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Abstract

Double Hurwitz numbers count branched covers of CP1 with fixed branch points, with simple
branching required over all but two points 0 and ∞, and the branching over 0 and ∞ specified
by partitions of the degree (with m and n parts, respectively). Single Hurwitz numbers (or more
usually, Hurwitz numbers) have a rich structure, explored by many authors in fields as diverse as
algebraic geometry, symplectic geometry, combinatorics, representation theory, and mathematical
physics. The remarkable ELSV formula relates single Hurwitz numbers to intersection theory on
the moduli space of curves. This connection has led to many consequences, including Okounkov
and Pandharipande’s proof of Witten’s conjecture.

In this paper, we determine the structure of double Hurwitz numbers using techniques from
geometry, algebra, and representation theory. Our motivation is geometric: we give evidence
that double Hurwitz numbers are top intersections on a moduli space of curves with a line
bundle (a universal Picard variety). In particular, we prove a piecewise-polynomiality result
analogous to that implied by the ELSV formula. In the case m = 1 (complete branching over
one point) and n is arbitrary, we conjecture an ELSV-type formula, and show it to be true in
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genus 0 and 1. The corresponding Witten-type correlation function has a richer structure than
that for single Hurwitz numbers, and we show that it satisfies many geometric properties, such as
the string and dilaton equations, and an Itzykson–Zuber-style genus expansion ansatz. We give a
symmetric function description of the double Hurwitz generating series, which leads to explicit
formulae for double Hurwitz numbers with given m and n, as a function of genus. In the case
where m is fixed but not necessarily 1, we prove a topological recursion on the corresponding
generating series, which leads to closed-form expressions for double Hurwitz numbers and an
analogue of the Goulden–Jackson polynomiality conjecture (an early conjectural variant of the
ELSV formula). In a later paper (Faber’s intersection number conjecture and genus 0 double
Hurwitz numbers, 2005, in preparation), the formulae in genus 0 will be shown to be equivalent
to the formulae for “top intersections” on the moduli space of smooth curves Mg . For example,
three formulae we give there will imply Faber’s intersection number conjecture (in: Moduli of
Curves and Abelian Varieties, Aspects of Mathematics, vol. E33, Vieweg, Braunschweig, 1999,
pp. 109–129) in arbitrary genus with up to three points.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

If � = (�1, . . . , �m) and � = (�1, . . . , �n) are partitions of a positive integer d, the
double Hurwitz number H

g

�,� is the number of genus g branched covers of CP1 with
branching corresponding to � and � over 0 and ∞, respectively, and an appropriate
number r = 2g − 2 + m + n of other fixed simple branched points (determined by
the Riemann–Hurwitz formula). For simple branching, the monodromy of the sheets
is a transposition. To simplify the exposition, we assume that the points mapping to
0 and ∞ are labelled. Thus the double Hurwitz numbers under this convention are
|Aut �| |Aut �| larger than they would be under the convention in [24].

Let Hg

�,� be the Hurwitz scheme parameterizing genus g branched covers of P1 by

smooth curves, with branching over 0 and ∞ given by � and �. Then H
g

�,� is the

degree of the branch morphism to Symr (P1) (sending a cover to its branch divisor
away from 0 and ∞). Double Hurwitz numbers are naturally top intersections on any
compactification of the Hurwitz scheme extending the branch morphism.

Let the universal Picard variety Picg,m+n be the moduli space of smooth genus g
curves with m + n distinct labelled smooth points p1, . . . , pm, q1, . . . , qn, together
with a degree 0 line bundle; thus, the points of Picg,m+n correspond to ordered triples
(smooth genus g curve C, m + n distinct labelled points on C, degree 0 line bundle
on C). Then the projection Picg,m+n → Mg,m+n (with fiber the Picard variety of the
appropriate curve) has section

m∑
i=1

�ipi −
n∑

j=1

�j qj ,
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and Hg

�,� is a C∗-bundle over the intersection of this section with the 0-section. (The
determination of the class of the closure of this intersection in the Deligne–Mumford
compactification Mg,m+n is known as Eliashberg’s problem, because of its appearance
in symplectic field theory [9,10].) Thus one may speculate that double Hurwitz numbers
are naturally top intersections on an appropriate compactification of the universal Picard
variety.

Our (long-term) goal is to understand the structure of double Hurwitz numbers,
and in particular to determine the possible form of an ELSV-type formula expressing
double Hurwitz numbers in terms of intersection theory on some compactified universal
Picard variety, presumably related to the one defined by Caporaso [3]. (M. Shapiro has
made significant progress in determining what this space might be [55].) An ELSV-type
formula would translate all of the structure found here (and earlier, e.g. relations to
integrable systems) to the intersection theory of this universal Picard variety.

A second goal is to use the structure of double Hurwitz numbers in genus 0 to
understand top intersections on the moduli space of smooth curves, and in particular
prove Faber’s intersection number conjecture [25].

1.1. Motivation from single Hurwitz numbers: polynomiality, and the ELSV formula

Our methods are extensions of the combinatorial and character-theoretic methods
that we have used in the well-developed theory of single Hurwitz numbers H

g
� , where

all but possibly one branch point have simple branching. (They are usually called
“Hurwitz numbers,” but we add the term “single” to distinguish them from double
Hurwitz numbers.) Single Hurwitz numbers have surprising connections to geometry,
including the moduli space of curves. (For a remarkable recent link to the Hilbert
scheme of points on a surface, see for example [42, p. 2]; [59].) Our intent is to
draw similar connections in the case of the double Hurwitz numbers. We wish to use
the representation-theoretic and combinatorial structure of double Hurwitz numbers to
understand the intersection theory of a conjectural universal Picard variety, in analogy
with the connection between single Hurwitz numbers and the moduli space of curves,
as shown in the following diagram.

H
g
� ��

ELSV equ. (1)
��

��

representation
theory

���
��

��
��

��

moduli space
of curves

��

Witten (Ok.-Pand.)�����
��

��
��

integrable
systems

H
g

�,�
��
ELSV-type (e.g. equ. (5))?

������������

��

Ok. et al. ���
��

��
��

�

universal
Picard variety
��

???��� �
�

�
�

integrable
systems

Single Hurwitz numbers Double Hurwitz numbers

Understanding this would give, for example, Toda constraints on the topology of the
universal Picard variety.

The history of single Hurwitz numbers is too long to elaborate here (and our bibli-
ography omits many foundational articles), but we wish to draw the reader’s attention



46 I.P. Goulden et al. / Advances in Mathematics 198 (2005) 43–92

to ideas leading, in particular, to the ELSV formula ([7,8], see also [26]):

H
g
� = C(g, �)

∫
Mg,m

1−�1+�2−···±�g

(1−�1�1)···(1−�m�m)
, (1)

where

C(g, �) = r!
m∏

i=1

��i

i

�i ! (2)

is a scaling factor. Here �k is a certain codimension k class, and �i is a certain
codimension 1 class. (Also r = 2g−2+d+m is the expected number of branch points,
as described earlier.) We refer the reader to the original papers for precise definitions,
which we will not need. (The original ELSV formula includes a factor of |Aut �| in the
denominator, but as stated earlier, we are considering the points over ∞, or equivalently
the parts of �, to be labelled.) The right-hand side should be interpreted by expanding
the integrand formally, and capping the terms of degree dim Mg,m = 3g − 3 + m with
the fundamental class [Mg,m].

The ELSV formula (1) implies that

H
g
� = C(g, �)P

g
m(�1, . . . , �m), (3)

where P
g
m is a polynomial whose terms have total degrees between 2g − 3 + m and

3g − 3 + m = dim Mg,m. The coefficients of this polynomial are all top intersections
on the moduli space of curves involving �-classes and up to one �-class, often written,
using Witten’s notation, as:

〈�a1 . . . �am�k〉g := ∫Mg,m
�a1

1 · · · �am
m �k = (−1)k

[
�a1

1 · · · �am
m

]
P

g
m(�1, . . . , �m) (4)

when
∑

ai + k = 3g −3+m, and 0 otherwise. (Here we use the notation [A]B for the
coefficient of A in B.) This ELSV polynomiality is related to (and implies, by Goulden
et al. [24, Theorem 3.2]) an earlier polynomiality conjecture of Goulden and Jackson,
describing the form of the generating series for single Hurwitz numbers of genus g [21,
Conjecture 1.2], see also [23, Conjecture 1.4]. The conjecture asserts that after a change
of variables, the single Hurwitz generating series is “polynomial” (in the sense that its
scaled coefficients are polynomials). The conjecture is in fact a genus expansion ansatz
for Hurwitz numbers analogous to the ansatz of Itzykson–Zuber [32, (5.32)] (proved in
[5,24]). ELSV polynomiality is related to Goulden–Jackson polynomiality by a change
of variables arising from Lagrange inversion [24, Theorem 2.5].

Hence, in developing the theory of double Hurwitz numbers, we seek some sort
of polynomiality (in this case, piecewise polynomiality) that will tell us something
about the moduli space in the background (such as its dimension), as well as a genus
expansion ansatz.
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1.2. Summary of results

In Section 2, we use ribbon graphs to establish that double Hurwitz numbers (with
fixed m and n) are piecewise polynomial of degree up to 4g − 3 + m + n (Piece-
wise Polynomiality Theorem 2.1), with no scaling factor analogous to C(g, �). More
precisely, for fixed m and n, we show that H

g

(�1,...,�m),(�1,...,�n)
counts the number of

lattice points in certain polytopes, and as the �i and �j vary, the facets move. Further,
we conjecture that the degree is bounded below by 2g − 3 + m + n (Conjecture 2.2),
and verify this conjecture in genus 0, and also for m or n = 1. We give an example
((g, m, n) = (0, 2, 2)) showing that it is not polynomial in general.

In Section 3, we consider the case m = 1 (“one-part double Hurwitz numbers”),
which corresponds to double Hurwitz numbers with complete branching over 0. One-
part double Hurwitz numbers have a particularly tractable structure. In particular, they
are polynomial: for fixed g, n, H

g

(d),(�1,...,�n)
is a polynomial in �1, . . . , �n. Theorem 3.1

gives two formulae for these numbers (one in terms of the series sinh x/x and the other
an explicit expression) generalizing formulae of both Shapiro et al. [56, Theorem 6]
and Goulden–Jackson [19, Theorem 3.2]. As an application, we prove polynomiality,
and in particular show that the resulting polynomials have simple expressions in terms
of character theory. Based on this polynomiality, we conjecture an ELSV-type formula
for one-part double Hurwitz numbers (Conjecture 3.5):

H
g

(d),� = r!d ∫Picg,n

�0−�2+···±�2g

(1−�1�1)···(1−�n�n)
. (5)

The space Picg,n is some as-yet-undetermined compactification of Picg,n, supporting
classes �i and �2k , satisfying properties described in Conjecture 3.5. As with the ELSV
formula (1), the right-side of (5) should be interpreted by expanding the integrand for-
mally, and capping the terms of dimension 4g−3+n with [Picg,n]. The most speculative
part of this conjecture is the identification of the (4g−3+n)-dimensional moduli space
with a compactification of Picg,n (see the remarks following Conjecture 3.5).

Motivated by this conjecture, we define a symbol 〈〈 · 〉〉g , the analogue of 〈·〉g , by
the first equality of

〈〈�b1 · · · �bn�2k〉〉g := (−1)k
[
�b1

1 · · · �bn
n

](
H

g

(d),�
r!d

)
= ∫Picg,n

�b1
1 · · · �bn

n �2k, (6)

so that Conjecture 3.5 (or (5)) would imply the second equality. (All parts of (6) are
zero unless

∑
bi + 2k = 4g − 3 + n. Also, we point out that the definition of 〈〈 · 〉〉g

is independent of the conjecture.) We show that this symbol satisfies many properties
analogous to those proved by Faber and Pandharipande for 〈·〉g , including integrals
over Mg,1, and the �g-theorem; we generalize these further. We then prove a genus
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expansion ansatz for 〈〈 · 〉〉g in the style of Itzykson–Zuber [32, Theorem 3.16]. As
consequences, we prove that 〈〈 ·〉〉g satisfies the string and dilaton equations, and verify
the ELSV-type conjecture in genus 0 and 1. A proof of Conjecture 3.5 would translate
all of this structure associated with double Hurwitz numbers to the intersection theory
of the universal Picard variety.

In Section 4, we give a simple formula for the double Hurwitz generating series in
terms of Schur symmetric functions. As an application, we give explicit formulae for
double Hurwitz numbers H

g

�,� for fixed � and �, in terms of linear combinations of gth
powers of prescribed integers, extending work of Kuleshov–M. Shapiro [36]. Although
this section is placed after Section 3, it can be read independently of Section 3.

In Section 5, we consider m-part Hurwitz numbers (those with m = l(�) fixed and �
arbitrary). As remarked earlier, polynomiality fails in this case in general, but we still
find strong suggestions of geometric structure. We define a (symmetrized) generating
series Hg

m for these numbers, and show that it satisfies a topological recursion (in
g, m) (Theorems 5.4, 5.6, and 5.12). The existence of such a recursion is somewhat
surprising as, unlike other known recursions in Gromov–Witten theory (involving the
geometry of the source curve), it is not a low-genus phenomenon. (The one exception
is the Toda recursion of Pandharipande [50] and Okounkov [46], which also deals with
double Hurwitz numbers.) We use this recursion to derive closed expressions for Hg

m

for small (g, m), and to conjecture a general form (Conjecture 5.9), in analogy with
the original Goulden–Jackson polynomiality conjecture of Goulden–Jackson [21].

1.3. Earlier evidence of structure in double Hurwitz numbers

Our work is motivated by several recent suggestions of strong structure of double
Hurwitz numbers. Most strikingly, Okounkov proved that the generating series H for
double Hurwitz numbers is a �-function for the Toda hierarchy of Ueno and Takasaki
[4,6], in the course of resolving a conjecture of Pandharipande’s on single Hurwitz
numbers [50]; see also their joint work Okounkov–Pandharipande [47–49]. Dijkgraaf’s
earlier description [4] of Hurwitz numbers where the target has genus 1 and all branch-
ing is simple, and his unexpected discovery that the corresponding generating series
is essentially a quasi-modular form, is also suggestive, as such Hurwitz numbers can
be written (by means of a generalized join-cut equation) in terms of double Hurwitz
numbers (where � = �). This quasi-modularity was generalized by Bloch-Okounkov
[2].

Signs of structure for fixed g (and fixed number of points) provides a clue to the
existence of a connection between double Hurwitz numbers and the moduli of curves
(with additional structure), and even suggests the form of the connection, as was the
case for single Hurwitz numbers. Evidence for this comes from recent work of Lando–
Zvonkine [39], Kuleshov–M. Shapiro [36], and others.

We note that double Hurwitz numbers are relative Gromov–Witten invariants (see
for example [40] in the algebraic category, and earlier definitions in the symplectic
category [31,41]), and hence are necessarily top intersections on a moduli space (of
relative stable maps). Techniques of Okounkov–Pandharipande [47–49] can be used to
study double Hurwitz numbers in this guise. A second promising approach, relating
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more general Hurwitz numbers to intersections on moduli spaces of curves, is due to
Shadrin [53] building on work of Ionel [30]. We expect that some of our results are
probably obtainable by one of these two approaches. As a notable example, see [54].
However, we were unable to use them to prove any of the conjectures and, in particular,
we could prove no ELSV-type formula.

We also alert the reader to other recent work on Hurwitz numbers due to Lando [37]
and Zvonkine [62].

1.4. Notation and background

Throughout, the partitions � and � have m and n parts, respectively. We use l(�) for
the number of parts of �, and |�| for the sum of the parts of �. If |�| = d, we say
� is a partition of d, and write � � d . For a partition � = (�1, . . .), let Aut � be the
group of permutations of {1, . . . , l(�)} fixing (�1, . . . , �l(�)). Hence, if � has ai parts
equal to i, i�1, then |Aut �| = ∏

i �1 ai !. For indeterminates p1, . . . and q1, . . . , we
write p� = ∏

i �1 p�i
and q� = ∏

i �1 q�i
. Let C� denote the conjugacy class of the

symmetric group Sd indexed by �, so |C�| = d!/ |Aut �|∏i �i . We use the notation
[A]B for the coefficient of monomial A in a formal power series B.

Genus will in general be denoted by superscript. Let

r
g

�,� := −2 + 2g + m + n. (7)

When the context permits, we shall abbreviate this to r.
A summary of other globally defined notation is in the table below:

〈·〉g , �i Witten symbol (4)

H
g
�,�, H̃

g
�,�, H, H̃ double Hurwitz numbers and series, Section 1.4.1

�m, Hg
m, Hg

m,i
symmetrization operator, symmetrized genus g m-part

Hurwitz function, and its derivatives Sect. 1.4.2

Q, w, wi , �, �i , Qi Lagrange’s Implicit Function Theorem 1.3

P
g
m,n Piecewise Polynomiality Theorem 2.1

E�, K� character theory (19), (20)

Ni , ci = Ni − �i,1, S2j functions of �, Section 3.1

B2k , �2k (and �2�), v2k , f2k coefficients of x
ex−1 + x/2 (Bernoulli), log sinh x

x (Theorem 3.1),

sinh(x/2)
x/2 ,

x/2
sinh(x/2)

(Thm. 3.7)

〈〈 · 〉〉g , Picg,n, �2k ELSV-type Conjecture 3.5

Q(i)(t), Q(�)(t) Section 3.3, Theorem 3.7

s	, hi , pi symmetric functions (Schur, complete, power sum),

Sections 4, 5.5

hg
m = �Hg

m, hg
m,i

transform of Hg
m, and its partial derivatives, Sect. 5.2
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1.4.1. Double Hurwitz numbers
As described earlier, let the double Hurwitz number H

g

�,� denote the number of degree

d branched covers of CP1 by a genus g (connected) Riemann surface, with r+2 branch
points, of which r = r

g

�,� are simple, and two (0 and ∞, say) have branching given
by � and �, respectively. Then (7) is equivalent to the Riemann–Hurwitz formula. If a
cover has automorphism group G, it is counted with multiplicity 1/ |G|. For example,
H 0

(d),(d) = 1/d . The points above 0 and ∞ are taken to be labelled.

The possibly disconnected double Hurwitz numbers H̃
g

�,� are defined in the same
way except the covers are not required to be connected.

The double Hurwitz numbers may be characterized in terms of the symmetric group
through the monodromy of the sheets around the branch points. This axiomatization is
essentially due to Hurwitz [29]; the proof relies on the Riemann existence theorem.

Proposition 1.1 (Hurwitz axioms). For �, � � d , H
g

�,� is equal to |Aut �| |Aut �| /d! times
the number of (
, �1, . . . , �r , �), such that

H1. 
 ∈ C�, � ∈ C�, �1, . . . , �r are transpositions on {1, . . . , d},
H2. �r · · · �1
 = �,
H3. r = r

g

�,�, and
H4. the group generated by 
, �1, . . . , �r acts transitively on {1, . . . , d}.
The number H̃

g

�,� is equal to |Aut �| |Aut �| /d! times the number of (
, �1, . . . , �r , �)
satisfying H1–H3.

If (
, �1, . . . , �r ) satisfies H1–H3, we call it an ordered factorization of �, and if it
also satisfies H4, we call it a transitive ordered factorization.

The double Hurwitz (generating) series H for double Hurwitz numbers is given by

H =
∑

g �0,d �1

∑
�,��d

ygzdp�q�ul(�)
H

g

�,�

r
g

�,�! |Aut �| |Aut �| , (8)

and H̃ is the analogous generating series for the possibly disconnected double Hurwitz
numbers. Then H̃ = eH , by a general enumerative result (see, e.g., [18, Lemma 3.2.16]).
(The earliest reference we know for this result is, appropriately enough, in work of
Hurwitz.)

The following result is obtained by using the axiomatization above, and by studying
the effect that multiplication by a final transposition has on the cutting and joining of
cycles in the cycle decomposition of the product of the remaining factors. The details
of the proof are essentially the same as that of Goulden–Jackson [20, Lemma 2.2]
and Goulden et al. [23, Lemma 3.1], and are therefore suppressed. A geometric proof
involves pinching a loop separating the target CP1 into two disks, one of which contains
only one simple branch point and the branch point corresponding to �.
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Lemma 1.2 (Join-cut equation).⎛⎝∑
i �1

pi

�
�pi

+ u
�
�u

+ 2y
�
�y

− 2

⎞⎠H

= 1

2

∑
i,j �1

(
ijpi+j

�H

�pi

�H

�pj

+ (i + j)pipj

�H

�pi+j

+ ijpi+j y
�2

H

�pi�pj

)
(9)

with initial conditions
[
zipiqiu

]
H = 1

i
for i�1.

Substituting u �
�u

H = ∑
i �1 qi

�
�qi

H yields the usual, more symmetric version. But

the above formulation will be more convenient for our purposes.

1.4.2. The symmetrization operator �m, and the symmetrized double Hurwitz
generating series Hg

m

The linear symmetrization operator �m is defined by

�m(p�) =
∑


∈Sm

x
�1

(1) · · · x�m


(m) (10)

if l(�) = m, and zero otherwise. (It is not a ring homomorphism.) The properties of
�m we require appear as Lemmas 4.1–4.3 in [23]. Note that �m(p�) has a close
relationship with the monomial symmetric function m� since

�m(p�) = |Aut �| m�(x1, . . . , xm).

We shall study in detail the symmetrization
∑

m�1,g �0 Hg
myg , of H where

Hg
m(x1, . . . , xm) = [

yg
]

�m (H)|z=1

=
∑
d �1

∑
�,��d

l(�)=m

m�(x1, . . . , xm)q�ul(�)
H

g

�,�

r
g

�,�! |Aut �| , (11)

for m�1, g�0.
In other words, the redundant variable z is eliminated, and Hg

m is a generating series
containing information about genus g double Hurwitz numbers (where � has m parts).

We use the notation

Hg
j,i = xi

�Hg
j

�xi

.
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1.4.3. Lagrange’s Implicit Function Theorem
We shall make repeated use of the following form of Lagrange’s Implicit Function

Theorem (see, e.g., [18, Section 1.2] for a proof) concerning the solution of certain
formal functional equations.

Theorem 1.3 (Lagrange). Let �(�) be an invertible formal power series in an inde-
terminate �. Then the functional equation

v = x�(v)

has a unique formal power series solution v = v(x). Moreover, if f is a formal power
series, then

f (v(x)) = f (0) +
∑
n�1

xn

n

[
�n−1

] df (�)

d�
�(�)n (12)

and

f (v(x))

v

x dv(x)

dx
=
∑
n�0

xn
[
�n
]
f (�)�(�)n. (13)

We apply Lagrange’s theorem to the functional equation

w = xeuQ(w), (14)

where

Q(t) =
∑
j �1

qj t
j ,

the series in the indeterminates qj that record the parts of � in the double Hurwitz series
(8). The following observations and notation will be used extensively. By differentiating
the functional equation with respect to x, and u, we obtain

x
�w

�x
= w�(w),

�w

�u
= wQ(w)�(w), where �(t) = 1

1 − utQ′(t)
, (15)

and we therefore have the operator identity

x�
�x

= �(w)
w�
�w

. (16)

We shall use the notation wi = w(xi), �i = �(wi), and Qi = Q(wi), for i = 1, . . . , m.
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2. Piecewise polynomiality

By analogy with the ELSV formula (1), we consider double Hurwitz numbers for
fixed g, m, n as functions in the parts of � and �:

P
g
m,n(�1, . . . , �m, �1, . . . , �n) = H

g

�,�.

Here the domain is the set of (m+n)-tuples of positive integers, where the sum of the
first m terms equals the sum of the remaining n. In contrast with the single Hurwitz
number case, the double Hurwitz numbers have no scaling factor C(g, �, �) (see (3)).

Theorem 2.1 (Piecewise polynomiality). For fixed m, n, the double Hurwitz function
H

g

�,� = P
g
m,n is piecewise polynomial (in the parts of � and �) of degrees up to

4g − 3 + m + n. The “leading” term of degree 4g − 3 + m + n is non-zero.

By non-zero leading term, we mean that for fixed � and �, P
g
m,n(�1t, . . . , �nt)

(considered as a function of t ∈ Z+) is a polynomial of degree 4g −3+m+n. In fact,
this leading term can be interpreted as the volume of a certain polytope. For example,
P 0

2,2(�1, �2, �1, �2) = 2 max(�1, �2, �1, �2), which has degree one. (This can be shown
by a straightforward calculation, either directly, or using Section 2.1, or Corollary 4.2.
See Corollary 4.2 for a calculation of P

g
2,2 in general.) In particular, unlike the case of

single Hurwitz numbers (see (3)), P
g
m,n is not polynomial in general.

We conjecture further:

Conjecture 2.2 (Strong piecewise polynomiality). P
g
m,n is piecewise polynomial, with

degrees between 2g − 3 + m + n and 4g − 3 + m + n inclusive.

This conjecture is not clear even in many cases where closed-form formulae for
double Hurwitz numbers exist, such as Corollary 4.2. However, as evidence, we prove
it when the genus is 0 (Section 2.2), and when m or n is 1 (Corollary 3.2). It may be
possible to verify the conjecture by refining the proof of the Piecewise Polynomiality
Theorem, but we were unable to do so.

2.1. Proof of the Piecewise Polynomiality Theorem 2.1

We spend the rest of this section proving Theorem 2.1. Our strategy is to interpret
double Hurwitz numbers as counting lattice points in certain polytopes. We use a com-
binatorial interpretation of double Hurwitz numbers that is a straightforward extension
of the interpretation of single Hurwitz numbers given in [47, Section 3.1.1] (which is
there shown to be equivalent to earlier graph interpretations of Arnol’d [1] and Shapiro
et al. [56]). The case r = 0 is trivially verified (the double Hurwitz number is 1/d if
� = � = (d) and 0 otherwise), so we assume r > 0.

Consider a branched cover of CP1 by a genus g Riemann surface S, with branching
over 0 and ∞ given by � and �, and r other branch points (as in Section 1.4.1). We
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corner

Fig. 1. An example of a corner in a fragment of a ribbon graph.

may assume that the r branch points lie on the equator of the CP1, say at the r roots
of unity. Number the r branch points 1 through r in counterclockwise order around 0.

We construct a ribbon graph on S as follows. The vertices are the m preimages of
0, denoted by v1, . . . , vm, where vi corresponds to �i . For each of the r branch points
on the equator of the target b1, . . . , br , consider the d preimages of the geodesic (or
radius) joining br to 0. Two of them meet the corresponding ramification point on the
source. Together, they form an edge joining two (possibly identical) of the vertices. The
resulting graph on the genus g surface has m (labelled) vertices and r (labelled) edges.
There are n (labelled) faces, each homotopic to an open disk. The faces correspond
to the parts of �: each preimage of ∞ lies in a distinct face. Call such a structure
a labelled (ribbon) graph. (Euler’s formula m − r + n = 2 − 2g is equivalent to the
Riemann–Hurwitz formula (7).)

Define a corner of this labelled graph to be the data consisting of a vertex, two
edges incident to the vertex and adjacent to each other around the vertex, and the face
between them (see Fig. 1).

Now place a dot near 0 on the target CP1, between the geodesics to the branch
points r and 1. Place dots on the source surface S at the d preimages of the dot on
the target CP1.

Then the number of dots near vertex vi is �i : a small circle around vi maps to a loop
winding �i times around 0. Moreover, any corner where edge i is counterclockwise of
j and i < j must contain a dot. Call such a corner a descending corner. The number
of dots in face fj is �j : move the dot on the target (together with its d preimages)
along a line of longitude until it is near the pole ∞ (the d preimages clearly do not
cross any edges en route), and repeat the earlier argument.

Thus each cover counted in the double Hurwitz number corresponds to a combinato-
rial object: a labelled graph (with m vertices, r edges, and n faces, hence genus g), and
a non-negative integer (number of dots) associated to each corner, which is positive if
the corner is descending, such that the sum of the integers around vertex i is �i , and
the sum of the integers in face j is �j .
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Fig. 2. The number of ×’s is twice the number of corners, and four times the number of edges.

It is straightforward to check that the converse is true (using the Riemann existence
theorem, see for example [1]): given such a combinatorial structure, one gives the target
sphere a complex structure (with branch points at roots of unity), and this induces a
complex structure on the source surface.

Hence the double Hurwitz number is a sum over the set of labelled graphs (with m
vertices, r edges, and n faces). The contribution of each labelled graph is the number
of ways of assigning non-negative numbers to each corner so that each descending
corner is assigned a positive integer, and such that the sum of numbers around vertex
i is �i and the sum of the integers in face j is �j .

For fixed m and n, the contributions to H
g

�,� is the sum over the same finite set
of labelled graphs. Hence to prove the Piecewise Polynomiality Theorem it suffices to
consider a single such labelled graph �.

This problem corresponds to counting points in a polytope as follows. We have one
variable for each corner (which is the corresponding number of dots). The number of
corners is easily seen to be twice the number of edges (count ×’s in Fig. 2, so there
are 2r variables z1, . . . , z2r . We have one linear equation for each vertex (the sum of
the variables corresponding to corners incident to vertex i must be �i) and one for each
face (the sum of the variables corresponding to corners incident to face j must be �j ).
These equations are dependent since the sum of the m vertex relations is the sum of
the n face relations, i.e.

∑m
i=1 �i =∑n

j=1 �j .
There are no other dependencies, i.e. the rank of the system is m + n − 1: suppose

otherwise, that one of the equations, for example the equation eq1 corresponding to
vertex i, were a linear combination of the others modulo the sum relation. Pick a face j
incident to that vertex. Let z be the variable corresponding to the corner between vertex
i and face j. Discard the equation eq2 corresponding to that face (which is redundant
because of the sum relation). Then z appears only in equation eq1, and hence eq1
cannot be a linear combination of the other equations.

Thus the contribution to the double Hurwitz number P
g
m,n(�1, . . . , �n) from this

labelled graph � is the number of lattice points in a polytope P�(�1, . . . , �n) of
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dimension 2r−(m+n−1)=4g−3+m+n in R2r , lying in the linear subspaces defined by∑
corner k incident

to vertex i

zk = �i and
∑

corner k incident
to face j

zk = �j , (17)

bounded by inequalities of the form zk �0 or zk > 0 (depending on whether corner k
is descending or not). Let P�(�1, . . . , �m) be this contribution.

We are grateful to A. Vainshtein for pointing out that (17) is a well-known trans-
portation polytope, and the next lemma (in the guise of integrality of the transportation
polytope) is a classical fact, see e.g. [34, Corollary 1, p. 266]. We have kept the proof
for the sake of completeness.

Lemma 2.3. The vertices of the polytope P�(�, �) are lattice points, i.e., the polytope
is integral.

Proof. Let p ∈ R2r be a point of the polytope. We show that if p is not a lattice point,
then p lies in the interior of a line segment contained in P�(�, �), and hence is not a
vertex. Construct an auxiliary graph, where the vertices correspond to corners i of �
such that zi(p) /∈ Z. The edges come in two colors. Red edges join any two distinct
vertices incident to a common vertex, and blue edges join any two distinct vertices
incident to a common face. By the first (resp. second) equality in (17), each vertex
is incident to a red (resp. blue) edge. Thus we may find a cycle of distinct vertices
v1 = v2w+1, . . . , v2w such that v2i−1 and v2i (resp. v2i and v2i+1) are joined by a
red (resp. blue) edge: choose any x1, and then subsequently choose x2, x3, etc. (such
that xi and xi+1 is joined by an appropriately coloured edge) until the first repetition:
xj = xk (j < k). If k − j is even, take vi = xj+i (1� i�k − j ), and if k − j is odd,
take vi = xj+i (1� i < k − j ). (If v1 and v2 are joined by a blue edge rather than a
red edge, then cyclically permute the vi by one.)

Then for |
| < min(zvi
), the point p(
) given by

zj (
) =
⎧⎨⎩

zj for j /∈ {v1, . . . , v2w},
zj + 
 for j = veven,

zj − 
 for j = vodd

satisfies (17) and zj (t)�0, and hence also lies in the polytope. �

As P�(�, �) is an integral polytope, by Ehrhart’s theorem [6], for t a positive integer,
P�(t�1, . . . , t�m) is a polynomial in t of degree precisely 4g − 3 + m + n (the Ehrhart
polynomial of the polytope), with leading coefficient equal to the volume of P�(�, �).
(More correctly, Ehrhart’s theorem requires that either that all the boundary points are
counted, or that none of them are counted. Our argument is by adding the number of
points on various open faces using the latter form of the Ehrhart’s theorem, yielding a
sum of Ehrhart polynomials, which is also polynomial.)

Finally, we recall the following well-known result [45].
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Theorem 2.4. Consider the polytopes in RL (with coordinates z1, . . . , zL) defined by
equalities

L∑
i=1

�ij zi = �j (1�j �
) and
L∑

i=1

�ij zi ��j (1�j ��)

as �j and �j vary (with �ij and �ij fixed). When the polytope is integral (for given �j

and �j ), define U(�1, . . . , �
, �1, . . . , ��) to be the number of lattice points contained
therein. Then the function U is piecewise polynomial on its domain, of degree equal to
the dimension of the polytope.

Thus as � and � vary, the function P
g
m,n is piecewise polynomial, concluding the

proof of the Piecewise Polynomiality Theorem 2.1.

2.2. Proof of the Strong Piecewise Polynomiality Conjecture 2.2 in genus 0

It is straightforward to prove the result by induction using the join-cut equation (9).
Instead we give a geometric argument. For convenience, define t� := (t�1, . . . , t�m),
and t� similarly. Consider the commutative diagram

H0
�,�

�

degree t

��

degree H0
�,�

		

H0
t�,t�

degree H0
t�,t�

		

SymrP1
degree tr

�� SymrP1

(18)

where the vertical morphisms are branch morphisms, and the horizontal morphisms are
induced by P1 → P1, [u; v] �→ [ut ; vt ] (H0

�,� is the Hurwitz scheme, as in Section 1).

The morphism � is given by (C, [f ; g]) �→ (C, [f t ; gt ]), where div(f ) =∑ �ipi and
div(g) = ∑

�j qj . It is surjective: the preimage of (C, [F ; G]) is (C, [F 1/t ; G1/t ])
where F 1/t and G1/t are any tth roots of F and G. (As g = 0, F 1/t and G1/t are
sections of the same line bundle.) The morphisms have degrees as shown in (18), from
which H 0

t�,t� = t r−1H 0
t�,t� = t2g−3+m+nH 0

�,� as desired. �
In general genus, the above argument shows that H

g

t�,t� � t2g−3+m+nH
g

�,�; the image

of � is only a subset of the components of Hg

t�,t�. A vague heuristic suggests that a point

of Hg

t�,t� has a 1/t2g chance of being in the image of �: div F 1/t −div G1/t one of the

t2g t-torsion points of Pic C, and (C, [F ; G]) is in the image of � if div F 1/t −div G1/t

is 0 in Pic C. This suggests that H
g

t�,t� ∝ t4g−3+m+nH
g

�,�, in keeping with Theorem 2.1.
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3. One-part double Hurwitz numbers (� = (d)): polynomiality, explicit formulae,
and a conjectured ELSV-type formula in terms of the Picard variety

We use character theory to completely describe double Hurwitz numbers where �
has one part, which leads to a conjectural formula in terms of intersection theory on
a moduli space. The particular results that are needed from character theory are to be
found in [44].

3.1. One-part double Hurwitz numbers through characters

In the group algebra CSd , let K� := ∑

∈C�


. Then {K�, � � d}, is a basis for the
centre, and if ��

� is the character of the irreducible representation of Sd indexed by
C�, evaluated at any element of C�, then

E� =
��
(1d )

d!
∑
��d

��
�K�, � � d, (19)

gives a basis of orthogonal idempotents. The inverse relations are

K� = |C�|
∑
��d

��
�

��
(1d )

E�, � � d. (20)

The following result gives an expression for the double Hurwitz number H
g

(d),�, using
various special properties of characters for the one part partition (d). We consider � � d

with l(�) = n, and let the number of parts of � equal to i be given by Ni , i�1. Thus∑
i �1 Ni = n and

∑
i �1 iNi = d . We also let c1 = N1 − 1 and ci = Ni , for i�2, and

S2j =
∑
i �1

i2j ci = −1 +
∑
i �1

i2jNi = −1 +
∑

�2j
i ,

for j �1 (i.e. S2j is a power sum for the partition, shifted by 1). Let �2j = [x2j
]

log
(sinh x/x), and let �� = ��1��2 . . . . For any partition � = (�1, . . .), let 2� = (2�1, . . .).

Theorem 3.1. Let r = r
g

(d),�. For g�0 and � � d,

H
g

(d),� = r!dr−1
[
t2g
] ∏

k �1

(
sinh(kt/2)

kt/2

)ck

(21)

= r!dr−1

22g

∑
��g

�2�S2�

|Aut �| . (22)
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Remarks. (1) Eq. 21 is a generalization of a theorem of Shapiro et al.: [56, Theorem 6]
is the case � = (1d). To our knowledge, Shapiro et al. [56] contains the first appear-
ance of the generating series sinh t/t in connection with branched covers of curves
(see [51, Section 3] for some of the subsequent connections, for example through the
Gopakumar–Vafa conjecture). As noted there, proofs of equivalent statements appear in
[17,33], but Shapiro et al. [56] is the first interpretation in terms of Hurwitz numbers.

(2) Eq. (21) also generalizes Theorem 3.2 of Goulden–Jackson [19]:

H 0
(d),� = r!dr−1.

(Note that, in [19, Theorem 3.2], the right-hand side of the condition t1+· · ·+tm = n+1
should be replaced with (m − 1)n + 1.)

Proof. We use the Hurwitz axioms (Proposition 1.1). The group generated by any
element of C(d) acts transitively on {1, . . . , d}. But H

g

�,� is a class function so, for

� = (d) and r = r
g

(d),� = n − 1 + 2g, axiom (H4) gives

H
g

(d),� = 1∏
�j

[
K�
] (

K(2,1d−2)

)r K(d) = 1

d
∏

�j

∑
��d

�(�)r��
(d)�

�
�

from (19) and (20), where

�(�) =
∣∣C(2,1d−2)

∣∣ ��
(2,1d−2)

��
(1d )

=
∑

i

(
�i

2

)
−
∑

i

(
�̃i

2

)
,

and �̃ is the conjugate of �. But �(d−k,1k)
(d) = (−1)k, k = 0, . . . , d − 1, and ��

(d) = 0 for

all other �, and
∣∣C(d)

∣∣ = (d − 1)!. Also

d−1∑
k=0

�
(
d−k,1k

)
� yk =

∏
i �1

(
1 − (−y)i

)ci

, (23)

and �((d − k, 1k)) =
(

d−k
2

)
−
(

k+1
2

)
=
(

d
2

)
− dk. Thus

H
g

(d),� = 1∏
�j

dr−1
d−1∑
k=0

(
d − 1

2
− k

)r

(−1)k�(d−k,1k)

�

= 1∏
�j

dr−1
[
t r

r!
] d−1∑

k=0

e

(
d−1

2 −k
)
t
(−1)k�(d−k,1k)

�

= 1∏
�j

r!dr−1 [t r] e d−1
2 t
∏
k �1

(
1 − e−kt

)ck

,
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by substituting y = −e−t in (23) above. But
∑

h�1 hch = d −1 and
∑

h�1 ch = n−1,
so we obtain

H
g

(d),� = r!dr−1
[
t r−n+1

] ∏
k �1

(
sinh(kt/2)

kt/2

)ck

.

This yields (21). Applying the logarithm,

∏
k �1

(
sinh(kx)

kx

)ck

= exp

⎛⎝∑
k �1

ck

∑
j �1

�2j i
2j x2j

⎞⎠ = exp

⎛⎝∑
j �1

�2j S2j x
2j

⎞⎠
=
∑
�

�2�S2�

|Aut �|x
2|�|,

where the sum is over all partitions �. Eq. (22) follows. �

Polynomiality is immediate from (22); hence we have proved the following.

Corollary 3.2. The double Hurwitz numbers H
g

(d),� satisfy polynomiality and the Strong
Piecewise Polynomiality Conjecture 2.2.

(The polynomials for g�5 can be read off from Corollary 3.3.)
Even more striking, the polynomial is divisible by dn+2g−2, and H

g

(d),�/r!dn+2g−2

is a polynomial in the parts of � that is independent of the number of parts. These
polynomials may immediately be computed in any desired genus. For example, the
next corollary gives the formulae in genus up to 5, in terms of the Si , which are
polynomials in the parts of �.

Corollary 3.3. For g�5, explicit expressions for H
g

(d),� are given by

H 0
(d),� = (n − 1)!dn−2,

H 1
(d),� = (n + 1)!

24
dnS2,

H 2
(d),� = (n + 3)!dn+2

5760

(
5S2

2 − 2S4

)
,

H 3
(d),� = (n + 5)!dn+4

210 · 34 · 5 · 7

(
16S6 − 42S2S4 + 35S3

2

)
,

H 4
(d),� = (n + 7)!dn+6

28

(
− S8

37800
+ S2S6

17010
+ S2

4

64800
− S2

2S4

12960
+ S4

2

31104

)
,
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H 5
(d),� = (n + 9)!dn+8

210

(
S10

467775
− S2S8

226800
− S4S6

510300
+ S2

2S6

204120
+ S2S

2
4

388800

− S3
2S4

233280
+ S5

2

933120

)
.

Notice how constants associated to intersection theory on moduli spaces of low genus
curves (such as 1/24 and 1/5760 for genus 1 and 2, respectively) make their appear-
ance.

In addition, we note the following attractive formula for the number of branched
covers of any genus and degree, with complete branching over two fixed points, and
simple branching over 2g other fixed distinct points.

Corollary 3.4.

H
g

(d),(d) = (2g)!d2g−2
[
t2g
] sinh(dt/2)

sinh(t/2)
= d2g−2

d−1
2∑

k=− d−1
2

k2g.

Proof. The first equality is (21), and the second comes after straightforward manipu-
lation. �

3.2. From polynomiality to the symbol 〈〈 · 〉〉g , and intersection theory on moduli
spaces

Theorem 3.1 strongly suggests the existence of an ELSV-type formula for one-part
double Hurwitz numbers, and even suggests the shape of such a formula. In particular,
we are in a much better position than we were for single Hurwitz numbers when the
ELSV formula (1) was discovered. At that point, polynomiality was conjectured [21,
Conjecture 1.2], see also [23, Conjecture 1.4]. Even today, polynomiality has only been
proved by means of the ELSV formula; no character-theoretic or combinatorial reason
is known.

In the one-part double Hurwitz case we have much more.

(i) We have a non-geometric proof of polynomiality.
(ii) The polynomials P

g
1,n(�1, �2, . . .) = H

g

(d),� have an excellent description in terms
of generating series.

(iii) The polynomials are well-behaved as n increases. (More precisely, as described be-
fore Corollary 3.3, the polynomial H

g

(d),� is divisible by d2g−2+n, and the quotient

H
g

(d),�/r!dn+2g−2 is independent of n.)
(iv) Finally, the polynomials may be seen, for non-geometric reasons, to satisfy the

string and dilaton equation. (This will be made precise in Proposition 3.10.)
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Hence we make the following geometric conjecture. (Formula (24) is identical to (5)
in the Introduction.) The conjecture should be understood as: “There exists a moduli
space Picg,n with the following properties. . .”. We emphasize that a proof of this
conjecture would be useful not to compute double Hurwitz numbers, but to understand
the intersection theory of the universal Picard variety.

Conjecture 3.5 (ELSV-type formula for one-part double Hurwitz numbers). For each
g�0, n�1, (g, n) 
= (0, 1), (0, 2),

H
g

(d),� = r
g

(d),�!d
∫

Picg,n

�0 − �2 + · · · ± �2g

(1 − �1�1) · · · (1 − �n�n)
, (24)

where Picg,n, �i , and �2k satisfy the following properties.

• The space Pic, and its fundamental class. There is a moduli space Picg,n, with a
(possibly virtual) fundamental class [Picg,n] of dimension 4g − 3 + n, and an open
subset isomorphic to the Picard variety Picg,n of the universal curve over Mg,n

(where the two fundamental classes agree).
• Morphisms from Pic. There is a forgetful morphism � : Picg,n+1 → Picg,n (flat, of

relative dimension 1), with n sections 
i giving Cartier divisors �i,n+1 (1� i�n).
Both morphisms behave well with respect to the fundamental class: [Picg,n+1] =
�∗[Picg,n], and �i,n+1 ∩ Picg,n+1�Picg,n (with isomorphisms given by � and 
i),
inducing �i,n+1 ∩ [Picg,n+1]�[Picg,n].

• �-classes on Pic. There are n line bundles, which over Mg,n correspond to the
cotangent spaces of the n points on the curve (i.e. over Mg,n they are the pullbacks
of the “usual” �-classes on Mg,n). Denote their first Chern classes by �1, . . . ,�n.
They satisfy �i = �∗�i + �i,n+1 (i�n) on Picn+1 (the latter �i is on Picn), and
�i · �i,n+1 = 0.

• �-classes. There are Chow (or cohomology) classes �2k (k = 0, 1, . . . , g) of codi-
mension 2k on Picg,n, which are pulled back from Picg,1 (if g > 0) or Pic0,3; �0 = 1.
The �-classes are the Chern classes of a rank 2g vector bundle isomorphic to its
dual.

The suggestion that the �-classes are the Chern classes of a self-dual vector bundle
is due to J. Bryan. One might expect that the �2k are tautological, given the philosophy
that “geometrically natural classes tend to be tautological” (see e.g. [58]).

Remarks. (1) Our motivation for this conjecture included (a) the form of the ELSV-
formula (1), (b) the Piecewise Polynomiality Theorem 2.1, and (c) the remaining results
of this section. (In particular, the string and dilaton equations, Proposition 3.10, moti-
vated the conditions on the �-classes.)

(2) As pointed out in the Introduction, the most speculative part of this conjec-
ture is the identification of the (4g − 3 + n)-dimensional moduli space with a com-
pactification of Picg,n; the evidence suggests a space of this dimension with a mor-
phism to Mg,n. We suggest this space because double Hurwitz numbers should be
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top intersections on some compactified universal Picard variety, as described in the
Introduction.

(3) There are certainly other formulae for double Hurwitz numbers not of this form,
for example those involving integrals on the space of stable relative maps. However,
to our knowledge, none of these formulae explains polynomiality of one-part double
Hurwitz numbers, or the strong features of these polynomials.

(4) A satisfactory proof would connect the geometry of one-part double Hurwitz
numbers with (24).

(5) See Conjecture 3.13 relating �2g to �g .

In analogy with Witten’s notation (4), we define 〈〈�b1 · · · �bn�2k〉〉g by

〈〈�b1 · · · �bn�2k〉〉g = (−1)k
[
�b1

1 · · · �bn
n

](P
g
1,n(�1, . . . , �n)

r
g

(d),�!d

)
(25)

if (g, n) 
= (0, 1), (0, 2),
∑

bi + 2k = 4g − 3 + n and the bi are non-negative integers,
and 〈〈�b1 · · · �bn�2k〉〉g := 0 otherwise. (This is identical to the first equality of (6).)
This definition makes sense by Corollary 3.2. Note that the symbol is symmetric in
the bi . Conjecture 3.5 then implies that

〈〈�b1 · · · �bn�2k〉〉g =
∫

Picg,n

�b1
1 · · · �bn

n �2k. (26)

3.3. Generating series for 〈〈 · 〉〉g , and the string and dilaton equations

This symbol has some remarkable properties which suggest geometric meaning, in
analogy with Witten’s symbol 〈·〉g . We determine two expressions for a particular
generating series for this symbol, and then derive string and dilaton equations, and
prove Conjecture 3.5 in genus 0 and 1.

Define Q(i)(x) =∑j �1 qj j
ixj for i�0, so Q(0)(x) = Q(x), defined just after (14),

and

Q(i)(x) =
(

x
d

dx

)i

Q(x), i�0.

Of course, we also have

x
d

dx
Q(i)(x) = Q(i+1)(x), i�0. (27)

The first expression for the generating series follows directly from definition (25) of
the symbol 〈〈 · 〉〉g .



64 I.P. Goulden et al. / Advances in Mathematics 198 (2005) 43–92

Theorem 3.6. For g�0,

x
d

dx

∑
n�1

1

n!
g∑

k=0

(−1)k
∑

b1,...,bn �0

〈〈�b1 · · · �bn�2k〉〉g

n∏
i=1

Q(bi)(x) = Hg
1(x)

∣∣
u=1 .

Proof. From (25), we have

LHS = x
d

dx

∑
n�1

1

n!
∑

�1,...,�n �0

q�1
· · · q�n

x�1+···+�n

g∑
k=0

(−1)k

×
∑

b1,...,bn �0

�b1
1 · · · �bn

n 〈〈�b1 · · · �bn�2k〉〉g

=
∑
d �1

dxd
∑
n�1

1

n!
∑

�1+···+�n=d

q�1
· · · q�n

g∑
k=0

(−1)k

×
∑

b1,...,bn �0

�b1
1 · · · �bn

n 〈〈�b1 · · · �bn�2k〉〉g

=
∑
d �1

dxd
∑
n�1

∑
��d

l(�)=n

q�

|Aut �|
g∑

k=0

(−1)k
∑

b1,...,bn �0

�b1
1 · · · �bn

n 〈〈�b1 · · · �bn�2k〉〉g

= RHS,

giving the result. �

The second expression for this generating series follows from Theorem 3.1. To state
this result requires some more notation. Define v2j , f2j by

sinh (x/2)

x/2
=
∑
j �0

v2j x
2j ,

x/2

sinh (x/2)
=
∑
j �0

f2j x
2j .

Then we have (see for example [27, Section 1.41 and 9.6]),

v2j = 1

22j (2j + 1)! , f2j = 1 − 22j−1

22j−1(2j)!B2j , j �0,

where B2j is a Bernoulli number (B0 = 1, B2 = 1/6, B4 = −1/30, B6 = 1/42, . . .).
As Bernoulli numbers alternate in sign after B2, note that f2j has sign (−1)j , j �0.
For a partition � = (�1, . . .), let Q(�)(x) =∏i �1 Q(�i )(x).
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Theorem 3.7. For g�0,

Hg
1(x)

∣∣
u=1 =

g∑
k=0

f2k

∑
	�0g−k

l(	) � 1

v2	

|Aut 	|
(

x
d

dx

)2g−2+l(	)

Q(2	)(x),

where 	 �0 g − k means that 	 is a partition of g − k, with 0-parts allowed.

Proof. From (21), we have

[
xd
]

Hg
1(x)

∣∣
u=1 =

∑
��d

H
g

(d),�

r! |Aut �|q�

= d2g−2
[
xdt2g

] t/2

sinh(t/2)
exp

⎛⎝d
∑
j �1

qjx
j sinh(j t/2)

j t/2

⎞⎠
= d2g−2

g∑
k=0

f2k

[
xdt2g−2k

]
exp

⎛⎝d
∑
i �0

v2i t
2iQ(2i)(x)

⎞⎠
= d2g−2

g∑
k=0

f2k

[
xd
] ∑

	�0g−k

dl(	) v2	

|Aut 	|Q
(2	)(x),

and the result follows. �

By comparing the two generating series expressions given in Theorems 3.6 and 3.7,
we obtain an explicit expression for 〈〈 · 〉〉g , in the following result.

Corollary 3.8. For all b1, . . . , bn, k, g, with b = (b1, . . . , bn),

〈〈�b1 · · · �bn�2k〉〉g = |Aut b| f2k(−1)k
∑

	�0g−k

l(	)=n

v2	

|Aut 	|
[
Q(b1) · · · Q(bn)

]

×
(

x
d

dx

)2g−3+n

Q(2	)(x).

Proof. Compare Theorems 3.6 and 3.7. Now 〈〈�b1 · · · �bn�2k〉〉g is symmetric in the
bi’s, so each of the n!/ |Aut b| distinct reorderings of b contributes equally to the
coefficient of the monomial Q(b1) · · · Q(bn). The result follows from (27). �

From Corollary 3.8 and applying (27), we can obtain a great deal of information
about values of 〈〈 ·〉〉g. For example, we immediately have the following non-negativity
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result. (We believe the analogous result for the Witten symbol 〈�a1 · · · �an�k〉g �0 is
known but difficult.)

Corollary 3.9 (Non-negativity). For all b1, . . . , bn, k, g, we have 〈〈�b1 · · · �bn�2k〉〉g

�0.

We can also prove that the symbol 〈〈 · 〉〉g satisfies the string and dilaton equations,
in the following result.

Proposition 3.10 (String and dilaton equations). (a) (string equation) The following
equation holds, except when g = k = 1, n = 0:

〈〈�0�b1 · · · �bn�2k〉〉g =
n∑

i=1

〈〈�b1 · · · �bi−1�bi−1�bi+1 · · · �bn�2k〉〉g.

In the exceptional case, we have 〈〈�0�2〉〉1 = 1/24.
(b) (dilaton equation) The following equation holds:

〈〈�1�b1 · · · �bn�2k〉〉g = (2g − 2 + n)〈〈�b1 · · · �bn�2k〉〉g.

Note that, by the usual proofs of the string and dilaton equation (see for example [43,
Section 1] or [28, Chapter 25]), this proposition would be implied by Conjecture 3.5.

Proof. For formal power series in the variables Q(i) := Q(i)(x), i�0, we define the
partial differential operators

�−1 =
∑
i �0

Q(i+1) �
�Q(i)

, �0 =
∑
i �0

Q(i) �
�Q(i)

. (28)

Note that we have the operator identity �−1 = x d
dx

, as well as

�
�Q(i)

�−1 = �−1
�

�Q(i)
+ �

�Q(i−1)
(29)

and

Q(i)�−1 = �−1Q
(i) − Q(i+1). (30)

Now, multiplying (29) on the left by Q(i), applying (30), and then summing over i�0,
we obtain

�0�−1 = �−1�0. (31)
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Also, applying (29) repeatedly with i = 0, 1, we obtain

�
�Q(0)

�m−1 = �m−1
�

�Q(0)
,

�
�Q(1)

�m−1 = �m−1
�

�Q(1)
+ m�m−1

−1
�

�Q(0)
. (32)

Now let x d
dx

�g(x) = Hg
1(x)

∣∣
u=1. Then, from Theorem 3.7 and (32), we obtain

(
�

�Q(0)
− �−1

)(
�g + �g,1

Q(0)

24

)
= 0,

and thus the string equation holds with the given exceptional value, from Corollary 3.8.
Also, from Theorem 3.7 and (31), (32), we obtain

(
�

�Q(1)
− �0 − (2g − 2)

)
�g = 0,

and thus the dilaton equation holds, from Corollary 3.8. �

3.3.1. Virasoro constraints?
In the case of the moduli space of curves, the string and dilaton equations are

essentially the first two Virasoro constraints (see for example [28, Section 25.2]). It is
natural then to ask whether there is a full set of Virasoro constraints. Even in the case
of single Hurwitz numbers, this is not known. However, in the single Hurwitz number
case, the highest-degree terms (of the polynomial defined in (3)) are polynomials with
coefficients of the form 〈�a1 · · · �am〉g (i.e. with no �-class), which do satisfy Virasoro
constraints, by Witten’s conjecture (Kontsevich’s theorem) [35,60]. (Indeed, this idea led
to Okounkov and Pandharipande’s proof of Witten’s conjecture [47].) Thus one may ask
a weaker question: are there Virasoro constraints on the asymptotics of one-part double
Hurwitz numbers, i.e. on 〈〈�b1 · · · �bn〉〉g := 〈〈�b1 · · · �bn�0〉〉g? Given Conjecture 3.5,
this is the analogue of Witten’s conjecture on the compactified Picard variety.

We have not yet been able to produce a set of Virasoro constraints, but our partial
results suggest additional hidden structure, so we report them here without proof.

For formal power series in the variables Q(i), we define the partial differential
operators �−1, �0 (as in (28)),

�′
0 =

∑
i �0

iQ(i) �
�Q(i)

, �′
1 =

∑
i �1

iQ(i−1) �
�Q(i)

, �′′
1 =

∑
i �1

i2Q(i−1) �
�Q(i)

.

Now let

� =
∑
g �0

�g

∣∣
k=0 ,
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where �g is as above. (Note that the value of g is recoverable from the partition
condition on the monomials.) Then the string equation translates to an annihilator A−1
for � (up to initial conditions), where

A−1 = �
�Q(0)

− �−1.

The dilaton equation translates to an annihilator A0 for �, where

A0 = �
�Q(1)

− 1

2

(
�0 + �′

0 − 1
)
.

It is an easy computation that

[
A−1, A0

] = 1
2A−1.

Now Itzykson–Zuber [32, p. 5689] suggests letting B−1 = − 1
2A−1 and B0 = −2A0,

so that

[
B−1, B0

] = −B−1.

We then sought a candidate B1 (analogous to Witten’s L1) involving a term of the
form �

�Q(2) . There are many such annihilators, and the simplest we found was

A1 = 4
�

�Q(2)
+ 1

3

�3

�Q(0)3 + 2
(
�′′

1 + �′
1

) �
�Q(1)

− 12
�

�Q(2)

�
�Q(1)

.

However, we have been unable to find a candidate B1 satisfying the desired Virasoro
commutation relations with B0 and B−1.

3.3.2. Verifying Conjecture 3.5 in low genus

Proposition 3.11. Conjecture 3.5 is true in genus 0, taking Pic0,n = M0,n, and in
genus 1, taking Pic1,n = M1,n+1 and �2 = �∗[pt]/24, where pt is the class of a point
on Pic1,1, and � is the morphism Pic1,n → Pic1,1.

We have two proofs, neither of which is fully satisfactory (in the sense of Remark 4
after Conjecture 3.5). First, the geometric arguments of Vakil [57] apply with essentially
no change; this argument is omitted for the sake of brevity. The following second proof
is purely algebraic.
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Proof. For genus 0, if n�3, then

r0
(d),�!d

∫
M0,n

1

(1 − �1�1) · · · (1 − �n�n)
= r0

(d),�!d(�1 + · · · + �n)
n−3

(using the string equation; see for example Hori et al. [28, Exercise 25.2.8]), so we
are done by Corollary 3.3.

For genus 1, we will prove (26). We need only prove the base cases 〈〈�2�0〉〉1 = 1
24

and 〈〈�0�2〉〉1 = 1
24 (obtained by unwinding Corollary 3.3), as the rest follow by the

string and dilaton equation. The first is∫
M1,2

�2
1 = 1

24
,

which is well-known (e.g. [28, Exercise 25.2.9]; combinatorialists may prefer to ex-
tract it from the ELSV formula (1)), and the second is immediate from the definition
of �2. �

3.4. Explicit formulae for 〈〈 · 〉〉g

We can also determine explicit formulae for many instances of this symbol, just as
such formulae have been given for Witten’s symbol 〈·〉g , most notably by Faber and
Pandharipande. In particular:

Integrals over Mg,1. It is a straightforward consequence of Witten’s conjecture that

〈�3g−2〉g = 1

24gg! (33)

(see for example just before (4) in [11]). Also, [13, Eq. (5)]:

∫
Mg,1

�2g−2
1 �g = 22g−1 − 1

22g−1(2g)!
∣∣B2g

∣∣ . (34)

Generalizing both of these statements is [13, Theorem 2]:

1 +
∑
g �1

g∑
i=0

t2gki

∫
Mg,1

�2g−2+i
1 �g−i =

(
t/2

sin(t/2)

)k+1

. (35)

The “�g-theorem”. The main theorem of [14] is

〈�b1 · · · �bn�g〉g =
∫
Mg,n

�b1
1 · · · �bn

n �g =
(

2g − 3 + n

b1, . . . , bn

)
bg. (36)
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(This was first conjectured in [15, Eq. (16)].) More precisely, it was shown to be a
consequence of the Virasoro conjecture for constant maps to CP1.) The constant bg

can be evaluated using (34) by taking (b1, b2, b3, . . .) = (3g − 2, 0, 0, . . .).
We now deduce analogues and generalizations of these results for double Hurwitz

numbers. A proof of Conjecture 3.5 would thus give these results important geometric
meaning.

In analogy with the �g-theorem (36), we have the following result, which follows
immediately from Theorem 3.1 (in the same way as did Corollary 3.3).

Proposition 3.12.

〈〈�b1 · · · �bn�2g〉〉g =
[
�b1

1 · · · �bn
n

] (
cgd

r−2 + higher terms in �′s
)

(37)

(d =∑ �j ), where cg depends only on g. As b1 + · · · + bn = 2g − 3 + n = r − 2, we
have

〈〈�b1 · · · �bn�2g〉〉g =
(

2g − 3 + n

b1, . . . , bn

)
cg

for some constant cg .

(By “higher terms in �’s” we mean terms of homogeneous degree greater than
r − 2 = 2g − 3 + n.) We note that (37) is analogous to the version [14, Eq. (18)] of
the �g-theorem used in the proof of Faber and Pandharipande.

In analogy with (33), we have

〈〈�4g−2〉〉g = 1

22g(2g + 1)! . (38)

In analogy with (34), we have

〈〈�2g−2�2g〉〉g = (−1)g(1 − 22g−1)

22g−1(2g)! B2g = 22g−1 − 1

22g−1(2g)!
∣∣B2g

∣∣ . (39)

Thus we have evaluated cg in the previous Proposition. Remarkably, it is the same
constant appearing in Faber and Pandharipande’s expression (34), leading us to speculate
the following.

Conjecture 3.13. There is a structure morphism � : Picg,n → Mg,n, and �∗�2g = �g .

Generalizing (38) and (39), we have the following result, in analogy with (but not
identical to) (35).
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Proposition 3.14. For g�1, and k = 0, . . . , g,

〈〈�b1�2k〉〉g = (−1)kf2kv2g−2k = (−1)kf2k

2b1−2g+2(b1 − 2g + 3)!

for b1 + 2k = 4g − 2. Equivalently,

1 +
∑
g �1

t2g

g∑
k=0

x2k〈〈�b1�2k〉〉g = x sinh(t/2)

sin(xt/2)
.

Proof. This follows immediately from Corollary 3.8, since the only choices of 	 in the
summation are partitions with a single part. �

This result can be extended to expressions for terms with more �’s. For example, part
(a) of the following proposition gives a closed-form expression for any term involving
two �’s. There are also formulae for any mixture of �2’s and �3’s (where the number
of �3’s is held fixed); the first three examples are parts (b)–(d) below. We know of no
analogue for 〈·〉g .

Proposition 3.15.

(a) For k = 0, . . . , g, and g�2,

〈〈�b1�b2�2k〉〉g = (−1)kf2k

22g−2k+1(2g − 2k + 2)!
∑

i>0 odd

(
2g − 2k + 2

i

)

×
((

2g − 1
b1 + 1 − i

)
+
(

2g − 1
b2 + 1 − i

))
for b1 + b2 = 4g − 2k − 1.

(b) For k = 0, . . . , g, and g�1, except (k, g) = (1, 1),

〈〈�4g−3−2k
2 �2k〉〉g = (−1)kf2k

24g−k(g − k)! (6g − 7 − 2k)!!

where (2m − 1)!! = (2m − 1)(2m − 3) · · · (3)(1) for m a positive integer, and
(−1)!! = 1.

(c) For k = 0, . . . , g, and g�2, except (k, g) = (2, 2),

〈〈�4g−5−2k
2 �3�2k〉〉g = (−1)kf2k

24g−k(g − k)! (6g − 7 − 2k)!!6g − 4 − 4k

3
.
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(d) For k = 0, . . . , g, and g�2, except (k, g) = (1, 2), (2, 2), (3, 3),

〈〈�4g−7−2k
2 �2

3�2k〉〉g

= (−1)kf2k

24g−k(g − k)! (6g − 9 − 2k)!!

× (3g − 4 − k)((6g − 4 − 4k)(6g − 7 − 4k) − (6g − 2 − 6k))

9
.

Proof. These results all follow from Corollary 3.8 in a routine way, using Leibniz’s
Rule. For part (a), the only choices of 	 in the summation are partitions with two parts.
For parts (b)–(d), all parts of 	 must be 0’s or 1’s only. �

3.5. A genus expansion ansatz for 〈〈 · 〉〉g in the style of Itzykson and Zuber

We next prove an analogue of the genus expansion ansatz of Itzykson and Zuber for
intersection numbers on the moduli space of curves [32, (5.32)]. The Itzykson–Zuber
ansatz was proved by Eguchi et al. [15] and later by Goulden et al. [24, Theorem 3.1];
the latter proof (and generalization) is similar in approach to the argument in this paper.

Theorem 3.16 (Genus expansion ansatz). For g�0,

Hg
1(x)

∣∣
u=1 =

g∑
k=0

f2k

∑
	�g−k

v2	

|Aut 	|
(

x
d

dx

)2g−2+l(	)
(

Q(2	)(w)

1 − Q(1)(w)
− �	∅

)
. (40)

Remarks. (1) Unlike the Itzykson–Zuber ansatz, this result has explicitly computable
coefficients.

(2) w and x are related by (14).

Proof. From Theorem 3.7, we obtain

[
xd
]

Hg
1(x)

∣∣
u=1 =

g∑
k=0

f2k

∑
	�g−k

v2	

|Aut 	|d
2g−2+l(	)

[
xd
]
Q(2	)(x)

∑
m�0

dmQ(0)(x)m

m! ,

where m is the number of 0’s in the partition with 0-parts allowed. The result follows
from Lagrange’s Implicit Function Theorem 1.3(13) (with u = 1 in (15) and (16)). �

To obtain explicit results from Theorem 3.16, we modify (27), using (15) and (16),
to obtain

x
d

dx
Q(i)(w) = Q(i+1)(w)

1 − Q(1)(w)
, i�0.
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For example, with g = 0 in Theorem 3.16, and i = 0 above, we obtain

x
d

dx
H0

1(x)

∣∣∣
u=1

= Q(0)(w) = Q(w). (41)

With g = 1 and i = 1, we obtain

H1
1(x)

∣∣∣
u=1

= 1
24

(
Q(3)(w)�(w) + Q(2)(w)2�(w)2 − �(w) + 1

)
, (42)

since, with u = 1, we have �(w) = 1/(1 − Q(1)(w)).

Remarks. (1) In genus 0, there is a direct connection between the generating series
for single Hurwitz numbers (with a partition �) and one-part double Hurwitz numbers.

More precisely, these generating series are identical, under jj

j ! pj ↔ qj and s ↔ w.
Here s is the solution to the functional equation

s = x e�0(s),

and �i (x) = ∑
j �1

jj+i

j ! pjx
j , as described in [24, Section 2.3], so, for example,

�0(x) ↔ Q(0)(x) = Q(x). This is a purely formal statement that the formula for single
Hurwitz numbers and that for one-part double Hurwitz numbers are “essentially” the
same in genus 0. We do not know if there is any geometric or combinatorial reason
for this coincidence.

(2) More generally, in arbitrary genus, there is also such a connection. In this case,
the direct analogue of Theorem 3.6 holds for the single Hurwitz number series, under
�i (x) ↔ Q(i)(x) and 〈·〉g ↔ 〈〈 · 〉〉g , as described in [24, Section 2.4]. However, there
is no analogue of Theorem 3.7 that we know for the single Hurwitz number series.
From this point of view, the Itzykson–Zuber ansatz for the single Hurwitz number
series is the analogue of the form given by Theorem 3.16 under s ↔ w.

(3) We note that the substitution for x by a series in w specified by the functional
equation (14) is the key technical device used in Section 5, as considered in (47).
However, the approach in Section 5 is completely different from that of the present
section, so the appearance of w again suggests that it is significant, and that a geometric
or combinatorial explanation for this would be enlightening.

Caution: The results of this section, especially the genus expansion ansatz and the
string and dilaton equations, seem to lead inescapably to Conjecture 3.5, but this is
not quite the case. The simple structure of the polynomials P

g
1,n allows other possible

statements as well. For example, the correct statement might be

H
g

(d),� = r
g

(d),�!
∫

Pic
′
g,n+1

�′
0 − �′

2 + · · · ± �′
2g

(1 − �1�
′
1) · · · (1 − �n�

′
n)

,
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where the space Pic
′
g,n+1 and classes �′

1, . . . ,�
′
n, �′

0, . . . ,�
′
2g satisfy the itemized

hypotheses of Conjecture 3.5. (Note that there is no “d” in the numerator, as there is
in Conjecture 3.5.) We use primes to indicate that these objects need not be the same
as in Conjecture 3.5.

The (n + 1)th point should correspond to � (the point mapping to 0 in the target
CP1). Pic

′
g,n+1 should admit an action of Sn (permuting the points corresponding to

�), but not necessarily Sn+1. (This insight comes from M. Shapiro, who has suggested
that the correct moduli space of curves for the double Hurwitz problem in general
should have two “colors” of points, one corresponding to �, and one corresponding to
�.) The string and dilaton equations are again satisfied.

4. A symmetric function description of the Hurwitz generating series

In this section, we use character theory again, to give a good description of the double
Hurwitz generating series H. This gives algebraic, rather than geometric, insight into
Hurwitz numbers, and thereby give a means of producing explicit formulae, for example
extending results of Kuleshov–M. Shapiro [36].

For the purposes of this section, we regard each of the indeterminates pk and qk

as power sum symmetric functions in two sets of indeterminates, one for pk and the
other for qk. This may be done since the power sum symmetric functions in an infinite
set of indeterminates are algebraically independent. The following result gives such an
expression, stated in terms of symmetric functions. Let s�(p1, p2, . . .) be the Schur
symmetric function, written as a polynomial in the power sum symmetric functions
p1, p2, . . .. This is the generating series for the irreducible Sd -characters

(
��
�: � � d

)
with respect to the power sum symmetric functions. For � � d, the expression, and its
inverse, is

s� = 1

d!
∑
��d

|C�| ��
�p�, p� =

∑
��d

��
�s�. (43)

From the expression for H that we give next, we shall determine how H
g

�,� depends
on g for fixed � and �.

Theorem 4.1. Let

Z = 1 +
∑
d �1

zd
∑
��d

e�(�)t s�(p1t
−1, p2t

−1, . . .)s�(q1u t−1, q2u t−1, . . .).

Then H |y=t2 = t2 log Z and H̃

∣∣∣
y=t2

= t2Z.

Proof. Following the method of proof of Theorem 3.1, we have

H̃
(g)

�,�

|Aut �| |Aut �| =
∣∣C�
∣∣

d!
[
K�
] (

K(2,1d−2)

)r K� = |C�| · ∣∣C�
∣∣

d!2
∑
��d

�(�)r��
��

�
�. (44)
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Now multiply by p�q�ul(�)zd tr/r!, and sum over �, � � d, d �0, and r �0 (this number
is 0 unless r has the same parity as l(�) + l(�)), using (43), to obtain

∑
r �0

∑
d �0

zd
∑
�,��d

p�q�ul(�)t r
H̃

(g)

�,�

|Aut �| |Aut �| r!

= 1 +
∑
d �1

zd
∑
��d

e�(�)t s�(p1, . . .)s�(q1u, . . .).

This series is an exponential generating series in both z, marking sheets, and t, marking
transposition factors (we have divided by both r! and d!, the latter in the Hurwitz
axioms Proposition 1.1). To transform the exponent of t from number of transposition
factors to genus, we apply the substitutions pi �→ pit

−1, qi �→ qit
−1, i�1, to obtain

p�q�t r �→ p�q�t r−l(�)−l(�) = p�q�t2g−2, from (7), and the result now follows. (Note

that Z is clearly an even series in t since �(�̃) = −�(�) and s�̃(p) = s�(−p).) �

4.1. Expressions for H
g

�,� for varying g and fixed �, �

Theorem 4.1 may be used to obtain H
g

�,� for fixed �, �. The expressions are linear
combinations of certain powers of non-negative integers. In particular, the results of
Kuleshov–M. Shapiro [36] for d = 3, 4 and 5 can be obtained and extended, using
Maple to carry out the routine manipulation of series.

As an example, we give an explicit expression for H
g

(�1,�2),(�1,�2)
, in the case that

�1, �2, �1, �2 are distinct.

Corollary 4.2. Let � = (�1, �2) � d and � = (�1, �2) � d where �1 < �2, �1 < �2,
�1 < �1 and �1, �2, �1, �2 are distinct. Then

H
g

�,� = 2

�1�2�1�2

�1∑
i=1

(((
d + 1

2

)
− di

)2g+2

−
((

d + 1
2

)
− di − �2�1

)2g+2
)

.

Proof. Since �1, �2, �1, �2 are distinct, we have

H
g

�,� = H̃
(g)

�,� =
∣∣C�
∣∣ · |C�|
d!2

∑
��d

�(�)r��
��

�
�,

from (44). But here we have r = 2g + 2 is even, and
∣∣C�
∣∣ · |C�| /d!2 = 1/�1�2�1�2.

Moreover, �(̃�) = −�(�), and �̃�
��̃

�
� = ��

��
�
�. Finally, from (43), ��

� = 0 exactly when
[p�]s� = 0, so we have

H
g

�,� = 2

�1�2�1�2

∑
�∈P�,�

�(�)2g+2��
��

�
�,
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where P�,� = {�: [p�]s� 
= 0, [p�]s� 
= 0, �(�) > 0}. Now, we can give an explicit
description of P�,�, using the Murnaghan–Nakayama formula for the irreducible char-
acters of the symmetric group (see, e.g., [44]). The details can be routinely verified.

First,
∣∣P�,�

∣∣ = 2�1, so we let P�,� =
{
�(1), . . . , �(2�1)

}
, where �(1) � . . . � �(2�1).

(Here � denotes reverse lexicographic order on partitions, so (3) � (2, 1) � (13).)
Then, for i = 1, . . . , �1, we have �(i) = (d − i + 1, 1i−1

)
(which is independent of �),

so

�
(
�(i)
)

=
(

d + 1
2

)
− di, ��(i)

� ��(i)

� = 1, i = 1, . . . , �1.

Also, for i = 1, . . . , �1, we have �(�1+i) =
(
d + 1 − �1 − i, �1 + 2 − i, 2i−1, 1�1−�1−1

)
,

so

�
(
�(�1+i)

)
=
(

d + 1
2

)
− di − �2�1, ��(�1+i)

� ��(�1+i)

� = −1, i = 1, . . . , �1.

The result follows immediately. �

For example, P(3,8),(4,7) = ((11), (10, 1), (9, 12), (7, 4), (6, 3, 2), (5, 23)
)
� and

H
g

(3,8),(4,7) = 2

3 · 8 · 4 · 7

(
552g+2 + 442g+2 + 332g+2 − 232g+2 − 122g+2 − 12g+2

)
.

Similar expressions may be obtained when � and � have three parts. For example,

H
g

(1,2,6),(1,3,5) = 1
180

(
22g+4 − 62g+4 + 102g+4 + 122g+4 − 182g+4 − 202g+4

−282g+4 + 362g+4
)

.

The sum is over P�,�, but contributions from some partitions of this set are exactly
canceled as a consequence of “identities” between parts of � and parts of � (for
example, 1 + 2 = 3 and 6 = 1 + 5, where the left and right-hand sides, respectively,
refer to � and �). Furthermore, other terms are introduced as a consequence of the
same identities.

As an example with more parts, with d = 8, we obtain

H
g

(2,2,4),(1,2,2,3) = 1
48

(
3 · 22g+5 + 9

2 · 42g+5 + 3 · 62g+5 − 102g+5 − 142g+5 − 162g+5

+ 1
2 · 282g+5

)
.
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5. m-Part double Hurwitz numbers (m = l(�) fixed): topological recursions and
explicit formulae

We next consider more generally the case where � has a fixed number m of parts,
and � is arbitrary. (One of our results, Corollary 5.5, will lead to a proof of Faber’s
intersection number conjecture [12] in arbitrary genus with up to 3 points [25], and
we hope to extend this to prove the conjecture in general.) The behaviour is qualita-
tively different from that of the m = 1 case, which was considered in Section 3, as
might be expected by the failure of polynomiality. This will require us to utilize more
sophisticated algebraic tools.

We prove a topological recursion relation consistent with a description of double
Hurwitz numbers in terms of the moduli space of curves. This relation is obvious
neither from the currently understood geometry of double Hurwitz numbers nor from the
combinatorial interpretation in terms of the join-cut equation. For expository reasons, we
will give three versions of this topological recursion: a genus 0 recursion (Theorem 5.4),
a “cleaner” version of the genus 0 recursion involving rational rather than transcendental
functions (Theorem 5.6), and a version in arbitrary genus (Theorem 5.12).

The topological recursion will enable us to find closed-form expressions for double
Hurwitz numbers for small g and m, and in principle for larger g and m. (For a much
simpler example of topological recursions implying closed-form expressions for single
Hurwitz numbers, see [57].) We conjecture the form of a closed-form expression for
g = 0 and arbitrary m (Conjecture 5.9).

The reader will notice that except for the cases (g, m) = (0, 1) and (0, 2) (when there
is no Deligne–Mumford moduli stack Mg,m), the explicit expressions that we obtain for
Hg

m are all rational functions in the intrinsic variable u. Moreover, the denominator has
explicit linear factors. The topological recursions that we obtain for Hg

m are integrals
over u, and the integrand is quadratic in lower order terms. We conjecture that Hg

m is,
except for the two initial cases, always a rational function in u, with specified linear
factors in the denominator. To prove this by induction, we would need to obtain a
rational integrand by the induction hypothesis, and then prove (to avoid a logarithm in
the integrated form) that the inverse linear terms in the partial fraction expansion of
the integrand disappear. We have been unable to prove this in general, since it seems
to require a stronger induction hypothesis.

5.1. The symmetrized join-cut equation at genus 0

We apply the symmetrization operator �m (defined in (10)) to the join-cut equation
(9) to obtain partial differential equations for the symmetrized series H0

m(x1, . . . , xm).
As a preliminary, we begin with H0

1. The more general results will be an extension of
this idea.

Lemma 5.1.

H0
1,1(x1) = uQ1.
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(Recall that Hg
j,i = xi

�Hg
j

�xi
.) Although Lemma 5.1 has already been proved in the

previous section, in (41), we give a second proof to illustrate the methodology that
will be used throughout this section.

Proof. By applying �1 to the join-cut equation (9) and setting y = 0, it follows
immediately that H0

1 satisfies the partial differential equation

(
1 + u

�
�u

+ 0 − 2

)
H0

1 =
(

u
�
�u

− 1

)
H0

1 = 1

2

((
H0

1,1

)2 + 0 + 0

)
= 1

2

(
H0

1,1

)2

with initial condition [u] H0
1,1 = Q(x1). Apply x1

u2
�

�x1
to the above equation and let

G = 1
u

H0
1,1, to obtain

�G

�u
= Gx1

�G

�x1
. (45)

In terms of G, the initial condition becomes
[
u0
]
G = Q(x1). But, applying �

�u
to the

functional equation (14), we obtain

�w

�u
= w�(w)Q(w), (46)

and comparing with (15), we check that G(x1) = Q1 is the unique solution to
(45). �

To state an equation for H0
m for m�2, we need some additional notation. For � =

{�1, . . . , �j } ⊆ {1, . . . , m}, let x� = x�1 , . . . , x�j
. Let �m,i be the set of unordered

pairs {�, �} such that �, � ⊆ {1, . . . , m} with � ∪ � = {1, . . . , m} and � ∩ � = {i}. Let
{l} = {1, . . . , m} \ {l}.

Theorem 5.2 (Symmetrized join-cut equation in genus 0). For m�2, H0
m satisfies the

equation

(
u

�
�u

+ m − 2 −
m∑

i=1

uQixi

�
�xi

)
H0

m =
m∑

i=1

∑
{�,�}∈�m,i
l(�),l(�) � 2

H0|�|,i (x�)H0|�|,i (x�)

+
∑

1 � k,l �m
k 
=l

xlH0
m−1,k(x{l})
xk − xl

.
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The two parts of the right-hand side of the above equation correspond to the first
two parts of the right-hand side of the join-cut equation (Lemma 1.2); the third part
of join-cut does not arise in genus 0.

Proof. By applying �m to (9) for fixed m�2 and setting y = 0, we find that
H0

m(x1, . . . , xm) satisfies(
u

�
�u

+ m − 2

)
H0

m =
m∑

i=1

∑
{�,�}∈�m,i

H0|�|,i (x�)H0|�|,i (x�)

+
∑

1 � k,l �m
k 
=l

xlH0
m−1,k(x{l})
xk − xl

.

Moving the contribution of {�, �} ∈ �m,i where l(�) = 1 or l(�) = 1 on the right-hand
side of this equation to the left-hand side, we obtain(

u
�
�u

+ m − 2 −
m∑

i=1

H0
1,i (xi)xi

�
�xi

)
H0

m =
m∑

i=1

∑
{�,�}∈�m,i
l(�),l(�) � 2

H0|�|,i (x�)H0|�|,i (x�)

+
∑

1 � k,l �m
k 
=l

xlH0
m−1,k(x{l})
xk − xl

,

and the result follows from Lemma 5.1. �

A key observation is the following. The right-hand side of the equation in Theo-
rem 5.2 involves the series H0

j for j < m only, so if we can invert the partial differ-

ential operator that is applied to H0
m on the left-hand side, then we have a recursive

solution for H0
m, m�2.

5.2. A transformation of variables and the recursive solution to the symmetrized
join-cut equation

We now find a solution to the partial differential equation for H0
m that is given in

Theorem 5.2. The key is to change variables in H0
m, for m�1, from x1, . . . , xm to

w1, . . . , wm, using (14), to obtain

h0
m(u, w1, . . . , wm) := H0

m(w1e
−uQ1 , . . . , wme−uQm), m�2. (47)

We denote this transformation by �, so

�H0
m(x1, . . . , xm) = h0

m(u, w1, . . . , wm).
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We regard h0
m as an element of the ring of formal power series in u, w1, . . . , wm, with

coefficients that are polynomials in q1, q2, . . .. It is straightforward to invert this, and
recover H0

m from h0
m in (47) by Lagrange inversion, as specified in Theorem 1.3. For this

ring, let Du be the first partial derivative, with respect to u, for the purposes of which
w1, . . . , wm are regarded as algebraically independent variables, with no dependence
on u. Henceforth, we use h0

m and H0
m interchangeably.

The importance of � is shown in its action on the partial differential operator that is
applied to H0

m on the left-hand side of the symmetrized join-cut equation (Theorem 5.2).
We show that, under �, the partial differential operator is transformed into a linear
differential operator involving only Du.

Lemma 5.3. Let k be an integer. Then

uk−1�

(
u

�
�u

+ k −
m∑

i=1

uQixi

�
�xi

)
= Duu

k�.

In short, passing � through the differential operator simplifies it. From this point of
view, the variable u plays an important role, as the only variable, and accounts for our
terming it the intrinsic variable of the system.

Proof. For functions of u, w1, . . . , wm, the chain rule gives

u
�
�u

= uDu +
m∑

i=1

u

(
�wi

�u

)
�

�wi

= uDu +
m∑

i=1

uwiQi�i

�
�wi

= uDu +
m∑

i=1

uQixi

�
�xi

,

from (46) and the operator identity (16). Then �
(
u �

�u
+ k −∑m

i=1 uQixi
�

�xi

)
= (uDu + k) � and the result follows. �

5.3. A (univariate, rational, integral) topological recursion for H0
m, and explicit

formulae

Lemma 5.3 enables us to solve the partial differential equation for H0
m, m�2,

recursively. The following result gives an integral expression for h0
m, in terms of

h0
1, . . . , h0

m−1. We use the notation

h0
j,i = wi

�h0
j

�wi

.

(A “cleaner” version, not involving exponentials, will be given later, Theorem 5.6.)
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Theorem 5.4 (Genus 0 topological recursion, transcendental form). For m�2,

h0
m = u2−m

∫ u

0

⎛⎜⎜⎝ m∑
i=1

∑
{�,�}∈�m,i
l(�),l(�) � 2

�2
i h0|�|,i (u, w�)h0|�|,i (u, w�)

+
∑

1 � k,l �m
k 
=l

wle
−uQl�kh0

m−1,k(u, w{l})
wke−uQk − wle−uQl

⎞⎟⎠ um−3du,

where the integrand is considered as a power series in u, w1, . . . , wm, and the inte-
gration is carried out with w1, . . . , wm regarded as constants.

Proof. The result follows by applying � to Theorem 5.2 with the aid of
Lemma 5.3. �

5.4. Explicit expressions for H0
m for m�5, and a conjectured rational form for H0

m

in general

We now apply Theorem 5.4 for successive values of m�2, to obtain explicit ex-
pressions for the symmetrized series H0

m. We begin with m = 2 and 3, and include
the details in a single result, because the resulting expressions can be treated uni-
formly, also incorporating m = 1. This requires some notation. For m�1, let Vm =∏

1� i<j �m(wi −wj), the value of the Vandermonde determinant det
(
wm−i

j

)
m×m

, and

let Am be the m × m matrix with (1, j)-entry equal to �j − 1, for j = 1, . . . , m, and

(i, j)-entry equal to wm−i+1
j , for i = 2, . . . , m, j = 1, . . . , m. Let �m,j be the partial

differential operator defined by

�m,j =
m∑

i=1

w
j
i �i

�
�wi

=
m∑

i=1

w
j−1
i xi

�
�xi

, (48)

for m, j �1, where the second equality follows from the operator identity (16).
The following attractive formula will be used in a proof of Faber’s intersection

number conjecture for up to 3 points [25]. (Although the result is for genus 0, it will
give Faber’s conjecture in arbitrary genus.)

Corollary 5.5. For m = 1, 2, 3,

�3−m
m,1 h0

m = det Am

Vm

.

Proof. For m = 1, the result follows by differentiating the result of Lemma 5.1 and
applying (15).
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For the case m = 2, Theorem 5.4 gives

h0
2 =

∫ u

0

(
uQ1w2e

−uQ2 − uQ2w1e
−uQ1

w1e−uQ1 − w2e−uQ2
− Q1 − Q2

)
du

u

=
∫ u

0

(
Q1w1e

−uQ1 − Q2w2e
−uQ2

w1e−uQ1 − w2e−uQ2
− Q1 − Q2

)
du

= − log

(
w1e

−uQ1 − w2e
−uQ2

w1 − w2

)
− uQ1 − uQ2

= log

(
w1 − w2

x1 − x2

)
− (uQ1 + uQ2) ,

which is well-formed as a formal power series in u, w1, w2, since the argument for the
logarithm has constant term equal to 1. Then from (15) we have

H0
2,1 = E1, 2 − x2

x1 − x2
, H0

2,2 = E2, 1 − x1

x2 − x1
, where Ei, j = wj�i

wi − wj

, (49)

for i 
= j , and, adding these, we obtain(
x1

�
�x1

+ x2
�

�x2

)
H0

2 = E1, 2 + E2, 1 + 1 = w2�1

w1 − w2
+ w1�2

w2 − w1
+ 1

= w2

w1 − w2
(�1 − 1) + w1

w2 − w1
(�2 − 1)

so the result follows for m = 2.
For m = 3, let xi,j = xj /(xi − xj ), for i 
= j , and let

∑
i,j,k denote summation over

all distinct i, j, k with 1� i, j, k�3. For the case m = 3, Theorem 5.4 and (15), (49)
give

h0
3 = 1

u

∫ u

0

∑
i,j,k

(
1

2
(Ei,j − xi,j )(Ei,k − xi,k) + xi,j (Ei,k − xi,k)

)
du

= 1

u

∫ u

0

(−1 + E1,2E1,3 + E2,1E2,3 + E3,1E3,2
)
du

= 1

u

∫ u

0

⎛⎜⎝−1 +
3∑

i=1

⎛⎜⎝ ∏
1 � j � 3

j 
=i

wj

wi − wj

⎞⎟⎠ �2
i

⎞⎟⎠ du

= 1

u

⎛⎜⎝−u +
3∑

i=1

⎛⎜⎝ ∏
1 � j � 3

j 
=i

wj

wi − wj

⎞⎟⎠ �i

wiQ
′
i

⎞⎟⎠
∣∣∣∣∣∣∣
u

0
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= −1 +
3∑

i=1

⎛⎜⎝ ∏
1 � j � 3

j 
=i

wj

wi − wj

⎞⎟⎠ �i =
3∑

i=1

⎛⎜⎝ ∏
1 � j � 3

j 
=i

wj

wi − wj

⎞⎟⎠ (�i − 1),

and the result follows for m = 3. �

We now apply the case m = 2 of the previous result to transform the integrand of
Theorem 5.4 to a simpler form.

Theorem 5.6 (Genus 0 topological recursion, rational form). For m�4,

h0
m = u2−m

∫ u

0

⎛⎜⎜⎝ m∑
i=1

∑
{�,�}∈�m,i
l(�),l(�) � 3

�2
i h0|�|,i (u, w�)h0|�|,i (u, w�)

+
∑

1 � k,l �m
k 
=l

�2
kwl

wk − wl

h0
m−1,k(u, w{l})

⎞⎟⎠ um−3du.

Proof. The result follows immediately from Theorem 5.4 and (49), since we are able
to cancel the terms with denominator xk − xl = wke

−uQk − wle
−uQl . �

We now apply Theorem 5.6 in the cases of m = 4 and 5 parts. For m�3, let
B(n;k)

m be the m × m matrix with (1, j)-entry equal to wn
j �j , (2, j)-entry equal to

wj�j , (3, j)-entry equal to wk
j , for j = 1, . . . m, and (i, j)-entry equal to wm−i+1

j , for
i = 4, . . . , m, j = 1, . . . , m.

Corollary 5.7.

h0
4 = �4,1

(
det A4

V4

)
− det B(2;2)

4

V4
.

The proof is similar in approach to that of Corollary 5.5 and therefore omitted.
Note that the right-hand side of Corollary 5.5 with m = 4 appears as the “first

approximation” to the series h0
4 in Corollary 5.7.

For m = 5, we have found the expressions in Theorem 5.6 to be intractable by hand,
but have used Maple to carry out the integration, and obtained the following result.



84 I.P. Goulden et al. / Advances in Mathematics 198 (2005) 43–92

Let

C5 =

⎛⎜⎜⎜⎜⎜⎝
w4

1�1 w4
2�2 w4

3�3 w4
4�4 w4

5�5

w2
1�1 w2

2�2 w2
3�3 w2

4�4 w2
5�5

w1�1 w2�2 w3�3 w4�4 w5�5

w2
1 w2

2 w2
3 w2

4 w2
5

w1 w2 w3 w4 w5

⎞⎟⎟⎟⎟⎟⎠ ,

D(n;k)
5 =

⎛⎜⎜⎜⎜⎜⎝
wn

1�2
1 wn

2�2
2 wn

3�2
3 wn

4�2
4 wn

5�2
5

wk
1�1 wk

2�2 wk
3�3 wk

4�4 wk
5�5

w3
1 w3

2 w3
3 w3

4 w3
5

w2
1 w2

2 w2
3 w2

4 w2
5

w1 w2 w3 w4 w5

⎞⎟⎟⎟⎟⎟⎠ .

Corollary 5.8.

h0
5 = �2

5,1

(
det A5

V5

)
− �5,1

(
2

det B(3;3)
5

V5
− det B(2;4)

5

V5

)
+ �5,2

(
det B(2;3)

5

V5

)

+det C5

V5
+ det D(3;1)

5

V5
− det D(2;2)

5

V5
.

Again, the right-hand side of Corollary 5.5 with m = 5 appears as the “first approxi-
mation” to h0

5 in Corollary 5.8.
The results that we have for m = 1, . . . , 5 have not yet suggested a pattern that can

be conjecturally generalised. This is because we have been unable to find a sufficiently
uniform presentation for them, although the presentation as a sum of bialternants of
very elementary matrices is suggestive.

Still, the forms that we have obtained for h0
m when m�5 suggest a general conjecture,

stated below. We refer to this as a rational form in u, because each �i is an inverse linear
function of u. Note that, for h0

m to continue to be rational as m increases, the partial
fraction expansion of the recursively formed integrand in Theorem 5.6 must continue
to have vanishing coefficients for the terms that are linear in �i , i = 1, . . . , m.

Conjecture 5.9. For m�3, h0
m is a sum of terms of the following type:

�m,i1 . . . �m,ikPm,i1,...,ik ,

where 0�k�m − 3, i1 + · · · + ik �m − 3, and Pm,i1,...,ik is a homogeneous symmetric
polynomial in �1, . . . , �m of degree k + 1, with coefficients that are rational functions
in w1, . . . , wm with degree of numerator minus degree of denominator equal to i1 +
· · · + ik − k. Moreover, Pm,i1,...,ik is a symmetric function of w1, . . . , wm, where �i is
considered as �(wi).

Note that this form specializes to the expressions above for h0
3, h0

4, h0
5, so the

conjecture is true for the cases 3�m�5.
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This conjecture should be seen as the genus 0 double Hurwitz analogue of the
polynomiality conjecture [21, Conjecture 1.2], proved in [24, Theorem 3.2]. As with
the earlier conjecture, the form of Conjecture 5.9 suggests some geometry. For example,
present in the polynomial conjecture was the dimension of the moduli space of n-pointed
genus g curves; the n points corresponded to the preimages of ∞. In this case, the
analogue is m − 3, the dimension of the moduli space of m-pointed genus 0 curves;
again, the m points should correspond to the preimages of ∞ (i.e. the parts of �).
However, we have been unable to make precise the link to geometry.

5.5. Application: explicit formulae

As an application of the explicit formulae for h0
m for small m, we now extract the

appropriate coefficient to give explicit formulae for the corresponding double Hurwitz
numbers. We use some standard results for symmetric functions (see for example [44]),
particularly the determinantal identity

det
(
w

	i+m−i
j

)
m×m

Vm

= det
(
h	i−i+j (w)

)
m×m

, (50)

for non-negative integers 	1, . . . , 	m, where hk(w) is the complete symmetric func-
tion of total degree k, with generating series

∑
k �0 hk(w)tk = ∏m

j=1(1 − wj t
j )−1. If

	 = (	1, . . . , 	m) is a partition (where 	1 � · · · �	m), then both sides of (50) give ex-
pressions for the Schur symmetric function s	(w). In the case that 	 is not a partition,
we shall still denote either side of (50) by s	(w).

Using multilinearity on the first row of det Am, we have

det Am

Vm

= w1 · · · wm

∑
r �m

ars(r−m) (w) = w1 · · · wm

∑
r �m

arhr−m(w), (51)

from (50), where

�(w) =
∑
i �1

aiw
i, (52)

and �(w) is defined in (15). We write � ∪ � for the partition with parts �1, . . . , �m,

�1, . . . , �n, suitably reordered.

Proposition 5.10. For d �m�1 and �, � � d , with � = (�1, . . . , �m),

[
x

�1
1 . . . x�m

m ul(�)q�

] det Am

Vm

=
∑ l(�)!∏j �1 �j

|Aut �|
m∏

j=1

(�j − ∣∣�j

∣∣)�l(�j )−1
j∣∣Aut �j

∣∣ ,

where the summation is over partitions �, �1, . . . , �m, with � ∪ �1 ∪ · · · ∪ �m = �, and∣∣�j

∣∣ < �j , j = 1, . . . , m. (Note that �1, . . . , �m can be empty, but � cannot.)
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Proof. From (51), we have

det Am

Vm

=
∑
r �m

ar

∑
w

i1
1 · · · wim

m ,

where m�1, and the second summation is over i1, . . . , im �1, with i1 + · · · + im = r ,
and ar is defined above (52). But, applying Theorem 1.3(12) to (14), we obtain

[
xt
]
wi = 1

t

[
�t−1

]
i�i−1eutQ(�) = i

t

[
�t−i

]∑
n�0

1

n!

⎛⎝ut
∑
j �1

qj�
j

⎞⎠n

= i

t

∑
��t−i

t l(�)

|Aut �|u
l(�)q�, i, t �1,

and from (15), we have

ar = [
wr
]
(�(w) − 1) = [wr

]∑
i �1

⎛⎝u
∑
j �1

jqjw
j

⎞⎠i

=
∑
��r

l(�)!∏j �1 �j

|Aut �| ul(�)q�, r �1.

Combining these results, we obtain

[
x

�1
1 . . . x�m

m

] det Am

Vm

=
∑ l(�)!∏j �1 �j

|Aut �| ul(�)q�

m∏
j=1

⎛⎝ ij

�j

∑
�j ��j −ij

�j
l(�j )∣∣Aut �j

∣∣ul(�j )q�j

⎞⎠ ,

where the summation is over � and i1, . . . , im �1, with � � i1 + · · · + im. The result
follows immediately. �

This result allows us to immediately give formulae for genus 0 double Hurwitz
numbers when one of the partitions has two or three parts.

Corollary 5.11. Suppose �, � � d , with � = (�1, . . . , �m).

(1) If m = 2, then

H 0
(�1,�2),�

= |Aut �| r!
d

∑ l(�)!∏j �1 �j

|Aut �| ∣∣Aut �1

∣∣ ∣∣Aut �2

∣∣
×(�1 − ∣∣�1

∣∣)(�2 − ∣∣�2

∣∣)�l(�1)−1
1 �

l(�2)−1
2 ,

where the summation is over partitions �, �1, �2, with � ∪ �1 ∪ �2 = �, and
∣∣�j

∣∣ < �j ,
j = 1, 2.
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(2) If m = 3, then

H 0
(�1,�2,�3),�

= |Aut �| r!
∑ l(�)!∏j �1 �j

|Aut �|
3∏

j=1

(�j − ∣∣�j

∣∣)�l(�j )−1
j∣∣Aut �j

∣∣ ,

where the summation is over partitions �, �1, �2, �3, with � ∪ �1 ∪ �2 ∪ �3 = �, and∣∣�j

∣∣ < �j , j = 1, 2, 3.

Proof. From (11), we obtain

H 0
(�1,...,�m),� = |Aut �| r!

[
x

�1
1 . . . x�m

m ul(�)q�

]
H0

m(x1, . . . , xm).

Both parts of the result then follow from Proposition 5.10 and Corollary 5.5, using (48)
to give the factor of d in the case m = 2. �

In a similar, but more complicated way, it is possible to obtain explicit formulae for
H 0

(�1,...,�m),� in the cases m = 4, 5, using multilinearity to expand the determinants that
arise in Corollaries 5.7 and 5.8.

We conclude this subsection with a conjecture for H 0
�,� where �, � satisfy a particular

relation.

Conjecture 5.10. If �, � � d and �1, . . . , �n > �2 + · · · + �m, then for m�2,
H 0

�,� = (m + n − 2)! dm−2�n−1
1 .

We include an algebraic proof of this conjecture for the case m=3 using Corollary 5.5
to demonstate the methodology for obtaining explicit results from this lemma. The same
methodology may be used to prove the conjecture for m=4 and m=5 by Corollaries 5.7
and 5.8, respectively, (and, of course, routinely for m=2). These cases are left to the
reader. Shadrin [52] has very recently proved this conjecture geometrically.

We prove Conjecture 5.10 is true for m = 3. From (11) H 0
�,� =

|Aut�|r!
[
x

�1
1 x

�2
2 x

�3
3 ul(�)q�

]
H 0

3 , where H 0
3 ≡ H0

3(x1, x2, x3), r = m + n − 2, from (7),

and H 0
3 = |A3|/V3 from Corollary 5.5. Expanding the numerator by Laplace’s expan-

sion for the set of rows containing �i’s (there is only one such row in this case), we
have

H 0
3 = (�1 − 1)w2w3

(w1 − w2)(w1 − w3)
+ (�2 − 1)w1w3

(w2 − w1)(w2 − w3)
+ (�3 − 1)w1w2

(w3 − w1)(w3 − w2)
.

A meaning is attached to (wi − wj)
−1 where 1� i < j �3 by imposing the total order

w3 ≺ w2 ≺ w1 upon the indeterminates, and then defining this expression to be w−1
i (1−

wj/wi)
−1. This then defines a formal power series ring in w3 with coefficients that

are formal Laurent series in w1, w2 (see Xin [61]). We shall work in this ring without
further comment and deal with each of the three terms in turn.

From the expression for [xt ]wi in the proof of Proposition 5.10[
x

�3
3 ul(�)q�

]
wi

3 = i

�3

∑
���3−i

�l(�)
3

|Aut�| [u
l(�)q�]ul(�)q�.
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But |�| < �3 < �1, . . . , �n, so � is the null partition, and we may therefore set qi =
0 for all i�1 in (14), whence w3 = x3, and �3 = 1 from (15). Thus H 0

�,� =
|Aut�|r!

[
x

�1
1 x

�2
2 x

�3
3 ul(�)q�

]
f where

f = (�1−1)
w2

w1

x3

w1

(
1 − w2

w1

)−1 (
1 − x3

w1

)−1

+(�2−1)
x3

w2

(
w2

w1
− 1

)−1 (
1 − x3

w2

)−1

.

Let a and b denote the first and second terms, respectively, on the right hand side of
this expression.

Now,
[
x

�1
1 x

�2
2 x

�3
3 ul(�)q�

]
b =

[
x

�1
1 x

�2
2 ul(�)q�

]
(�2 − 1)

(
w2
w1

− 1
)−1

w
−�3
2 . But, by an

argument similar to that given above, we have w2 = x2 and �2 = 1, since �2 + �3 <

�1, . . . , �n. Thus the contribution of b to H 0
�,� is 0.

Finally,
[
x

�1
1 x

�2
2 x

�3
3 ul(�)q�

]
a =

[
x

�1
1 ul(�)q�

]
(�1 − 1)w

−(�2+�3)
1 . But x1�w1/�x1 =

w1�1 from (15) and
[
x

�1
1

]
x1�/�x1 = �1[x�1

1 ], so
[
x

�1
1 ul(�)q�

]
(�1 − 1)w

−(�2+�3)
1 =[

x
�1
1 ul(�)q�

]
(−d)w

−(�2+�3)
1 /(�2+�3), and the result follows from the above mentioned

expression in the proof of Proposition 5.10.

5.6. Positive genus: A topological recursion for Hg
m and explicit formulae

In the following result, we apply the symmetrization operator �m to the join-cut
equation, to obtain a partial differential equation for Hg

m, for genus g�1. As in the case
of genus 0, the change of variables transforms the partial differential operator applied
to Hg

m into the linear differential operator in the intrinsic variable u. Consequently, we
are able to express the transformed series

hg
m(u, w1, . . . , wm) = �Hg

m(x1, . . . , xm)

as an integral in u.

Theorem 5.12 (Topological recursion in positive genus). (1) For g�1,

hg
1 = u1−2g

2

∫ u

0

⎛⎝g−1∑
j=1

hj
1,1(u, w1)h

g−j
1,1 (u, w1) + w2

�
�w2

hg−1
2,1 (u, w1, w2)

∣∣∣∣
w2=w1

⎞⎠
×�2

1u
2g−2du.

(2) For m�2 and g�1,

hg
m = u2−m−2g

∫ u

0

⎛⎜⎜⎝ m∑
i=1

∑
{�,�}∈�m,i
l(�),l(�) � 3

�2
i

(
h0|�|,i (u, w�)h

g

|�|,i (u, w�)
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+hg
|�|,i (u, w�)h0|�|,i (u, w�)

)
+

g−1∑
j=1

m∑
i=1

∑
{�,�}∈�m,i

�2
i hj

|�|,i (u, w�)h
g−j

|�|,i (u, w�)

+
∑

1 � k,l �m
k 
=l

�2
kwl

wk − wl

hg
m−1,k(u, w{l})

+ 1

2

m∑
i=1

�2
i

(
wm+1

�
�wm+1

hg−1
m+1,i (u, w1, . . . , wm+1)

)∣∣∣∣
wm+1=wi

⎞⎟⎟⎠ um+2g−3du.

In both parts of this result, the integration is carried out with w1, . . . , wm regarded
as constants.

We call this a topological recursion because it expresses hg
m in terms of hg′

m′ , where
g′ �g and m′ �m + 1, and either g′ < g or m′ < m.

Remarks. (1) Note that the case m = 1 is different.
(2) The exponents of u have geometric meaning; this is no coincidence.
(3) This result specializes to the rough form of the genus 0 topological recursion

(Theorem 5.4), by taking g = 0 and h−1 = 0, after minor manipulation.

Proof. By applying �1 and
[
yg
]

to (9) for fixed g�1 we find that Hg
1(x1) satisfies(

u
�
�u

+ 2g − 1

)
Hg

1(x1) = 1

2

g∑
j=0

Hj
1,1(x1)H

g−j
1,1 (x1) + 1

2
x2

�
�x2

Hg−1
2,1 (x1, x2)

∣∣∣∣
x2=x1

.

Now move the terms j = 0 and g in the summation on the right-hand side of
this equation to the left-hand side, and change variables by applying the operator
identity (16), and part 1 of the result follows from Lemma 5.3.

By applying �m and
[
yg
]

to (9) for fixed m�2 and g�1 we find that
Hg

m(x1, . . . , xm) satisfies(
u

�
�u

+ m + 2g − 2

)
Hg

m =
g∑

j=0

m∑
i=1

∑
{�,�}∈�m,i

Hj
|�|,i (x�)H

g−j

|�|,i (x�)

+
∑

1 � k,l �m
k 
=l

xlH
g
m−1,k(x{l})
xk − xl

+1

2

m∑
i=1

(
xm+1

�
�xm+1

Hg−1
m+1,i (x1, . . . , xm+1)

)∣∣∣∣
xm+1=xi

.

Now move the contribution of {�, �} ∈ �m,i when j = 0 or j = g, and l(�) = 1 or
l(�) = 1, in the first summation on the right-hand side of this equation to the left-hand
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side, and apply (49) to cancel the terms with denominator xk − xl on the right-hand
side. Then apply �, using the operator identity (16), and part 2 of the result follows
from Lemma 5.3. �

The topological recursion may be used to give explicit formulae for Hg
m. The cases

g = 1 and m = 1, 2 are given below. We omit the derivation (which is similar in spirit
to that for the genus 0 formulae), and simply report the result.
Corollary 5.13.

h1
1 = u�1w1

�
�w1

Q1 + u2�3
1

((
w1

�
�w1

)2

Q1

)2

+ u�2
1

(
w1

�
�w1

)3

Q1,

h1
2 = 1

24

(
x1

�
�x1

)2 (
w2

w1 − w2
w1

�
�w1

log �1

)
+ 1

24

(
x2

�
�x2

)2 (
w1

w2 − w1
w2

�
�w2

log �2

)
− 1

24
�2,1

(
w2

w1 − w2
�1 + w1

w2 − w1
�2

)
+ 1

48
�2

2,1

(
w1

�
�w1

w2

w1 − w2
+ w2

�
�w2

w1

w2 − w1

)
.

A similar equation for h1
1 has also been derived from the genus expansion ansatz,

in (42). Of course, these expression agree, by carrying out the differentiations in Corol-
lary 5.13.
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