) and g,{2,4}(n).

{g,,{2,4}(n) IO<--- n <_-- 10}

1, 2, 9, 65,751, 13044, 320803, 10609256, 453774440, 24375801464, 1607240682376
1, 0, 0, 1, 3, 38,730, 20670, 781578, 37885204, 2289786624

Acknowledgments. The calculations were carried out by the symbolic algebra
system called VAXIMA at the University of Waterloo. VAXIMA is based on the
MACSYMA system developed at the Massachusetts Institute of Technology.
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