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Abstract 

Two settings for string enumeration are considered in which string statistics can be construc- 
ted such that the generating series for the set of all strings have the form (F-r c a)- ’ in both 
cases, where F is a formal power series and u is a sequence. The two settings are qualitatively 
different. one involving pattern, which is locally testable, and the other involving commutation 
in strings, which is not locally testable. Evidence for a common generalization of these two 
settings is considered. 

1. Introduction 

If G(z) = go + y,z + g2z2 + ... is an arbitrary power series in z and 
a = (at. a2, ) is an arbitrary sequence, then their umbra1 composition is given by 
G’) u = go + glul + g2az + ... , whenever this sum is defined. For the alphabet c I!’ of 
positive integers, we consider strings in 1 ‘*. the empty string, of length zero, con- , 
tained in 0 jr*, is denoted by c. 

In Section 2 we deal with the pattern of a string, and factorization into maximal 
n,-strings. The enumerative result is the maximal decomposition theorem (see e.g. [Z]) 
for strings and is given as Theorem 2.2. In Section 3 we deal with commutation in 
a string and factorization into commutation subsets. The enumerative result is the 
theorem for partial commutation monoids, and is given as Theorem 3.5. The combi- 
natorial information that is captured in these two situations is qualitatively different. 
The factorization associated with patterns is obtained through locally testing the 
string, and sweeping from left to right. On the other hand, the factorization into 
commutation subsets cannot be obtained by local testing in general, and requires 
repeated sweeps through the string. 
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It is therefore unexpected that for these two qualitatively different combinatorial 
faactorizations the generating series for strings in JV* have the common umbra1 form 

1 (F-loa)- )  

where F(z) = 1 +frz +f2z2 + ... is an arbitrary series withL marking, for each string 
factor, a combinatorial statistic of strings that evaluates to i. In both cases, the 
sequence a records information about the constitution of these factors. The proof of 
Theorem 2.1 given here is a new one, and is strikingly similar to those of Section 3. The 
proofs are based on first counting canonical configurations, and then ‘lifting’ them to 
the main result with a compound alphabet, and with the introduction of a combina- 
torial statistic. The special case in which all string factors associated with commuta- 
tion have size one, obtained by setting F(z) = 1 + z, is the theorem of Cartier and 
Foata [l] for the partial commutation monoid. 

In Section 4, we present the evidence that we have for a natural combinatorial 
statistic for strings that serves as common generalization of these two results. The 
generalization involves the possibility that information about nr-strings other than 
<-strings can be combined with information about commutation strings. 

2. The maximal decomposition theorem 

Let 7cr s A” x M be an arbitrary binary relation on JV, and let 7c2 = N x N - nr, 
the complementary relation. Each nonempty string s = s1 . Sk E J(r* has a unique 
pattern P(S) = 71il . . . 7Cik_> ~{nr,~~}*determinedby(sj,~j_r)~ni,forj= 1, . . ..k- 1. 
In this case, the length of s is k, and is denoted by 1~1 = k. The strings is a rci-string if its 
pattern is in XT, and is a x2-string if its pattern is in 7~:. If the pattern of a string is 
written in the form P(s) = ~7~~7~~ rck-‘rr2 . . . r~~rc~~-~, where 1i, . . . ,l, 3 1, then the 
maximal rcr-substrings of s have lengths It, . . . , I,, respectively, from left to right, and 
we call the list pK,(s) = (/r, . , l,) the maximal decomposition of s. 

For example, if rcr = {(i, j): 1 < i <j>, so we may write nl = < , then the maximal 
rrr-strings of 2 3 5 5 4 6 7 8 12 are 2 3 5, 5, 4, 6 7 8, 12, so in this case the string has 
maximal decomposition (3, 1, 1, 3,2). 

For s =sl . . . sk E JV*, let x, = x,, . . xsk, let x, = 1, and let 

^Jk = c XS 
P(s)=n?-’ 

be the generating series for 7c,-strings of length k, k > 1. We begin with a duality 
result, expressing the generating series for x,-strings in terms of the y’s by means of 
a sign-reversing involution (see Lemma 3.11 of [4] for a matrix algebra proof). 

Theorem 2.1. The generating series for z,-strings in JV* is 

1+ c x,=(1-y,+y,- . ..}-I. 
SE. 1 * 

P (S)EII f 



I.P. Goulden et al. /Discrete Mathematics 158 (1996) 77-85 19 

Proof. Let Y = {E}u{s: P(s)E$}, Y = {~}u{t: P(~)E$), and W = Y x F - {(E, 8)). 
For (s, t) = (sl . . . s,, tI . . . tn)e9?, define <(s, t) = (s’, t’) as follows: if (s,, tI)e z1 or 
s = E, then s’ = stl, t’ = t2 . . . tk; otherwise, if (s,, t 1) E rc2 or t = F, then s’ = s, . . sk _ Ir 
t’ = slit. 

Clearly, 5 is an involution without fixed points on .9?, and if wt (s, t) = ( - l)“xsxf, 
we have wt(s’, t’) = - wt(s, t), so we conclude that 

(& ?p wt(s, t) = 0. 

But the left-hand side can be rewritten to give 

s;, ( - l)‘b’XS c x, - 1 = 0 
rs5 

and the result follows on adding 1 to both sides and dividing by 

.Z,’ - l)‘b’XS = 1 - y1 + ‘iz - ‘.’ [7 

This result works noncommutatively, since there is no reordering of symbols in the 
above proof. Next we deduce the maximal decomposition theorem [33, for enumerat- 
ing strings with respect to maximal decompositions, by ‘lifting’ the above result using 
a different alphabet. 

For P,,(S) = (4, . . . ,&A, let fP,I(sj =A, . . . fi,. The result involves the sequence 
y = (;J~, y2, . . ) of XI-string generating series. This is the first of the pair of generating 
series of the form (F-l 0 a)- ’ for strings in JV*. 

Theorem 2.2. The generating series for strings in s 4’* with respect to pn, and itself is 

Proof. Consider strings on the alphabet d of n,-strings, with binary relations 

n’l” = {(sl . . . Sk, t, . . . t,): (Sk, tl)E nl] 

and its complement 71 1” For s in d, mark it byf;,, . x,. With these replacements, we 
apply Theorem 2.1; the left-hand side of the theorem becomes 

since every string s in B can be written uniquely as a string (r1c2 . . . in d* whose 
constituent 71 \“-strings cl, (TV, . are the maximal n,-strings of s. The right-hand side 
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of Theorem 2.1 becomes 

But each or . . . (Tk in the above sum, regarded as a string in X*, is a n,-string 
of length 1~~) + ... + Igkl. Thus the right-hand side becomes, with 
1011 = ir, ,Igk[ = ik, 

( i -l l+C c k>oi,+~;L,=m(-fll) . ..(-fi.) Ym 
m2l I 1) 

il -.ir, 2 1 

-1 -1 

= 1 + c ( i ma1 

Czrnl ,& (1 - Jwk I/m 1) ( = 1 + 1 {Cz”l~w’}lh 
In21 ) 

as required. 0 

This result also works noncommutatively in the f;‘s. 
Note that although Theorem 2.2 has been obtained from Theorem 2.1 (by changing 

the alphabet), we can also obtain Theorem 2.1 as the special case fl = 1, 
f2=f3= . . . = 0 of Theorem 2.2 (on the same alphabet), so these results are equiva- 
lent. This result has many applications to string enumeration (see e.g. [2]) by 
appropriately specializing the series F and the sequence y. 

3. Partial commutation in strings 

Let (i ) denote the set of all unordered pairs of distinct elements from J’, and let 
V be an arbitrary subset of (i ). Equivalently, in the context of the previous section, we 
can regard %? as a symmetric, irreflexive relation on JV x JV. Suppose that any pair of 
symbols in (?Z are allowed to commute when they appear in adjacent positions in 
a string, and that two strings in Jr* are equivalent if one can be transformed into the 

other by allowable such commutations. A string in J1 f* is said to be canonical if it is 
lexicographically largest (with respect to the usual total order on .,V) among all strings 
to which it is equivalent. Let (M*) denote the canonical strings in .,tV*. 

Forexample,wheng=(A)-{{2,4}}, thestrings43324111and322444are 
canonical, but 3 3 4 3 2 is not. 

The generating series for canonical strings is due to Cartier and Foata [l] and is 
given below in an adapted form. The following notation is needed. A commutation 
subset is a nonempty subset of JV, each pair of which belong to %Z’; sets of size one are 
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commutation subsets. Let corn(%) denote the set of all commutation subsets asso- 
ciated with ‘6. For x = ‘i , 1, .‘. ?l,,,j ’ ~com(H), when m > 1, let s, = .Yil . xi,,, and 

(‘nr = 5, -x,. (1) 

I Ii = WI 

Theorem 3.1. The generating series Jor- cmonicul strirlgs in I ‘* is 

Proof. We introduce the sets Y = [@)u%, %. = (.,I ‘*), and +V = I“ x %” - ((0, 8)). 
For (r, s) = ((x1, . . . ,x,,\, s, . s,) E %/, with c(r < ..’ < rm, define 5 (I, s) = (x’, s’) as 
follows: let Si be the largest symbol in s that commutes with everything in x and for 
which s is equivalent to a string with Si in the left-most position. Then, if cy = 0 or 
2 < S- then x’ = XU(S~], s’ = IA, where s = siU with UE (L 1 ‘*). Otherwise, ifs = I: or 111 I 
ml > Si then 2’ = x - (u.~), ,’ - s - 1,s. canonically reordered. 

Clearly, l is an involution without fixed point on i2/, and if wt(a, s) = ( - l)~“‘s,s,, 
we have wt(x’, s’) = - wt(x, s), and the result follows as in Theorem 2.1. 0 

This is a duality result similar in form to Theorem 2.1. This theorem does not work 
noncommutatively in general; indeed the sign-reversing involution < given above 
(from [6]) in general requires reordering of symbols while the involution 4 given in the 
proof of Theorem 2.1 does not. However, Theorem 3.1 is true up to equivalence; that 
is, by allowing -YiXj = xkxi for (i, j) E % 

We now consider strings in com(%*), that is, strings of commutation subsets. We 
define a partial order on corn(%) such that r<b whenever all elements of x are smaller 
than all elements of /J’. Suppose that any pair a, fi of subsets in corn(%) are allowed to 
commute when they are comparable and each element of x commutes (with respect to 
VI itself) with each element of fi. Two strings of commutation subsets are equivalent if 
one can be transformed into the other by allowable such commutations. A string in 
corn(%)* is said to be cunonicul if it is lexicographically largest (with respect to the 
above partial order) among all the strings to which it is equivalent. Let (corn(%)*) 
denote the canonical strings of corn(%)*. 

For example, when % = ( : ) - ( (2,4j-) then [l, 3) and [S, 6,s) commute, (2,5) and 
(7) commute, but {1,4j and j3), (2, 5) and (4,9). j2. 3’, and (4,6. 7) do not commute. 
The string {4.6,7] (1, 31 (2, 5j, is canonical and equivalent to (1, 3) (4, 6, 7) (2, Sj. 

The following result, giving the generating series for canonical strings of commuta- 
tion subsets, follows from Theorem 3.1 by lifting to the alphabet of commutation 
subsets. For r.r = x1 ... XkEcom(%)*, let L(o) = (Ixrl, . ,Ix~[) and .x0 = x,, ... slk. 

Theorem 3.2. The generating series ,fbr canonical strings in corn(%)* is 
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Proof. Consider the strings in com(%?)* with the commutation defined above, mark- 
ing a E corn(V) by J;,, x,. Now we can apply Theorem 3.1 with these replacements; the 
left-hand side becomes 

For the right-hand side we use the fact that {c~i, . . . , elk) is a commutation subset on 
the alphabet corn(V) whenever al i, ... tix, is a commutation subset on the alphabet 
$Y,ofsizelail+ ... + 1~~1, with its elements totally ordered from left to right when 
partitioned into c(i, . . . ,xk. This gives, with jcxi( = il, . . . , ICQ[ = ik, 

kb0 il+.,.+ik=m 
i* . ..ik > 1 

This reduces to (F-’ 0 c)- ‘, as in Theorem 2.2. 0 

Again, note that although Theorem 3.2 has been obtained from Theorem 3.1 (by 
changing the alphabet), we can also obtain Theorem 3.1 as the special casefl = 1, 
f2=f3= . . . = 0 of Theorem 3.2, so these results are equivalent. 

Thus, we see that both (F- ’ 0 c)- ’ and (F- ’ 0 y)- ’ are combinatorial generating 
series. The connection between them can be made more striking by a simple combina- 
torial operation. 

Lemma 3.3. For UE JV and CJE (corn(%)*), construct $(a, a) = B’ as follows. 
Case 1: 1j{a}0~ (corn(%)*) then 0’ = (010. 
Case 2: Otherwise, there is a string equivalent to CJ with a left-most element that 

commutes with {a}. Let p be the largest such element and suppose that o is equivalent to 
j3w. Then a’ is the element of (corn(%)*) that is equivalent to ({a}uB)w. 

Then $ is a bijection between N x (corn(V)*) and (corn@?)*) - {F}. 

Proof. By construction, a’E (corn(%)*) in both Cases 1 and 2. Moreover, we can see 
that the procedure is reversible as follows. Consider an arbitrary nonempty a’ in 
(corn(V)*). If the left-most set in a’ has a single element, Case 1 must have been used 
in the construction, so that element is a, and the remaining sets form a canonical 
string, which is a. Otherwise, if the left-most set in a’ has more than one element, then 
Case 2 must have been used in the construction, so the smallest element must be a, the 
remaining elements form a commutation subset, giving /$ and the remaining sets form 
the string w. But pw need not be canonical, so reorder j?w to get the canonical 
equivalent string a. The result follows. 0 

We now define a statistic for strings. 
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Definition 3.4 (A string statistic). For s = ir . . ik E ., 1^*, the statistic prb is defined by 

p,b-) = U&(s)), where 

q&(E) = E, 

4% (ij . . . ik) = $(jj, 4s (ij+ 1 . . i,J), j = k, k - 1, . . , 1. 

For example, to calculate & (4 12 4 6 3 3) when %? = ( : ) - 
create & (3), & (33)) . . as follows: 

{ {2,4) }, we successively 

{3}, (3) {3}, (6) (3) {3}, (4,6$ {3} 131, (293) {4,6) (31, if, 2,3} {4,6} {3}, 

and &(4124633) = (4) {l, 2, 3) {4,6) (3}, so &(4 124633) = (1,3,2, 1). 
As a further example, for this choice of %Y’, the values of & and pW for the 24 

permutations of { 1,2, 3,4} are summarized in Table 1. 
Therefore, in the presence of partial commutation, we obtain the second of the pair 

of generating series for strings in L I’* of the form (F-l ~w- ‘. 

Theorem 3.5. The generating series for strings s in ,$“* with respect to pu and s itself is 

,;* .f&xs = v-l -‘cl-‘. 

Proof. Suppose that C&(S) = cr for SE _k”*, OE (corn(W)*). Then from the above 
description of pa, we immediately have x, = X, andf&,, =fL,OI. But $ is a bijection, 
so c,& is a bijection between ,V* and (corn(%)*). Thus, 

Table 1 

3241 (31121 j4) (1) (l,l, 1,l) 
4321 (4) c3i (2) (11 (l>l, 1.1) 

2413 12) (4) (1 3) 
3214 13) {2) (14) 
4213 (4) (2) (1 3) 
4312 (4) 13) {12) 

2143 (2) {14} (33 
2341 (2}{34) (1) 
3124 (3) {12) (4) 
3142 (3) {14) {2) 

(1,1.2) 
(1,1,2) 
(1,1.2) 
(L1.2) 

(1.2.1) 
(1.2.1) 
(1,2,1) 
(1.2,1) 

4132 (4) (13) j2) (1,2.1) 
4231 {4}(23) (1) (1,2,1) 

2134 j2) (1341 
4123 (4) (1 23) 

1324 (13) j2} 14) 
1432 (14) /3] (21 
243 1 j23) j4) (1) 
3421 /34i (2) [I) 

1234 (12) (34; 
1423 ;I 4) (23) 
2314 123) (14) 
3412 (34) (12; 

1243 (123) 14; 
1342 (134) (2) 

(133) 
(1,3) 

Gl,l) 
(2,1,1) 
(2,I> 1) 
(Ll, 1) 

(2,2) 
CL21 
(2>2) 
(2,2) 

(3>1) 
(3>1) 
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The result follows by identifying the sum on the right-hand side by means of 
Theorem 3.2. 0 

Note that, for SE (,I/"*), pc(s) consists entirely of l’s since, in this case, &(s) consists 
entirely of singletons (at every stage we are in Case 1 of $). Thus when fi = 1, 
f2=,f3= . . . = 0. Theorem 3.5 reduces to Theorem 3.1. 

4. The interrelation of the results 

If %? = (6) then px(s) = p=,(s) where 7c1 = < and the commutation subsets for px 
are read as increasing strings for pnI, since no reordering is needed when implementing 
Case 2 of II/ in Lemma 3.3 SO, in this case Ci = yi, for i 3 1, where 7i is the generating 
series for increasing strings. Moreover, ;ji is the ith elementary symmetric function. 
Thus, when W = (i) and x1 = < , Theorem 3.5 and Theorem 2.2 agree. 

The similarity of form of the generating series in Theorems 2.2 and 3.5, and indeed of 
the proofs of their underlying results Theorems 2.1 and 3.1, suggest that there might be 
a generalization containing all of these results as special cases. For example, if VV~ is the 
generating series for n,-strings whose elements form a commutution multiset, a commu- 
tation subset with repetition, and w = (MS~, We. . . . ), then such a generalization might be 
a combinatorial string interpretation for the generating series (F-’ 1 w)-‘. 

Of course, when rc, = < , this is exactly what Theorem 3.5 provides, since in this 
case wi = Ci, i > 1. If we explore this further with 7c1 = <, then in this case wi = di, 
i 3 1, the generating function for commutation multisets of size i. Moreover, we find 
that the results of Section 3 all extend in this case, to yield a combinatorial string 
interpretation for the generating series (F- ’ od)-‘, with d = (d,, d2, ). In this case 
the canonical strings of Theorem 3.1 exclude those in which there are adjacent 
repeated occurrences of a symbol. The description of all the mappings extend, with 
various occurrences of < replaced by d , since d is transitive. 

However, this cannot be true in general without further conditions, for it fails at 
least for some choices of nl and %?. For example, if rc, = {(l, 2) (2, 3) (3, 2) (2, 1)) and 
g=(i)-{1,3$, then xq=.xg= ... =0 gives w,=xI+x,+xg, w~=?c~-Y~+ 
x2.y3 + x3x2 + x2x1, IVY = x3x2x3 + x2x3x2 + xlxz.xl + x1x1x2, and, in commuting x’s, 

[.x,xzx3]{1-W1+w,-w~+ . ..1_‘=6-8=-2. 

so there are negative terms in the expansion, denying a combinatorial interpretation. 
For an alternative approach that generalizes Theorems 2.1 and 3.1, but not 

Theorems 2.2 and 3.2 see [S, Ch. 6, esp. Example 5, p. 111-j. 
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