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TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 348, Number 3, March 1996 

CONNECTION COEFFICIENTS, MATCHINGS, MAPS AND 
COMBINATORIAL CONJECTURES FOR 

JACK SYMMETRIC FUNCTIONS 

I. P. GOULDEN AND D. M. JACKSON 

ABSTRACT. A power series is introduced that is an extension to three sets of 
variables of the Cauchy sum for Jack symmetric functions in the Jack param- 
eter ae. We conjecture that the coefficients of this series with respect to the 
power sum basis are nonnegative integer polynomials in b, the Jack parameter 
shifted by 1. More strongly, we make the Matchings-Jack Conjecture, that the 
coefficients are counting series in b for matchings with respect to a parameter 
of nonbipartiteness. Evidence is presented for these conjectures and they are 
proved for two infinite families. 

The coefficients of a second series, essentially the logarithm of the first, 
specialize at values 1 and 2 of the Jack parameter to the numbers of hypermaps 
in orientable and locally orientable surfaces, respectively. We conjecture that 
these coefficients are also nonnegative integer polynomials in b, and we make 
the Hypermap-Jack Conjecture, that the coefficients are counting series in b 
for hypermaps in locally orientable surfaces with respect to a parameter of 
nonorientability. 

1. INTRODUCTION 

Let Jo(x; ae) be the Jack symmetric function of x = (xl, x2, . ... ), indexed by a 
partition 0 and an indeterminate ae, with norm (Jo, J)a. Let P be the set of all 
partitions, with the null partition adjoined, and let 101 be the integer partitioned 
by 0. In this paper we study the series 

1 
(1) 1(x, y, z; t, oz) = E (J J ) Jo (x; oa)Jo (y; ae)Jo(z; ae) tI 0' 

that is associated with matchings and with the connection coefficients of the double, 
coset algebra of the hyperoctahedral group, and the related series 

(2) T(x, y, z; t, ae) = aet,a log (Dx, y,z; t,a), at 
that is associated with 2-cell embeddings of maps in locally orientable surfaces. 

Most of our attention is focussed on 4, and its properties. However, since 'I offers 
substantial evidence of the significance of these two series, we will digress briefly 
to describe its combinatorial background, and then return to 'I again only in the 
final section. The major portion of this paper therefore can be read independently 
of the combinatorial background of I. 
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874 I. P. GOULDEN AND D. M. JACKSON 

The Jack symmetric functions specialize at a = 2 to zonal polynomials and at 
a = 1, suitably scaled, to Schur symmetric functions. They were introduced by 
the statistician Henry Jack [11], and have been the subject of substantial recent 
interest in combinatorial theory (e.g. [3, 8, 9, 14, 16, 18]), especially motivated by 
Macdonald's [16] presentation at the 1985 Durham Symposium. In the context 
of the uniform algebraic treatment applied to symmetric functions (see, for exam- 
ple, [17]) as a whole, @ can be regarded as an extension of the Cauchy sum (10) 
to a third set of indeterminates. Another instance of such a sum is given in [1, 2]. 
Indirectly, the conjectures about ( and ' that are described below offer some sup- 
port for the possibility that ae, the Jack parameter, may itself have a combinatorial 
role. 

1.1. Combinatorial background of T: hypermaps. The study of ' originates 
in recent work on hypermaps reported in [6, 12, 13], where the specializations of 'P 
at ae = 1 and 2 are identified as generating series for hypermaps in orientable and 
locally orientable surfaces, respectively. 

Recall that a locally orientable surface is closed, without boundary and either 
orientable or nonorientable. A map in a locally orientable surface is a 2-cell embed- 
ding of a graph in the surface, so the deletion of the edges of the graph decomposes 
the surface into regions homeomorphic to open discs, corresponding to faces of the 
map. The vertices and edges of the graph are the vertices and edges of the map. 
A hypermap is a face two-coloured map, so each edge separates faces of different 
colours. The hyperedges of the hypermap are the faces of one (specified) colour, and 
the faces are the faces of the other colour. The face distribution is a partition whose 
parts list the degrees of the faces, the hyperedge distribution lists the degrees of 
the hyperedges and the vertex distribution lists the number of hyperedges incident 
with the vertices. A hypermap is rooted by distinguishing a unique side and end 
of an edge bounding a hyperedge. Regarded as a hypermap, a map corresponds 
to a hypermap in which all hyperedges have degree two (and these can then be 
identified to give a single edge), so the embedding theory of maps is recoverable 
from the embedding theory for hypermaps. 

Let mA/ and IA respectively, be the numbers of rooted hypermaps in orientable 
and locally orientable surfaces, with vertex distribution ,u, face distribution ii and 
hyperedge distribution A. The generating series for mi, has been investigated ex- 
tensively by Jackson and Visentin [12, 13], through the combinatorial relationship 
between orientable maps and permutations given by rotation systems, while the 
generating series for l, has recently been determined in [6] by using a combinato- 
rial relationship between locally orientable maps and matchings. These generating 
series are also called genus series. 

The power sum basis of the ring of symmetric functions affords a convenient 
basis for the presentation of the genus series. Let pa be the power sum symmetric 
function indexed by A. 

Theorem 1.1. The genus series for hypermaps in orientable and locally orientable 
surfaces, respectively, are given by 

1) Ztn E m>,p/(x)p,i(y)pw(z) = (x,y,z;t,1), 
(3) n>1 A,fp,vt-n 

2) Ztn E I >,PA(x)P,uj(Y)P(z) P(x, y, z; t, 2). 
n>1 A,fp,vw-n 
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JACK SYMMETRIC FUNCTIONS 875 

The parts of Theorem 1.1 were originally stated directly in terms of Schur func- 
tions and zonal polynomials. The purpose of this paper is to study the consequences 
of the above uniform identifications of the right-hand sides of this theorem, as dif- 
ferent specializations of the series T. 

In view of these results, we define the hypermap series hA,(b), by 

(4) T (x, y, z; t, 1 + b) = t t h'X (b)pa (x)p,, (y)pv (z) 
n>1 Aj,-,vrin 

The theory of Jack symmetric functions then implies that the hypermap series are, 
in general, rational functions of b. However, in a computational investigation, we 
found that the hypermap series appeared actually to be polynomials in b, and in 
Section 6 of this paper, we conjecture (the Hypermap-Jack Conjecture) that 

h>7(b) = Zb( 
M 

where the summation is over hypermaps M in locally orientable surfaces with vertex 
distribution ,u, face distribution ii and hyperedge distribution A, with respect to a 
combinatorial statistic O correlated with the nonorientability of hypermaps. 

1.2. Combinatorial background of 4): matchings. In obtaining evidence for 
the above conjecture, we found T to be mathematically tractable only through 
its relationship (2) with the series 4). Moreover, the combinatorial derivations of 
Theorem 1.1 given in [6, 12, 13] involve the specialisations of 4) at ae = 1, 2 in an 
essential way, as the generating series for connection coefficients of two commnutative 
algebras. Thus we were led to a study of 4) itself in the power sum basis, and define 
the connection series c>>,(b), by 

(5) 4D(x,y,z;t,1 + b) = c>,(b) tC I (x)pu (Y)Pt' (z), 
Zt>1 S\Pv_ (1I+ b)1()n 

where 1(A) is the number of parts of A and CA is the conjugacy class of the symmetric 
group indexed by A. Note that the coefficients in this basis are scaled by a nontrivial 
function of A. Again the theory of Jack symmetric functions implies that the 
connection series are rational functions of b, yet computationally we found that they 
appeared to be polynomials. A combinatorial investigation of the connection series 
was then carried out, as suggested by the matchings representation of hypermaps 
used in [6]. Thus, in Section 4 of this paper we conjecture (the Matchings-Jack 
Conjecture) that 

c>> (b) = Zbwt (6), 

where the summation is over a particular subset of matchings 6 and wtA is a com- 
binatorial statistic correlated with the nonbipartiteness of matchings. 

1.3. Organisation of the paper. Section 2 gives the properties of the Jack sym- 
metric functions that will be required, and the definitions of two commutative 
subalgebras of the group algebra of the symmetric group and their connection co- 
efficients. The two algebras are the class algebra of the symmetric group and the 
Hecke algebra associated with the hyperoctahedral group. In Section 3, we demon- 
strate the relationship between the connection series c\ (b) and the connection 
coefficients of the two algebras. We obtain some explicit marginal sums for the 
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876 I. P. GOULDEN AND D. M. JACKSON 

connection series and some explicit evaluations of it for certain values of A. These 
are obtained by extensive use of the properties of Jack symmetric functions that 
are given in Section 2. In Section 4 we give the relationship between the connection 
coefficients of two algebras and classes of matchings, and we state the Matchings- 
Jack Conjecture. In Section 5 we exhibit two combinatorial statistics for matchings 
associated with two particular choices of A. We prove that the generating series 
for matchings with respect to these statistics are the connection series explicitly 
evaluated in Section 3, thus establishing the Matchings-Jack Conjecture for two 
particular infinite subfamilies of matchings. In Section 6 we turn our attention 
to P and its coefficients, the hypermap series, and we state the Hypermap-Jack 
Conjecture. Evidence for the truth of this conjecture is presented. 

2. BACKGROUND 

2.1. Partitions. If A = [A1, A2.... ] is a weakly decreasing sequence of nonnegative 
integers, then A is a partition of n = A1 + A2 + * * , and we write JAI = n, or A H n. 
The number of nonzero Ai in A is denoted by 1(A). The set of all partitions (including 
the single, empty partition of 0) is denoted by P. If ,u = [Al, /2'2,...] is another 
partition with I,ul = JAI, then the partial order < is defined for P by: ,u < A 
whenever /11 + .. +,i < Al + . + Ai for all i > 1. The partition 2A is given by 
[2A1, 2A2,...]. The conjugate partition to A is given by A' = (A, A',...) where A'. 
is the number of i such that Ai > j for j > 1. 

A partition A is identified with its Ferrers diagram 

A= {(ij) : 1 < i < (A), 1 < j < Ai}. 

For each lattice point x (s,t) in A, 

a;\(x) = {(s, j) E A: j > t}J is the arm-length of x, 
IA(x) = {(i,t) E A: i > s}I is the leg-length of x, 

hAx(x) = a;\(x) + I\(x) + 1 is the hook-length of x. 

The product of all the hook-lengths in A is denoted by 

HA = fJ hx (x). 
xCA 

When convenient, we also write A = [1a12 a2 ..] where ai is the number of times 
that i appears as a part in A. 

2.2. Jack symmetric functions. The following notation is well established (see 
Macdonald [15] for more details). The symmetric functions in x = (x1, X2,...), 

indexed by partition A E 'P are denoted by: mA (x), monomial symmetric function; 
pA (x), power sum; sA (x), Schur function; ZA (x), zonal polynomial; JA (x; ca), Jack 
symmetric function. - We will also consider symmetric functions of y = (YI, Y2,... ), 
z = (ZI, Z2,...), and corresponding finite sets Xn = (xl,... , Xn)) Yn and Zn, but 
suppress the arguments where there is no ambiguity. 

An inner product ( , ) c is defined on the vector space of symmetric functions of 
bounded degree, with coefficients that are rational functions in the indeterminate 
ae over the rationals, by 

(PA,,p t P') cl(A JAIa 
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JACK SYMMETRIC FUNCTIONS 877 

Macdonald [15] has proved that the Jack syinmetric functions are uniquely deter- 
mined by the following three properties: 

(I) (JA, Ji)a = 0 for A 5, t) 
(6) (II) [m,]jJA = 0 unless ,u < A, 

(III) [m[1h]]IJA = n! for all A H n, ) 
where [A]B denotes the coefficient of A in B. For the purposes of the present work, 
the natural basis for the Jack symmetric functions is the power sum (symmetric 
function) basis. The first few Jack symmetric functions, expanded with respect to 
this basis, are 

J[i] = P1, 
=2 

J[2] Pi + CeP2i 

J[12] P1P2, 

J[3] = P3 + 3PP2P' + 2ot2p3, 

J[2 1]= p 3+ (a -1 )P2P1-caP3, 

J[13] = p3-3P2P1 + 2p3. 
In general, properties (6) together with basic facts about symmetric functions, 
imply that the coefficients in these expansions are rational functions of ae over the 
rationals. It has been conjectured that the coefficients are in fact polynomials in 
ae over the integers. This conjecture remains open, and the reader is directed to 
Macdonald [16] and Hanlon [8] for a discussion. 

2.3. Technical results for Jack symmetric functions. The. technical results 
about JA that are essential to the argument are grouped below, and stated without 
proof. These, together with many other results and a systematic development, have 
been given by Stanley [18]. 

Specialization 

(7) JA(x; 1) = HAsA(x), 1 
JA(x; 2) = ZA(x). f 

Single-part partition 
(8) 

J[n](x;ca) = E?>n C.n(a)pA(X), 

JA((t,0,0,. a) 0, if 1(A) > 1, 
- (1 + a)(1 +22a) (1 + (nr-1)a)tn, if A=[n]. J 

Norm 

(9) (A>I A>)( e fix E\ (aa>\(x) + 1I>(x) + aR) (aa>\(x) + 1I>(x) +1)l 
(9) (J[n]J[n]) = n!an(1+a)(1+2a) .(1+ (n-l)o). + J1), 
Cauchy Identity 

(10) (JoJo) (X; e) Jo(y; e) =I7 (1 - Xiyj)1/ 

A power sum coefficient 

(11) i2ppn-2]Jc(= a 
) A -( A /) for A n. 
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878 I. P. GOULDEN AND D. M. JACKSON 

As eigenfunctions 
(12) 

D(xm; a)JA(xm; a) a Ai Ali + (n-1) I A JA(x,;a), 

where, for a finite set of indeterminates, the generalized Laplace-Beltrami Operator 
D (xm; a8) is defined by 

_m1 2 m9 2 
(13) D(xm; a )) = Zx + ZEE T iX 

An immediate consequence of these is the next result, specializing <D to forms 
involving Schur functions and zonal polynomials. 

Proposition 2.1. 

1) (D(x, y, z; t,1) = ZHo se(x)se(y)so(z)t'90, 

2) 4)(x,y,z;t,2) = E f- Z(x)Ze(y)zo(z)ti. 
P foE H20 

Proof. 1) We have (Jo, Jo), = Ho2 from (9), and the result follows from (7). 
2) We have ( Jo, JO)2 = H20 from (9), and the result follows. from (7). 

2.4. The two commutative subalgebras and their connection coefficients. 
The two commutative subalgebras of the group algebra of the symmetric group 
that are needed are defined below. The essential results are stated without proof, 
and for a more complete development the reader is directed to Hanlon, Stanley and 
Stembridge [10]. 

1) The class algebra: Let CA E CE5O be the formal sum of the elements in 
the conjugacy class CA of En, for A H- n. Then {CA: A H- n} is a basis for the class 
algebra, a commutative subalgebra of CG5, with connection coefficients 

(14) a = [CA] C 
2) The double coset algebra: Consider the hyperoctahedral group 73n as a 

subgroup of the symmetric group G2n. The double cosets of G2, with B, have the 
partitions of n as a natural index. Let ICA be the double coset indexed by A F- n 
and let KA E CG2,l be the formal sum of the elements of KCA. Then {KA: A H- n} 
is a basis for the double coset algebra, a commutative subalgebra of cCG2,, with 
connection coefficients 

(15) bA = [KA] K K. 

The generating series for these connection coefficients with respect to the power 
sum symmetric function basis are given in the following theorem. 

Theorem 2.2. 

1) 4D(x,y,z;t,1) = 1?+ZEtn S aA ICAIp,(x)p,u()pv(Z) 
n>1 A,p,u,^n 

2) 4)(x,y,z;t,2) = 1? 5+ tn 
b A I CA 

n>1 Aq,A,0-n 
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JACK SYMMETRIC FUNCTIONS 879 

Proof. 1) From [6] (see also [12, 13]), 

1 + Et tn E . ICA I,, (X)Pp (y)PV (Z) = E Hos8(x)8s(y)8s(z)t1016 
n>l \ >,p,0n OEIP 

The result follows from Proposition 2.1(1). 
2) From [6], 

1+ ZtAZ H v 2!2l(A) )P()P () = z; Ze(x)Ze(y)Ze(z)tlol 

The result follows from Proposition 2.1(2). 0 

3. THE CONNECTION SERIES AND A POSITIVITY CONJECTURE 

3.1. The connection series. FRom (5), the generating series for the connection 
series c\, (b) is 

(16) 
@( t 1 b) 1 E tn E cAl,Cl\ v(b) IC,AI()()() 

4P(x y,z; , I+ b ?=1 1:t AH (1+bl()n PI(X)pp (y)Pw,(z). 

The reasons for writing the Jack parameter as 1 +b will become clear in Section 4, 
where b is conjectured to have combinatorial meaning. FRom the basic properties 
of Jack symmetric functions, in general c>,,(b) is a rational function of b for all 
A, g, v F- n. The relationship of the connection series to the connection coefficients 
of the two algebras, that has been alluded to in the Introduction, is given next -and 
follows immediately from (16) and Theorem 2.2. 

Proposition 3.1. For A, , v H n, 

1) c\,(O) = a> 

2) c>,(1)= 

3.2. Specific evaluations. Although explicit information about c>\(b) is not easy 
to obtain in general, it is possible to determine some marginal sums and explicit 
evaluations using the technical results for Jack symmetric functions given in Sec- 
tion 2.3. These will furnish evidence in support of the subsequent conjectures. 

a) The marginal sums. We first obtain marginal sums over ,u (or vi), and 
marginal sums over ,u and v. 

Lemma 3.2. 

1) ,c>,,(b)= c, (b) = IC, I (1 + b)n -I(A) for A,g Fr n, 
0-n 0-n 

2) E c>,(b) = (n + (n - 1)b)(n - 1 + (n - 2)b) ...(3 + 2b)(2 + b), for A F- n. 
,uvzHn 

Proof. 1) Under the substitution z = (1, 0,....) = el, we have pv(el) = 1 for all vi, 
from (8). Thus from (16) 

iCihn = Ltn !(1Xb)I(A) (x,y,el;t,I +Jb) 
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880 I. P. GOULDEN AND D. M. JACKSON 

But Jo(ei; 1 + b) = 0 for 1(0) > 1 from (8) so by (1) 

(D(x y, l; t I +b) (Jn t[n]+ J[n] (x; I + b) J[nl](Y; 1 + b)J[n] (el; 1 + b) 

S t I, CAI (1 + b) n 
(A )pA (x) Cj,j I (1 + b) n-Thl()p) (Y +) 

n>?0 \,A-nn!I+bn 

from (8) and (9), since 

J[n] (el; 1 + b) _ (2 + b)(3 + 2b) ... (n + (n - 1)b) 
(J[n] i J[n] ) 1+b n! (I + b)n (2 + b) (3 + 2b) ..(n + (n -1)b)' 

The result follows. 
2) This follows by summing result (1) above over [t Hr n, using the cycle index 

polynomial, or considering the two specializations y = e1, z = e1 and proceeding 
as in the proof of (1). 

b) The case A = [In]. We can explicitly evaluate cA\(b) in this case in a 
compact form. 

Lemma 3.3. For ti, v H n, 

c[1] (b){C (1 + b) nl(">), At 

Proof. From (16), 

c [1n] (b) = [tnPi)P Yxb) ] (x, yz; t, 1 + b) 

n[(1 + b) (Jo0)1+b 

since [pln] Jo =1 for all 0 F- n, from the property (III) of the Jack symmetric 
functions (6). But from the Cauchy Identity (10), 
(17) 

E (> >)1 JO(y; 1 + b)JO(z; 1 + b)t101 
-7 

YZt)(1l 
0 P(JO, Jo)1--b i,j>1 

exp 1 E tk (Y)Pk (z)} 

tn IC_ I 

n>?1 7ynHn ri(I + b 

and the result follows. F1I 

c) The case A = [2 1n-2]. In this case we give a generating series. The result is 
more complicated, but will be needed in Section 4 in the discussion of a conjectured 
combinatorial interpretation for c (b). 

Lemma 3.4. 

5 2 ti~()p() 
(C -2)! 5 CV 2](b)p4(y)p,(z)= Iexp2i(l+ b)i- Pj- 

n>2 \ j>l 
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JACK SYMMETRIC FUNCTIONS 881 

Jbk k-1 

(1 + b)k 2tk2 - l)Pk(Y)Pk(Z) + E(Pk(Y)Pi(Z)Pk-i(Z) 
k>2 i=1 

+ Pk (Z)Pi (Y)Pk-i (Y)) } 
Proof. The differential operator 

m 02 m 

(18) D(ym;ca) = 2m 02 m *i* a 
i =1 j=,i 

can easily be expressed in the form 

(19) ~~~~1m 
(19) D(ym;ca) = D(ym;ca)-(m- M)Zyi 

i=1 

where D(ym; a) is the differential operator given by (13). But Jo(ym; a) is a ho- 

mogeneous polynomial of total degree 101 in Yi, so 

S Yi Jo (Ym; a) =0 1 Jo (ym; ), 

and from (11), (12) and (19), 

(20) D(ym; ax) Jo(ym; a) ([P2P1 IJe) Je(ym; c), 

for each m > 1. Now let 

(21) 
F 

n> 2 (n - 
2)! (1 + b)n-1 

S 
n>2 t,- 

Applying (20) to (1) and (16) gives, for each m > 1, 

(22) F = D(ym; a)G 

where 

(J, J bJ(Ym; I1 + b)J6(z; 1 + b)t 

m 

11 17(1,- Yizj)-l/(l+b) 
i=lj>l 

from the Cauchy Identity (10). Thus, from (17) 

a 
G = GbE tkyk-1p(z) 

oyi I + bk>1 

and differentiating further yields 

(23) 

Yi2 = tk1?b {tk(7 1)yipk(z)? 1?b ZtkYpk(z) 
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882 I. P. GOULDEN AND D. M. JACKSON 

and for i j, 

(24) YiYj ( G = - E C Pk 
Yi -Yi y Oj l+ bZEt Pk (z)ZEY?~'YJ 

k>2 1=1 

Now combining (23) and (24) with (18) and (22) gives, after routine manipulation, 

F 2( + b) tk {b(k - 1)Pk (Ym)Pk (Z) 
2( )k>2 

k-1 

+ Z(Pk (Ym)Pi (Z)Pk-i (Z) + Pk (Z)Pi (Ym)Pk-i (Ym))} 

The result follows by substituting for F and G in this equation via (17) and (21), 
then replacing t by t(1 + b), Ym by y, and multiplying on both sides by 
2(1 + b)-1t-2. ? 

3.3. A positivity conjecture. The marginal sums for cl\,(b) evaluated in 
Lemma 3.2 are nonnegative integer polynomials in b and, by Lemmas 3.3 and 3.4, 
cA\(b) itself is a polynomial in b with nonnegative integer coefficients when A = [1] 
or [2 1n-2]. Table 1, which gives the nonzero cA\(b) for ,u > v, (since c\,(b) = c\A (b)) 
shows that this is also true of them individually for all A, g, 7 F- n < 4. In fact, using 
the SF package [19], we have computed cA>,(b) for all A, u, v H n < 8, and found in 
all cases that cA (b) is a nonnegative integer polynomial in b. We conjecture that 
this is always the case. 

Conjecture 3.5. For all A, , v F- n > 1, 

cl\,(b) is a nonnegative integer polynomial in b. 

Note that if we express the connection series in terms of a, then we can have 
negative coefficients in general; for example, 

CA (a - 1) = 2a2 - 3c + 2 

when A = , v = [3]. This is why the Jack parameter has been shifted by the 
substitution Ol = b + 1. 

Under the assumption that Conjecture 3.5 is true, information is now obtained 
about the degree of the polynomial cl\,(b) in b. 

Proposition 3.6. If Conjecture 3.5 holds, then for A, , Iv F- n > 1, 
1) The degree of c\,(b) is at most n-min{l(,u), I(v)}. 
2) For fixed A, the largest power of b appearing among the cAL/(b) is n - 1, which 

uniquely appears in c[l\ (b), with coefficient (n - 1)! 

Proof. 1) From part (2) of Lemma 3.2, we have 

(25) ZcA (b) = ICA I (1 + b) 
i0-n 

and 

(26) cA (b) = lCL I (I + b)n-l'() 

But the degree of (1 + b)n-i(/) is n - l(p). We assume that Conjecture 3.5 is true. 
Then the degree of c>\,(b) exceeding n - I(p) would contradict (25), and the degree 
of cl\,(b) exceeding n - 1(v) would contradict (26), sO the result follows. 
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TABLE 1. The connection series c\,(b) for A, p,u F- n < 4, and 
,u> z} 

A A v Cl\ (b) A At 1 c\ 1(b) 
[11 [11 [11 1 [31] [4] [4] 6b3 + 9b2+6b+ 3 
[2] [2] [2] b [31] 6b2+ 6b 

[12] 1 [22] 3b2 + 3b 
[12] [2] [2] b+ 1 [212] 3b+ 3 

[12] [12] 1 [31] [31] [31] 2b2 +4b+4 
[3] [3] [3] 2b2 + b+ 1 [22] 3b + 3 

[21] 3b [212] 3b 
[13] 1 [14] 1 

[21] [3] 3b [212] [212] 3 
[21] 3 [2 2] [4] [4] 6b3 + 8b2+ 4b + 2 

[13] [3] 1 [31] 8b2+ 8b 
[21] [3] [3] 2b2?+ 2b [22] 2b2+ 2b 

[21] 2b+2 [212] 4b +4 
[21] [21] b [31] [31] 8b+ 8 

[13] 1 [2 2] [2 2] b2?+ 2b+ 2 
[13] [3] [3] 2b2 +4b+ 2 [212] 2b 

[21] [21] 3b+3 [14] 1 

[13] [13] 1 [2 12] [2 12] 2 
[4] [4] [4] 6b3 + 7b2 + 7b [2 12] [4] [4] 6b3 + 12b2 + 6b 

[31] 8b2 + 4b + 4 [31] 4b2 + 8b + 4 
[22] 3b2+b+1 [22] 2b2+4b+2 
[212] 6b [31] [31] 4b2+4b 
[14] 1 [212] 4b + 4 

[31] [31] 8b [2 2] [2 2] b2?+ b 
[22] 4b [212] b+ 1 
[212] 4 [212] [212] b 

[2 2] [2 2] b [14] 1 

[2 12] 2 [14] [4] [4] 6b3 + 18b2 +-18b + 6 
[31] [31] 8b2 + 16b+ 8 
[2 2] [2 2] 3b2 + 6b + 3 
[212] [212] 6b + 6 
[14] [14] 1 

2) Part (1) of the result gives immediately that the degree of c\,(b) is at most 
n-1, and is strictly less than n-I unless ,u = v = [n]. But from (25) with ,u = [n] 
we get 

Z c[,u(b) (n -1)!(1 + b)n-1 
IVn 

Thus the only contribution to the term (n - 1)!bn-1 on the right-hand side of this 
sum comes from cfnl A (b), and the result follows. E 
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The above result for terms of highest degree can be verified for n < 4 in Table 1. 
For terms of lowest degree we have been able to deduce less information. Of course, 
the constant terms are the connection coefficients in the symmetric group, from 
Proposition 3.1 (1). For more information about when these are 0 and some extreme 
non-zero values see [7]. 

We note in passing a curiosity of the data in Table 1, that all entries are unimodal, 
and we further conjecture that, for all A,, v i F- n > 1, cA,(b) is unimodal. 

4. THE MATCHINGS-JACK CONJECTURE 

Let Fs be the set of all matchings on a set S of even cardinality. For 61, 62,... E 

TS, let G(61, I562 ... ) be the multi-graph with vertex-set S whose edges are formed 
by the pairs in 61, 62, .... Now G(61, 62) consists of disjoint even cycles, since each 
vertex has degree 2, and around each cycle the edges alternate between 61 and 
62, so we let A(61, 62) be the partition specifying half the lengths of the cycles in 
G(61, I62) 

Let ,F, be the set of matchings on A?nn = {1 ... nIn}. For convenience, 
the sets {1, ... , n} and {1, ... I .n} will be called the classes of M - Thus pairs 
in a matching contain either two elements of the same class (we call these within- 
class pairs) or elements of different classes (we call these between-class pairs). A 
matching 6 in which every pair is a between-class pair is called a bipartite matching, 
since in this case G(6) is a subgraph of the complete bipartite graph on vertex-sets 
{1... ,n} and {1,... ,I n}. 

Now we introduce some specific bipartite matchings in Fn. First, let 

6 {, {n In} 

Then, for each A F- n, let 

6( = { {1, 2} {23}, , {I 1 - 1, } {A1, , 

{A1 + 1,A1 + 2,... I , {A + A2- 1,1 +A2}i fAl + -A2,1 + 1}, ... }. 

In particular, 6[1n] = E. Note that E and 65\ are bipartite matchings, and that 
A (E, 5,) = A for all A F- n. 

There is a close relationship between connection coefficients in the double coset 
algebra and matchings, since (see [10], Lemma 3.2) 

(27) i={5 (E Fn: A(5, E) A A(6,6A,) =}L 

The specializations of cA>(b) given in Proposition 3.1 for b 0,1 involve connec- 
tion coefficients in both the double coset algebra and the conjugacy class algebra. 
These specializations are made more uniform by the following combinatorial re- 
statements in terms of matchings. 

Proposition 4.1. For A, At, v F- n, 

1) c,A(0) = I{6 E nA (6(, e) /t, A(6, 6A,) = v, 6 is bipartite }1, 
2) cA,(1) = I{6 E Fn A (6,) = A (6, 65),) =v 

Proof. 1) Let T = (12.. Al)(Al + 1 Al +A2) *** E CA- Then 

a>> = [Q]C^C\ , {u= EC E CAI P Cv: up = {}| = |{u E C : T 1T E CZJ} 
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For aC E C11 we define 6 E .Fn by 

6 = {(I, (1)), (2, (2)), .. ,(, o (n))} 

Then 6 is a bipartite matching such that A(6, e) = ,, and A(6, 6A) = v if and only 
if a-1r E C,. Moreover, this is reversible, since every bipartite 6 E Fn uniquely 
determines co E e&n with the required properties. The result follows from Proposi- 
tion 3.1. 

2) This result has been given as (27). 0 

Under the assumption that Conjecture 3.5 is true, the combinatorial form of 
the specializations to b = 0 and 1 in Proposition 4.1 above suggest the following 
stronger conjecture, that c>A (b) is a counting series for matchings. 

Conjecture 4.2 (Matchings-Jack Conjecture). For A, ,, v F- n, 

cA (b) bwtA (a) 
6 E CFn 

A(6,E)=8,A(6,6A )=v 

for nonnegative integer wtA (6), where wtA (6) = 0 if and only if 6 is bipartite, and 
wtA (6) < n - min{I(,u), l(v)}. 

In the context of this conjecture, the shifted Jack parameter b is a combinatorial 
marker for a family of statistics of non-bipartiteness for matchings, indexed by A. 
In the next section, we describe some combinatorial statistics for matchings that 
serve as appropriate choices of wtX for A = [1] and A - [2 1n-2], thus achieving 
partial success in establishing the Matchings-Jack Conjecture by proving it in these 
cases. 

5. COMBINATORIAL STATISTICS FOR MATCHINGS 

For a matching 6 e $n, it will be convenient to describe the pairs in 6 relative 
to their appearance in the cycles of G(6, e), as follows. For a given cycle of G(6, e), 
let j be the smallest value such that {j, j} E e is in the cycle. Now traverse the 
cycle beginning with the pair of 6 containing j, and terminating with the pair of 
6 containing j (these are the same when the cycle has length two). This orders 
the pairs of 6 in the cycle, as well as directing them; it also orders and directs the 
pairs of e in the cycle, with the convention that we begin at the ordered pair (I, j). 
Moreover, the disjoint union of the pairs of 6 on a cycle is the same as the disjoint 
union of the pairs of ? on the cycle. Thus, if we know the order and directions of 
the pairs of 6 on a cycle then we know the order and directions of the pairs of - on 
the cycle, and vice-versa. 

Example 5.1. For n = 5 consider the matching 

-Y = {{1,4}, {12, {2 4}, {3, 5}, {3, 5}}. 

Then G(Qy, e) has two cycles, one with vertex-set {1, 1, 2, 2,4, 4} and the other with 
vertex-set {3, 3,35, 5}. Traversing the first of these as described above gives the pairs 
of Oy in the order (1, 4), (4, 2), (2, 1), with directions as indicated by the ordered pairs; 
the pairs of ? appear in order (1, 1), (4,4), (2, 2), again with directions as indicated. 
Traversing the second cycle gives the pairs of -y ordered and directed as (3, 5), (5, 3), 
and the pairs of e as (3, 3), (5, 5). LII 
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From this point of view the following relationship between permutations and 
matchings is straightforward. 

Proposition 5.2. For,u t n, 

I{ C TF7: A(8, ) ?) I = IC,1I2n`1(). 
Proof. For each directed cycle (ii2 ... ik), of length k > 1, in the disjoint cycle 
representation of a permutation oC C &n we create 2k-1 choices for a cycle, of 
length 2k, in G(8, 6) for 6 c FF, as follows. Let the order of the pairs of 6 in the 
cycle of G(6) E) be {i ,1}, {i2, 2}, ..., {iik, k} Now the first pair {i1, I} is directed 
as (i1, il) by convention. The remaining k - 1 pairs can be directed independently 
in either of the two ways (im, Zm) or (im, im)I for m = 2, ... , k. But this uniquely 
determines the positions of the pairs of 6 on the cycle. Thus, all 6 C .Fn with 
A(8, E) = ,u are created exactly once by carrying this out for all the cycles of a Ec C1,, 
and the result follows. DG 

5.1. The first statistic. The first statistic for matchings, defined below as stat1, 
will account for the case A = [1] of the Matchings-Jack Conjecture. 

Definition 5.3. For 8 c Fn, stat1(8) is the number of within-class pairs of 6 that 
do not terminate their cycles in G(8, 6). 

A convenient way of thinking about such a statistic is to regard each pair of 6 
as "contributing" or "not contributing" to the statistic. Thus, for stat1, a pair of 6 
contributes if it is a within-class pair and it is not the terminating edge (in either 
direction) in its cycle of G(6, 6), and does not contribute otherwise. 

Example 5.4. For the matching -y given in Example 5.1 we calculate that stat1(Q) 
- 2. In this case, the pairs that contribute to the statistic are {2, 4} and {3, 5}. 
The pairs {1, 2} and {3, 5} do not contribute since, although they are within-class 
pairs, they are terminal in their respective cycles. 

5.2. Proof of the Matchings-Jack Conjecture for A [1"]. The counting 
series for matchings with respect to the statistic stat1 is readily determined. 

Proposition 5.5. For [ K n, 

E bstat - (6) = IC_ (1+ b)n-l(-)i. 
A (6 ,E) = 

Proof. In the proof of Proposition 5.2, note that the choices of direction for each 
edge of 6 determines precisely whether the immediately preceding edge of 6 joins 
two elements of the same class or elements of different classes. The terminal edge 
of 6 in the cycle has no such choice because of the convention for the initial edge 
of 6. Thus a cycle of length k contributes a factor of (1 + b)k-1 to the generating 
function for statl, so an element of C11 contributes (1 + b)n-l(p). The result follows 
since there are IC,1 elements of C.. D 

We can immediately deduce that this provides a suitable choice for the conjec- 
tured statistic wtA in the case A = [ln]. 

Corollary 5.6. The Matchings-Jack Conjecture (4.2) is true for A = [1j]. 
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Proof. When A = [In], we have A = e, so in this case 

E bstatl(6) 5 E bstat (6) 

E,-Fn 6 E Fn 

for it = v, and is 0 otherwise. Thus from Proposition 5.5 and Lemma 3.3, stat1 is a 
suitable choice for wtx when A = [In], establishing the Conjecture in this case. O 

5.3. The second statistic. The second statistic for matchings is a modification of 
statl, and will account for the case A = [2 ln-2] of the Matchings-Jack Conjecture. 

Definition 5.7. For 6 e .Fn, stat (6) is defined as follows: 

1. If { 1iY} and {2, 2} lie on different cycles of G(8, E) then stat2 (6) has the same 
value as statl(6). 

2. Otherwise, 
(a) if 2 appears before 2 on the cycle containing {1, 1} and {2, 2}, then 

(i) the pair of 6 containing 2 always contributes to stat2(6), 
(ii) all other pairs in 6 are treated as in stat1; 

(b) if 2 appears before 2, then 

(i) the pair of 6 containing 2 never contributes to stat2(6), 
(ii) all other pairs in 6 are treated as in stat1. 

Example 5.8. For the matching -y given in Example 5.1 we calculate stat2(q) 2. 

We are in the case in which {1, 1} and {2, 2} lie on the same cycle and, on that 

cycle, 2 appears before 2, so the pairs that contribute to the statistic are again 
{2, 4} and {3, 5}. E 

Example 5.9. Consider the matching 

1 {{1,4},{1I,5},{2,5},{2,4},{3,3}}. 

Then G(q, e) has two cycles, and traversing these cycles gives the edges of ij ordered 
and directed as (1, 4)(4, 2)(2, 5)(5, 1) in one cycle and (3, 3) in the second cycle. We 
thus have stat1 (r) = 3, with pairs {1, 4}, {2, 5} and {2, 4} contributing. However, 
we have stat2 (r) = 2, with pairs {1, 4} and {2, 5} contributing; the pair {2, 4} does 

not contribute even though 2 and 4 are in the same class, since we are in the case 
in which {1, 1} and {2, 2} appear on the same cycle of G(q, E) with 2 before 2. 1I 

5.4. Proof of the Matchings-Jack Conjecture for A = [2 ln-2]. We determine 
the counting series for matchings with respect to the statistic stat2 as follows. 

Lemma 5.10. Let A = [2 1n-2]. For i, v F- n, 

n-2 

bstatb 
( () = [- 2)! P,I (Y)PV (z)] (exp E (I + b)- 

t pj (y)pj (z)) 
A(6,?)=p ,A(6,86 )=v 

(1 + b)k2tk2 {b(k - 1)pk(y)Pk(Z) 
k>2 

k-i 

+ (Pk (Y)Pi (Z)Pk-i (Z) + Pk (Z)Pi (Y)Pk-i (Y))}- 
i=l 

This content downloaded from 129.97.140.60 on Wed, 10 Jul 2013 08:33:55 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


888 I. P. GOULDEN AND D. M. JACKSON 

Proof. Let A = [2 121, so 6A {{1,2}, {1,2}, {3,3},1... , {n,In}} for n > 2, and 
define the counting series 

8(y,z;t,b) 
t n 

(-2) bstat2(6)PA (6) (Y)PA ,) (Z) 
ri>2 ( EF 

Then E has t as an exponential marker for the pairs in A = {{3, 3},... I, {n, in}}, 
Pi (y) as a (ordinary) marker for i-cycles in G(6,e), pi (z) as a (ordinary) marker 
for i-cycles in G(6,6A), for i > 1, and b as a (ordinary) marker for pairs in 6 
contributing to stat2. 

We consider separately the three cases for the cycle(s) in G(6, e) containing {1, I} 
and {2,2}. 

Case 1. Suppose {1, 1} and {2, 2} lie on different cycles of G(6, e) with m elements 
of A on the cycle containing {1, 1} and j elements of A on the cycle containing 
{2, 2}, for m, j > 0. Then the pairs of 6 on these cycles form an m + j + 2-cycle 
in G(6, 6A), so the counting series for these cycles is (see [4] for basic results on the 
combinatorics associated with exponential and ordinary counting series) 

tm ?t 

M,jm! 
! (I + b)mpm+l(y)j! 

t7 
(1 + 

b)pj+l?(Y)Pm+j+2(Z) m,j>0 
T!j 

(28) k-1 

- S S' ? )k-2tk-2pi()ki()kz = ,( 1 + b) t P (Y)Pk -i (Y)Pk (Z) 
k>2 i=1 

with i = m+ ,k m m-+ j + 2. 

Case 2. Suppose {1, 1} and {2, 2} lie on the same cycle of G(6, ?) with 2 appearing 
before 2, and that there are m elements of A between (1, 1) and (2, 2), and j 
elements of A after (2, 2), for m, j > 0. Then the pairs of 6 on this cycle form an 
m + j + 2-cycle in G(6, 6A), so the counting series for this cycle is 

tm tj 
b E m!-!(1 +b)mj! (1 + b)jPm+j+2(Y)Pm+j+2(Z) 

(29) m,jO 

b5E(k 1)(1 + b)k-2tk-2Pk(Y)Pk(Z) 
k>2 

with k = m + j + 2. 

Case 3. Finally, suppose {1,I 1 and {2,2} lie on the same cycle of G(6,E) with 2 
appearing before 2, and that there are m elements of A between (1, 1) and (2, 2), 
and j elements of A after (2, 2), for m, j > 0. Then the pairs of 6 on this cycle form 
an m + 1-cycle and a j + 1-cycle in G(6,6A), so the counting series for this case is 

tm ti 
E m!-(1 +b)mpm+?(z)j!.(1 + b)jpj+i(Z)pm+j+2(y) 

m! ~~~~~.1 
(30) k-i 

= E (1 + b)k2tk2pi (Z)Pk-i (Z)Pk (Y) 
k>2 i=1 

with i = m + 1, k = m + j + 2. 
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Now each other cycle in G(8, e) consists entirely of j elements of A, for some 
j > 1, and thus has counting series 

Euj - 1)-! t (1 + b)i j-pj (y)pj (z). 
j>l j! 

But we have an unordered collection of such cycles, with counting series 

(31) exp (1 + b)- tpj (Y)pj (z). 
i>1 i~~~~~~. 

Thus 03 is obtained by multiplying (31) by the sum of (28), (29) and (30). The 
result follows by applying the coefficient operator [n-2!P(y)p>(Z)] to 0. D 

We can immediately deduce that stat2 provides a suitable choice for the conjec- 
tured statistic wtx in the case A = [2 In-2]. 

Corollary 5.11. The Matchings-Jack Conjecture (4.2) is true for A - [2 1n-2]. 

Proof. From Lemmas 5.10 and 3.4, stat2 is a suitable choice for wtA when A = 
[2 1n-2], establishing the Conjecture in this case. O 

5.5. Towards other statistics. The algorithms for stat1 and stat2 are given in 
Definitions 5.3 and 5.7 as a list of cases, but the means by which they were dis- 
covered is not evident from their statement. However, there are general strategies 
that provided a useful framework in finding them, and makes the relationship with 
A (here [In] and [2 In-2], respectively) more explicit. 

In both algorithms we examine the pairs of 6 in order of their appearance in the 
cycles of G(8, ?), thus implicitly ordering (as well as directing) the pairs of e. From 
this point of view, the pairs of 6 are of three types. The pairs of 6 that terminate 
their cycle in G(8, E) are of type A. Each remaining pair of 6 corresponds to adding 
a new pair of E to their cycle in G(8, E), in either of two directions. A pair of 6 is 
of type B if it corresponds in this way to a pair P of E that is examined first in the 
set of all pairs of E that are both in the component of G(e, 6A) containing P and in 
the component of G(8, ?) containing P. Otherwise, it is of type C. 

In both algorithms the following rules are used for pairs in 6 of types A and B: 
A: These pairs do not contribute, 
B: These pairs 

* contribute if they are within-class pairs, 
* do not contribute if they are between-class pairs. 

For A = [In] there are no pairs of type C in any matching, and indeed these two 
rules are simply a restatement of the algorithm given for this case in Definition 5.3. 

For A = [2 In-2] there can be at most one pair of type C in a matching; the rules 
for such a pair are precisely those given in parts 2a(i) and 2b(i) of Definition 5.7. 
The above rules are again a restatement of the remaining parts of the algorithm in 
this case. 

Althlough we have not been able to find a general rule for pairs of type C, some 
guidance is offered by the following observations for two extreme situations when a 
pair of type C is examined: 

* If all pairs of 6 previously examined are between-class pairs, then the pair is 
treated by the rules for type B given above. This follows from the requirement 
that the conjectured statistic is 0 precisely for bipartite matchings. 
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* If all pairs of 6 previously examined contribute to the statistic and there are 
no completed cycles yet in G(6,6A), then if the pair terminates a cycle in 
G(6,6A) of length less than n = JAI, it does not contribute to the statistic. 
This follows from part 2 of Proposition 3.6. 

With the aid of these observations we have found additional algorithms that do 
indeed explain some of the computed data but we have not proved that they hold 
for any infinite subclass. Perhaps the lack of obvious symmetry between [u and v 
in the procedure suggested above accounts for the proliferation of cases in these 
algorithms. 

We do not know of a convenient class of nonbipartite matchings 6 of cardinality 
(n-1)! such that A(6, E) = t and A(8, 6A) = M but in view of part 2 of Proposition 3.6 
this might be helpful in finding statistics in general. 

6. THE HYPERMAP SERIES AND POSITIVITY CONJECTURES 

We conclude by returning briefly to the hypermap series h A(b) that, from (4), 
is given by 

T(x, y, z; t, 1 + b) = 1 + Z tn h>, (b)pA (x)p,, (y)p (z). 
n>?1 AqivHmn 

From the properties of Jack symmetric functions, the hypermap series h A(b) is 
a rational function of b for all A, ,u, v F- n. Moreover, from Theorem 1.1 we can 
immediately relate it to the hypermap coefficients defined in the Introduction. 

Proposition 6.1. For A, , v F n, 

1) h0 (O) = Tn" 

2) hAv(1) = IA 

Table 2 gives h A(b) for maps with at most 3 edges (so all parts of A are equal to 
2). To make the table compact, use has been made of the duality h> (b) = h (b). 
In each case that is given the entries are nonnegative integer polynomials in b, and 
we conjecture this to be the case in general. 

Conjecture 6.2. For all A, A, v F- n > 1, 

hA (b) is a nonnegative integer polynomial in b. 

In view of the combinatorial context in which the specializations to b = 0, 1 arose 
we further conjecture that h A(b) is a generating series for hypermaps with respect 
to a combinatorial statistic d associated with maps. 

Conjecture 6.3 (Hypermap-Jack Conjecture). For A, A, v F- n, 

hA, (b) V (M) 

where the sum is over all hypermaps M in locally orientable surfaces with hyper- 
edge distribution A, vertex distribution At and face distribution v, and '0(M) is a 
nonnegative integer which equals 0 if and only if M is orientable. 

The Matchings-Jack Conjecture does not imply the Hypermap-Jack Conjecture 
directly since c A(b) is divided by (1 + b)l(A) in (5) in (, the logarithm is taken, 
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TABLE 2. The hypermap series hA (b) for maps with at most 3 edges 

edge A vertex ,u face v h1 (b) edge A vertex ,u face v hA1 (b) 
[2] [2] [2] b [23] [6] [313] 2 

[2] [12] 1 [6] [23] b 
[22] [4] [4] 1 + b+ 3b2 [6] [2212] 3 

[4] [31] 4b [51] [51] 18b 
[4] [2 2] b [51] [42] 6b 
[4] [2 12] 2 [5 1] [4 12] 6 
[31] [31] 4 [51] [32] 6b 
[22] [22] 1 [5 1] [3 2 1] 6 

[2 ] [6] [6] 13b+ 13b ?15b3 [42] [42] 6b 
[6] [5 1] 6 + 6b + 18b2 [4 2] [32] 3b 
[6] [42] 3+3b+9b2 [42] [321] 6 
[6] [412] 9b [412] [3 2] 3 
[6] [32] 1 + b+ 5b2 [32] [23] 1 
[6] [3 2 1] 12b 

and this is then multiplied by 1 + b to obtain T. However, the conjectures are 
combinatorially related, since, from the matchings representation of a hypermap 
given in [6], some canonical form of each connected component of the matchings 
graph G(s, &1, &) considered in Sections 4 and 5 above corresponds to a hypermap. 

From a study of our data, certain facts and conjectures have emerged. First, if 
the Hypermap-Jack Conjecture is true, then the combinatorial statistic 'o depends 
on the rooting of a hypermap. This can be seen, for example, by considering maps 
with 2 edges, a single vertex and a single face. Table 2 gives h54 141 (b) = 1 + b + 3b2, 
so there are 5 such rooted maps in all. It is readily checked that these correspond 
to 3 unrooted maps. One of the unrooted maps has one rooting, and is orientable, 
and each of the other two unrooted maps have two distinct rootings. The latter 
two pairs of rooted maps must therefore account for the terms b + 3b2. It follows 
that for one of these pairs, different rootings of the same map give different values 
(namely 1 and 2) of the statistic V}. Our computations suggest that V} is a statistic 
that is positively correlated with departure of a map from orientability. 

Second, the degree of the connection series hA ,(b) appears to be n - 1(A) - 1()- 
1(v) + 2, where A, ,t, v F- n, a much more precise result than Proposition 3.6 for 
c, (b). Further, the coefficient of this biggest power of b appears to be IC, in the 
case A = = [n] (and the other cases that correspond by symmetry). We do not 
know of a convenient class of nonorientable hypermaps of this cardinality, but this 
might be a fruitful case to consider. Finally, it seems from the data that hA,(b) is 
unimodal. 
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