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1. Introduction

The moduli space Mg; n of n-pointed genus g curves, with stability condition

2gÿ 2� n > 0 �1�
has dimension

3gÿ 3� n: �2�
It is the Deligne±Mumford compacti®cation of the moduli space Mg; n of smooth
n-pointed genus g curves. It has n natural line bundles L i (roughly, the cotangent
space to the i th marked point) and a natural rank g vector bundle E (the Hodge
bundle; its ®bers correspond to global differentials on the curve). Let wi � c1�L i�
and l k � ck�E�, where cj is the j th Chern class; intersections of w-classes are
called descendant integrals, and intersections of w-classes and l-classes are called
Hodge integrals (see [13] for fuller information).

The Gromov±Witten potential F of a point (Witten's total free energy of two-
dimensional gravity) is a generating series for all descendant integrals. Witten's
conjecture (Kontsevich's theorem, [29]) and the Virasoro conjecture for a point

can be expressed as the fact that eF is annihilated by certain differential operators
(see [17] for example). We de®ne G as a generalization of F (§ 2), a generating
series for all intersections of w-classes and (up to) one `l-class'. (This is part of
the very large phase space of [34].) Then F can easily be recovered from G.

Hurwitz numbers enumerate covers of the projective line by smooth connected
curves of speci®ed degree and genus, with speci®ed branching above one point,
simple branching over other speci®ed points, and no other branching. Equiva-
lently, they are purely combinatorial objects counting factorizations of permuta-
tions into transpositions that generate a group which acts transitively on the
sheets. Hurwitz numbers have long been of interest (see, for example, [26, 39] for
more recent references, and [2] for the relation to mathematical physics). Let H
be a generating series for Hurwitz numbers (de®ned precisely in § 2).

It is straightforward (if tedious) to produce expressions for Hurwitz numbers
for any given degree (see [26, 7] for degrees up to 6), but geometrical
arguments are required for obtaining expressions for ®xed genus and it is the
latter that we consider.

The research of the ®rst two authors was supported by research grants from the Natural Sciences and
Engineering Research Council of Canada. That of the third author was partially supported by research grant
DMS 9970101 from the National Science Foundation.

2000 Mathematics Subject Classi®cation: primary 14H10, 81T40; secondary 05C30, 58D29.

Proc. London Math. Soc. (3) 83 (2001) 563±581. q London Mathematical Society 2001.



1.1. Recursions and Gromov±Witten theory

One proof of the power of the theory of stable maps is the large number of striking
recursions it has produced for solutions to classical problems in enumerative
geometry, often as consequences of `topological recursion relations'. The original
example was Kontsevich and Manin's remarkable recursion for rational plane curves
[30, Claim 5.2.1]. Eguchi, Hori and Xiong [6] used the Virasoro conjecture to ®nd a
recursion for genus 1 plane curves (proved in [36, Theorem 2]; see also [5] for the
genus 1 Virasoro conjecture in the semisimple case). Similar recursive structure also
underlies characteristic numbers in low genus [11, 38, 23].

There are strong analogies between plane curves and covers of the projective
line. Similar techniques in Gromov±Witten theory have produced recursions for
Hurwitz numbers (see [15, pp. 17±18] or [38, § 5.11] for a summary), including a
genus 2 relation conjectured by Graber and Pandharipande and proved in [20].
Ionel (in a personal communication) has produced recursions using topological
recursion relations and the Virasoro conjecture. Some geometers (including
Fantechi and Pandharipande, see Example 4.1, as well as the third author) have
thought that recursions among Hurwitz numbers should be rare, and should not
occur in high genus. Philosophically, § 4 shows that in fact recursions are `thick
on the ground', and that there is an algorithm for producing (and verifying) them.
It is expected that only a few will have straightforward (and enlightening)
geometric explanations. (It would be interesting to reverse the Gromov±Witten
approach and, for example, to produce relations in the cohomology of Mg; n using
recursions, but this does not seem to be tractable.)

Recurrences can be obtained in the more general setting of rami®ed coverings
of surfaces of higher genera. These were considered by Hurwitz [26]. When his
approach is carried out by means of a cut-and-join analysis, the resulting partial
differential equation (for example, see § 4.2) is, of course, identical to the one for
the sphere, although the initial conditions are different. It is then a straightforward
matter to write down the recurrence for arbitrary rami®cation over in®nity. Li,
Zhao and Zheng [32] have obtained such a recurrence by other methods, although
boundary conditions were not included (see also [32, Theorem B; 22, Lemma 3.1]).

As we expect this paper also to be of interest to combinatorialists, we have tried to
make it as self-contained as possible, including reviewing some results and de®nitions
well known in algebraic and symplectic geometry, and mathematical physics.

1.2. Organization of the paper

We ®rst show that, after a non-trivial change of variables (denoted by Y),
G � H in positive genus (Theorem 2.5). Hence the Gromov±Witten potential of a
point is a purely combinatorial object seen in a new way. The proof uses a
remarkable formula of Ekedahl, Lando, Shapiro and Vainshtein [8, Theorem 1.1]
expressing Hurwitz numbers in terms of Hodge integrals. In some sense this
addresses an obstacle to dealing with descendant integrals, the fact that they `do
not admit so easily of an enumerative interpretation' [17, p. 1]. (Of course,
Kontsevich's original formula [29, p. 10] is also combinatorial, and much more
useful). However, the awkwardness of the change of variables makes it dif®cult to
transpose results between `the world of H ' (involving Hurwitz numbers) and `the
world of G ' (involving the moduli space of curves).

Second, we prove a generalization (Theorem 3.1) of an ansatz of Itzykson and
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Zuber ([28, (5.32)], hereinafter called the `IZ genus expansion ansatz'). The
philosophy behind the IZ genus expansion ansatz is that, for a ®xed genus,
starting from a ®nite number of descendant integrals (involving those monomials
in the w where each w-class appears with multiplicity at least 2), one can calculate
any descendant integral using only the string equation and the dilaton equation.
The IZ genus expansion ansatz algebraically encodes this fact.

Thirdly, we use this to prove a conjecture of Gouldon and Jackson on Hurwitz
numbers (Theorem 3.2, [20, Conjecture 1.2]), revealing it as a `genus expansion
ansatz for Hurwitz numbers'. The erstwhile mysterious combinatorial constants in
the conjecture are actually single Hodge integrals.

As an application, we observe that there are trivial combinatorial recurrences on
H, which lead to new conditions satis®ed by G (and hence F ). It would be
desirable to give a new proof of Witten's conjecture using the combinatorics of
covers of the projective line. Such a proof has recently been announced by
Okounkov and Pandharipande [35]. As a second application, Theorem 3.2
provides an algorithm for proving and producing recursions for Hurwitz numbers.
We produce simple (and surprising) new recursions in genus up to 3 as examples
of the algorithm's effectiveness. Theorem 3.2 also yields explicit formulas for
Hurwitz numbers of any given genus; we give an example (28) in genus 3.

1.3. For combinatorialists

Conjecture 1.2 of [20] came from a combinatorial approach to Hurwitz's
encoding of rami®ed covers, and the proof given here suggests that further
combinatorial questions of substance remain to be investigated (for example, the
combinatorialization of Hodge integrals). Therefore, to make this paper more
accessible to combinatorialists, we specify the essential results that are taken
without proof from algebraic and differential geometry. These are the stability
condition (1) and dimension condition (2) for Mg; n , lk � 0 unless 0 < k < g, the
convention l0 � 1, the genus condition (4) for the non-vanishing of Hodge
integrals, the evaluation (6) of the base values ht3

0 i0, ht1i1 and hl1i1, the string
(8) and dilaton (10) equations for Hodge integrals, the Riemann±Hurwitz formula
(12) for the genus of a rami®ed cover, and the result (13) of Ekedahl, Lando,
Shapiro and Vainshtein relating Hurwitz numbers to Hodge integrals. References
are given to sources where the proofs of these are to be found. All of our work
with Hodge integrals is through the dilaton and string equations which, in a real
sense, remove the need to use the primary de®nition (3) of Hodge integrals.

It is hoped that, for the most part, the remainder of the paper can be read
without recourse to algebraic or differential geometry.

2. Background

We begin with the necessary background on the generating series F, G and H
that are central to the subject of this paper.

2.1. Algebraic notation

Suppose a is the composition d � a1 � . . .� am where the ai are non-negative
integers. Set l�a� � m, the length of a, and let # Aut�a� be the number of
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automorphisms of the multiset fa1; a2 ; . . . ;amg (so if bj of the ai are j, then
#Aut�a� � b0!b1! . . . �. If the ai are positive and non-decreasing, we write a r d ,
and say that a is a partition. If, furthermore, all ai are equal to at least 2, we
write a o d .

Throughout, t � �t0 ; t1; . . . � and p � � p1; p2 ; . . . � where t0 ; t1; . . . and p1; p2 ; . . .
are indeterminates. Thus, for example, Q�� t �� � Q�� t0 ; t1; . . . �� and Q��x; p�� �
Q��x; p0 ; p1; . . . ��. If Z is a polynomial in t, let ��t k0

0 =k0!� . . . �t ki

i =ki!��Z be the

coef®cient of �t k 0

0 =k0!� . . . �t ki

i =ki!� in Z .

Functional equations of the form v � xg�v�, where v 2Q��x �� and g�0� 6� 0,
have a unique solution v�x� in Q��x ��, and an explicit expression for f �v� , where f
is an arbitrary series, may be obtained by Lagrange inversion (see, for example,
[21, § 1.2]; also known as Lagrange's Implicit Function Theorem). We will invoke
Lagrange inversion a number of times, particularly when deriving explicit
expressions for certain Hurwitz numbers.

2.2. The Gromov±Witten and enriched Gromov±Witten potentials
F and G of a point

Recall that wi and lk are Chow classes on Mg; n of codimension 1 and k
respectively, where 1 < i < n and 0 < k < g with l0 � 1. For non-negative
integers v1; . . . ; vn de®ne

htv1
. . . tvn

lkig �
Z
Mg ; n

w
v1

1 . . . wvn
n lk �3�

if

3gÿ 3� n �
X

vi � k �4�
and 2gÿ 2� n > 0, and de®ne htv1

. . . tvn
l kig � 0 otherwise. (Condition (4)

arises because non-zero intersections can only occur when the sum of the
codimensions of the classes intersected equals the dimension 3gÿ 3� n of the
space Mg; n.) The condition equivalent to (4) for htb0

0 t
b 1

1 . . . lkig is

k �
X
�1ÿ i�bi � 3gÿ 3: �5�

In sums involving Hodge integrals it is convenient to include k as a summation
index, but then to recall that the condition (either (4) or (5)) on k is implicit.
When k � 0, this agrees with the usual de®nition. In particular,

ht3
0 i0 � 1; ht1i1 � hl1i1 � 1

24
: �6�

De®nition 2.1. Let g > 0. The genus g Gromov±Witten potential of a point is

Fg�t� �
X
n > 0

1

n!

X
v1;...; vn > 0

tv1
. . . tvn

htv1
. . . tvn

ig ;

where the sum is constrained by (4) with k � 0.
The Gromov±Witten potential of a point is

F �
X
g > 0

ygÿ1Fg :
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The genus g enriched Gromov±Witten potential of a point is

Gg�t� �
X
n > 0

1

n!

X
v1;...; vn > 0; 0 < k < g

�ÿ1�ktv1
. . . tvn

htv1
. . . tvn

lkig ; �7�

where the sum is constrained by (4).
The enriched Gromov±Witten potential of a point is

G �
X
g > 0

Gg ygÿ1:

It will be convenient to use Gg in the form

Gg�t� �
X

a 1 ; a 2 ;... > 0; 0 < k < g

�ÿ1�khta 0

0 t
a1

1 . . . lkig
t

a 0

0

a0!

t
a1

1

a1!
. . . ;

where the sum is constrained by (5). (The �ÿ1�k in the de®nition of Gg is
included to make the change of variables simpler.) Note that F0 � G0 . Note also

that F can be recovered from G by substituting v1ÿ iti for ti , and v3y for y, and
letting G #�t; y; v� be the resulting generating series in the ti , y, and v. Then

F�t; y� � G #�t; y; 0� and G�t; y� � G #�t; y; 1�. Phrased differently, if ti is given
degree 1ÿ i and y is given degree 3, then Gg has terms only in degrees 0 to g,
and Fg is the degree 0 part of Gg . Also,�

t
l 0

0

l0!
. . .

t
li

i

li !
vk

�
G #

g � �ÿ1�kht l 0

0 . . . t
li

i lkig :

The following equations facilitate the systematic elimination of t0 and t1 from
the Hodge integrals. Let a0 ; a1; . . . be non-negative integers. The string equation
(or puncture equation) is

hta 0�1
0 t

a1

1 . . . l kig �
X
i > 0

ai�1hta 0

0 . . . t
ai�1
i t

ai� 1ÿ1
i�1 . . . lkig ; �8�

unless g � 0, k � 0, a0 � 2, and all other ai are zero (in which case the left-hand
side is ht3

0i0 � 1 by (6)). In genus 0, for example,Z
M0 ; n

w
v1

1 . . . wvn
n �

�
nÿ 3

v1; . . . ; vn

�
�9�

by a trivial induction from the string equation (observe that one of the vi has to
be zero, so the string equation may be applied) with ht3

0 i0 � 1 as the base case.
The dilaton equation is

hta 0

0 t
a1�1
1 t

a 2

2 . . . l kig �
�

2gÿ 2�
X

i

ai

�
hta 0

0 t
a 1

1 t
a 2

2 . . . l kig ; �10�

unless g � 1, k � 0, and the ai are all zero (in which case the left-hand side is
ht1i1 � 1

24
by (6)). The proofs of the string and dilaton equations are the same as

the usual proofs when no l-class is present (see, for example, [33, p. 191]), so we
suppress them. In particular, by induction, we obtain the following repeated form
of the dilaton equation from the dilaton equation: if a � a0 � a1 � . . . ; then

hta 0

0 t
a1

1 t
a 2

2 . . . lk ig �
�a� 2gÿ 3�!

�a� 2gÿ 3ÿ a1�!
hta 0

0 t
a 2

2 . . . lk ig �11�
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(except when the equation does not make sense, that is, when g � 0 and aÿ a1 < 3, or
g � 1 and aÿ a1 � k � 0), expressing the consequence of eliminating each t1. The
string and dilaton equations can be easily translated into differential equations for Gg .

2.3. The Hurwitz generating series H

Fix a genus g, a degree d, and a partition �a1; . . . ;am� of d with m parts. Let

r � d � m� 2�gÿ 1�; �12�
so a branched cover of P1, with monodromy above 1 given by a, and r other
speci®ed simple branch points (and no other branching) has genus g (by the
Riemann±Hurwitz formula). Let H g

a be the number of such branched covers that
are connected. (We do not take the branched points over 1 to be labelled.)

The remarkable formula of Ekedahl, Lando, Shapiro and Vainshtein [8,
Theorem 1.1; 9]

H g
a �

r !

#Aut�a�
Ym
i� 1

a
a i

i

ai !

Z
Mg ;m

1ÿ l1 � . . . 6 lgQ �1ÿ ai wi�
�13�

expresses Hurwitz numbers in terms of Hodge integrals.
A proof of (13) using virtual localization [24] in the moduli space of stable

maps to P1 appears in [25]. It is explained there how (13) follows quickly from
virtual localization on an appropriate `relative' moduli space, not yet de®ned in
the algebraic category (yielding relative Gromov±Witten invariants; see [31, § 7]
and [27] for discussion in the symplectic category, and [16] for some discussion
in the algebraic category in the case g � 0). In the case where there is no
rami®cation above 1 (that is, a � �1d �), the argument reduces to Fantechi and
Pandharipande's independent proof of (13) [15, Theorem 2].

De®nition 2.2. The Hurwitz generating series is

H �
X
g > 0

Hg ygÿ1;

where Hg is the generating series

Hg � Hg�x; p� �
X

d > 1;ar d

H g
a

r !
pa xd

for the H g
a , where p1; p2 ; . . . and x are indeterminates, and where 2ÿ2g� dÿ r� l�a�

and pa � pa1
. . . pa m

.

Note that eH counts all covers, not just connected ones. (In [20] Hg is denoted
by Fg.)

Goulden and Jackson have conjectured that Hg is of a particular form in terms

of an implicitly de®ned set of variables ffi�s; p�: i > 0g de®ned as follows. Let

fi�z; p� �
X
n > 1

nn� i

n!
pn zn; �14�

where i is an integer, be a formal power series (denoted by wi�z; p� in [20]).
Then, through the functional equation

s � xef 0�s; p�; �15�
s is uniquely de®ned as a formal power series in x (and p).
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In particular, H0 and H1 are given in (24) and (25), respectively. The remaining
Hg are the subject of the following conjecture.

Conjecture 2.3 (Goulden and Jackson [20, Conjecture 1.2]). For g > 2 ,

Hg�x; p� �
X5gÿ5

e� 2gÿ1

1

�1ÿ f1�s; p��e

?
Xe�gÿ1

n� eÿ1

X
vo n

l�v�� eÿ2�gÿ1�

K
g
v

# Aut�v� fv1
�s; p�fv 2

�s; p� . . . �16�

for some rational numbers K
g
v .

We prove this conjecture (Theorem 3.2). Remarkably, each unknown constant
K

g
v turns out to be a single Hodge integral, up to sign.

Remark 2.4. Goulden and Jackson proved Conjecture 2.3 for g � 2 , and
conjectured explicit values for certain K

g
v (for g � 3 and all v [20, Appendix A],

and for �e; l�v�� � �2gÿ 1; 1� and all admissible g and n [20, p. 3]); we discuss
these further in § 3.3.

2.4. The relationship between Hg and Gg

The following is a useful result that connects Hg and Gg. Throughout this
section and the next we will make use of the mapping

Y: tk 7! fk�x; p�;
for k > 0, extended as a ring homomorphism to Q�� t ��.

Theorem 2.5. If g > 0, then Hg�x; p� � YGg�t�.
Proof. For g > 0, by (13),

Hg �
X
ar d

1

#Aut�a�
Q

a
a i

iQ
ai!

pa xd

Z
Mg ; m

1ÿ l1 � . . . 6 lgQ �1ÿ aiwi�

�
X

a1� ...�am� d

1

m!

Q
a

a i

iQ
ai!

pa xd

Z
Mg ; m

1ÿ l1 � . . . 6 lgQ �1ÿ ai wi�

�
X

m

1

m!

X
a1;...;am > 1

Y
i

�
a

a i

i pa i
xa i

ai!

�

?
X

b1� ...�bm � 3gÿ3�mÿ k
0 < k < g; bi > 0

Z
Mg ; m

�a1w1�b1 . . . �am wm�bm�ÿ1�k lk

�
X

m

1

m!

X
b1� ...�bm � 3gÿ3�mÿ k

0 < k < g; bi > 0

�ÿ1�khtb1
. . . tbm

lkig

?
X

a1;...;am > 1

Y
i

�
a

a i�bi

i pa i
xa i

ai !

�
:
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Hence

Hg �
X

m > 0

1

m!

X
b1;...;bm > 0; 0 < k < g

�ÿ1�k
�Ym

i� 1

fbi
�x; p�

�
htb1

. . . tbm
lkig :

The result then follows from (7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A

If g � 0, the above statement must be modi®ed. The formula (13) applies when
l�a�> 3; so if Hg�m � is the summand of Hg corresponding to all a with
l�a� � m, then

H0 � H0�1� � H0�2� �
X

m > 3

H0�m� � H0�1� � H0�2� � YG0;

so

H0 � H0�1� � H0�2� � YF0 :

A. J. de Jong has pointed out that the change of variables Y is not invertible. In
other words, ignoring the irrelevant variable x by setting it equal to 1, we ®nd that
Y is not invertible. To see this, let r: pn 7! npn and j: tn 7! tn�1. Then rY � Yj.
But r is invertible and j is not. Thus Y is not invertible.

3. Structure theorems for G and H

For k > 0, let

Ik �
X
i > 0

tk� i

I i
0

i!
: �17�

When k � 0, this is a functional equation that, by Lagrange inversion, uniquely
de®nes I0 2Q�� t ��, and thence Ik is uniquely de®ned as a series in Q�� t �� for all
k > 0. If t0 � 0, the unique solution of (17) is I0 � 0; so that with this specialization

Ik � tk for k > 1: �18�

3.1. Structure theorem for G

The following is a generalization of the IZ genus expansion ansatz. This
argument also gives a much more direct proof of the original IZ genus expansion
ansatz, by `setting lk � 0' for k > 0 (excising terms for all v such thatP

j �1ÿ j�vj � 3gÿ 3 > 0). (The only proof of the IZ ansatz in the literature
known to the authors is in [10].) Denote ¶=¶ ti by ¶i for the sake of brevity.

Theorem 3.1 (Genus expansion ansatz). If g > 1,

Gg�t� �
1

�1ÿ I1�2 gÿ2
Gg

�
0; 0;

I2

1ÿ I1

;
I3

1ÿ I1

; . . .

�
�19�

�
X

P
2 < j < 3gÿ 2� jÿ1�l j

� k� 3gÿ3

�ÿ1�k ht
l 2

2 t
l 3

3 . . . t
l 3gÿ 2

3gÿ2 l kig
�1ÿ I1�2�gÿ1��

P
l j

I
l 2

2

l2!
. . .

I
l 3gÿ 2

3gÿ2

l3gÿ2!
: �20�

(It is straightforward to show that the right-hand sides of equations (19) and
(20) are the same.)
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In [14, § 2.1], Faber and Pandharipande use the terminology `primitive' to
denote Hodge integrals without t0 or t1 . Essentially, the formal derivation here
(like the work of [28]) is to write an explicit formula for Gg in terms of primitive
Hodge integrals. Viewed in this way, it is clear there are only ®nitely many
degrees of freedom for each genus (as there are only ®nitely many primitive
Hodge integrals for a ®xed genus); the interesting part is the precise form.

Proof. Let D �Pm > 0 tm�1 ¶m ÿ ¶0 . Then, from the string equation (8),

DGg�t� � 0;

for g > 0, and Gg�t� is the unique such series with the initial value Gg�0; t1 ; . . . �
at t0 � 0. We begin the proof by exploiting this uniqueness to establish that

Gg�t� � Gg�0; I1; I2 ; . . . � for g > 0: �21�
Let z i � 0 if i < 0 and z i � 1 if i > 0. Then, from (17), for m; k > 0,

¶m Ik � zmÿ k

I mÿ k
0

�mÿ k�!�
�X

i > 1

tk� i

I iÿ1
0

�iÿ 1�!
�

¶m I0 ;

so

¶m Ik � zmÿ k

I mÿ k
0

�mÿ k�!� Ik�1 ¶m I0 :

Then, substituting k � 0 above, we obtain for m > 0,

¶m I0 �
1

m!

I m
0

1ÿ I1

;

so, for k; m > 0,

¶m Ik � zmÿ k

I mÿ k
0

�mÿ k�!�
I m

0

m!

Ik�1

1ÿ I1

: �22�

Now, by the chain rule,

DGg�0; I1; I2 ; . . . � �
X
k > 1

� X
m > 0

tm�1 ¶m Ik ÿ ¶0 Ik

�
¶

¶Ik

Gg�0; I1; I2 ; . . . �:

But, from (22),X
m > 0

tm�1¶m Ik ÿ ¶0 Ik �
X

m > k

tm�1

I mÿ k
0

�mÿ k�!�
Ik�1

1ÿ I1

X
m > 0

tm�1

I m
0

m!
ÿ Ik�1

1ÿ I1

� 0;

for k > 1. Thus DGg�0; I1; I2 ; . . . � � 0. But Gg�0; I1; I2 ; . . . �j t 0 � 0 � Gg�0; t1; t2 ; . . . �
from (18), and thus we have established (21) by the uniqueness argument.

To complete the proof, we use the repeated form (11) of the dilaton equation
for g > 1:

Gg�0; I1; I2 ; . . . � �
X

b1; b 2 ;... > 0

�ÿ1�
P

i > 1�1ÿ i �bi�3gÿ3htb1

1 t
b 2

2 . . . lkig
I

b1

1

b1!

I
b 2

2

b2!
. . .

�
X

b 2 ; b 3 ;... > 0

�ÿ1�
P

i > 2�1ÿ i �bi�3gÿ3htb 2

2 t
b 3

3 . . . l kig
I

b 2

2

b2!

I
b 3

3

b3!
. . .

?
X

b1 > 0

�ÿ�b1 � b2 � . . . � ÿ 2g� 2

b1

�
I

b1

1
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from (11). Thus

Gg�0; I1 ; I2 ; . . . � � 1

�1ÿ I1�2gÿ2
Gg

�
0; 0;

I2

1ÿ I1

;
I3

1ÿ I1

; . . .

�
for g > 1,

and the result now follows from (21). . . . . . . . . . . . . . . . . . . . . . . . . . . .A

3.2. Structure theorem for H

We now give the main structure theorem for H .

Theorem 3.2 [20, Conjecture 1.2]. Conjecture 2.3 is true, with

K
g
v � �ÿ1�khtv1

tv 2
. . . l kig ; �23�

where k �P j �1ÿ j�vj � 3gÿ 3.

Proof. From Theorem 2.5 with g > 0, Hg�x; p� � YGg�t� where, from
Theorem 3.1 (20), for g > 1,

Gg �
X
�ÿ1�k ht

l 2

2 t
l 3

3 . . . t
l 3gÿ 2

3gÿ2 l kig
�1ÿ I1�2�gÿ1��P l j

I
l 2

2

l2!
. . .

I
l 3gÿ 2

3gÿ2

l3gÿ2!
;

where the sum is over those lj and k such thatX
2 < j < 3gÿ2

� jÿ 1�l j � k � 3gÿ 3;

as in (20). We want to prove (16), for g > 2; that is,

Hg�x; p� �
X5gÿ5

e� 2gÿ1

1

�1ÿ f1�s; p��e

?
Xe�gÿ1

n� eÿ1

X
vo n

l�v�� eÿ2�gÿ1�

K
g
v

# Aut�v� fv1
�s; p�fv 2

�s; p� . . . ;

where K
g
v satis®es (23). Since this can be rewritten in the form

Hg�x; p� �
X K

g

�2 l 2 3 l 3 ... �
�1ÿ f1�s; p��2�gÿ1��P l j

f2�s; p�l 2

l2!
. . .

f3gÿ2�s; p�l 3gÿ 2

l3gÿ2!
;

where the sum (as in (20)) is over those l j and k such thatX
2 < j < 3gÿ2

� jÿ 1�l j � k � 3gÿ 3;

the proof is therefore complete if we can establish that YIk�t� � fk�s; p� for
k > 1, thereby making the identi®cation K

g
v � �ÿ1�khtv1

tv 2
. . . lkig .

From (14) and (15), for k > 0,

fk�s; p� �
X
n > 0

nn� k

n!
pn xnenf 0�s; p�

�
X

m; n > 0

nn� k�m

n!
pn xn f0�s; p�m

m!
;
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so

fk�s; p� �
X

m > 0

fk�m�x; p� f0�s; p�m
m!

:

By comparing this with the de®nition (17) of Ik , it follows that YIk�t� � fk�s; p�
for k > 0, which completes the proof. . . . . . . . . . . . . . . . . . . . . . . . . . . .A

We record the observation on the action of Y that

YIk � fk�s; p� for k > 0:

Thus we have established the connexion between the indeterminates x and pi

on the Hurwitz side and the indeterminates tr and Ir on the Gromov±Witten side
(see § 4.3).

3.3. Analogous statements in genus 0 and 1

We note that [18, Proposition 3.1(1)]�
x

¶
¶x

�2

H0�x; p� � f0�s; p�: �24�

In the light of Theorem 2.5, stating that YGg�t� � Hg�x; p� for g > 0, earlier
statements in geometry and in combinatorics can now be seen to be equivalent. In
genus 1,

H1�x; p� � YG1�t� � 1
24
�log�1ÿ f1�s; p��ÿ1 ÿ f0�s; p�� �25�

[39; 19, Theorem 4.2], and

YF1�t� � 1
24

log�1ÿ f1�s; p��ÿ1

[28, (5.30); 10, (3.7); 4]. The difference ÿ 1
24

f0�s; p� can be seen to be the
contribution to YG1�t� from l1.

Surprisingly, the picture is least clear in genus 0. Here F0�t� � G0�t�, and
the difference H0�x; p� ÿ YG0�t� arises from where (13) breaks down: it is a
generating series for covers of P1 with at most two pre-images of 1,
H0�1��x; p� � H0�2��x; p�. By [18] or [3],

H0�1��x; p� � fÿ2�x; p�:
By [1] or [18],

H0�2��x; p� �
X

i; j > 1

�i� jÿ 1�!
�iÿ 1�!� jÿ 1�! i iÿ1j jÿ1pi pj x i� j:

From (17), YF0�t� � H0�1��x; p� � H0�2��x; p� � H0�x; p� so, using formula (9)
for F0 and [18, Theorem 1.1] for H0 , we see that this gives an explicit relation.
However, it does not seem enlightening.

Remark 3.3. Using Theorem 3.2, one can see that the conjectures of Goulden
and Jackson described in Remark 2.4 are true. The conjectured values of K 3

v can
be checked using Faber's program [12]. The conjectured values of K

g
v for

e � 2gÿ 1, l�v� � 1 (involving coef®cients of � 1
2

z= sin 1
2

z�k�1) turn out to be
equivalent to [13, Theorem 2] and [8, Theorem 1.2].
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4. Consequences and applications

4.1. Combinatorial comments on Hodge integrals

The terms that appear in Conjecture 2.3 can be given, in principle, a
combinatorial interpretation. The left-hand side already has a combinatorial
interpretation, through Hurwitz's encoding, in terms of transitive ordered
factorizations of permutations into transpositions.

For the right-hand side, nn� i is the number of rooted (vertex-)labelled trees with
i� 1 marked vertices (vertices may be multiply marked). The generating series for
this number is fi�z; p�, where pn records the number of vertices in a tree.
Therefore f0�z; p� is the number of rooted labelled trees with exactly one marked
vertex. Similar interpretations can therefore be given to s and 1=�1ÿ f1�s; p��e.
The right-hand side therefore has an interpretation in terms of structures obtained
by gluing together and ordering collections of rooted labelled trees with marked
vertices. This suggests that K

g
v , which has been identi®ed up to sign as a Hodge

integral through Theorem 3.2, can be de®ned purely combinatorially, provided the
mapping between the structures corresponding to the left-hand and right-hand sides of
(16) is made explicit. In particular, this would involve determining how markers
attached to the vertices of the trees from the right-hand side encode transitive ordered
factorizations of permutations into transpositions, that occur on the left-hand side of
(16). This is, of course, where the dif®culty lies since the theorem itself provides
no information about the elementwise action of such a mapping.

4.2. Consequences of Theorem 2.5

Theorem 2.5 gives a new combinatorial structure on G (and hence F ), and one could
hope to prove results about F using H, that is, the combinatorics of branched covers.
For example, there is a simple differential operator T (the `cut-and-join' operator)
annihilating eH , corresponding to the interpretation of H as counting factorizations of
permutations ([18, Lemma 2.2], and independently [37, p. 8]), de®ned as follows.

De®ne H # � H #�x; y; u; p� by substituting xu2 for x , yu2 for y, and pi u
1ÿ i for

pi in H. Then

H #
g �

X
d > 0; ar d

H g
a

r!
pa xdur

where r � l�a� � d � 2gÿ 2 is the number of simple branch points (now marked
by u). Let

T � 1
2

X
a; b > 1

�
�a� b�pa pb

¶
¶pa�b

� 1

y
abpa�b

¶
¶pa

¶
¶pb

�
ÿ ¶

¶u
:

Then TeH # � 0, and H # is uniquely determined by this equation and the condition
H #�x; y; 0; p� � p1 x (that is, there is only one cover of P1 unbranched away
from 1).

Note that even the string equation becomes mysterious when translated to a
statement about H:

¶
¶t0

H � 1
2

t 2
0 � x

¶
¶x

H:

It is not combinatorially clear why this should be true.
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4.3. Comments on the connexion between H and G (and F )

It is worth noting how the variables that are used by physicists to study F (and
that are equally useful for G) have exactly paralleled the variables used by
combinatorialists to study H. Speci®cally, physicists (and geometers) use the
following conventions.

P1. They write F in terms of the variables ti ; the power series Fg , Gg 2Q�� t ��
are naturally generating series for all Hodge integrals.

P2. For g > 1, Fg and Gg lie in a much smaller ring. Via the genus reduction ansatz,
Theorem 3.1, Fg and Gg can be rewritten as elements of Q�1=�1ÿ I1�; I2 ; I3 ; . . . �,
and this representation is particularly simple (as only a ®nite number of
monomials appear, and their coef®cients are each single Hodge integrals).

P3. It is often physically enlightening [28, 10] to rewrite the above in terms of
other variables. Let u0 � ¶2

0 F0 . Then for g > 1,

Fg ; Gg 2Q�1=¶0 u0 ; ¶0 u0 ; ¶2
0 u0 ; . . . �

(and in fact Fg has a particular bigrading in terms of these variables, where
deg ¶ r

0 u0 � �1; r ÿ 1�). In [10], these variables are used in the proof of the IZ
genus reduction ansatz. It is not hard to translate between the ¶ r

0 u0 and the Ik ; in
particular, u0 � I0; see [10, p. 284].

Combinatorialists' conventions are as follows.

C1. They write H in terms of the variables x and pi ; the power series
Hg 2Q��x; p�� is a generating series for all Hurwitz numbers.

C2. In fact, for g > 1, Hg lies in a much smaller ring:

Hg 2Q�1=�1ÿ f1�s; p��; f2�s; p�; f3�s; p�; . . . �;
which, via Y, is the same as P2 above.

C3. Also, Hg lies in Q��f0�x; p�; f1�x; p�; . . . ��; via Y this is the same as
P1 above.

4.4. Applications of Theorem 3.2

Along with techniques from [20], Theorem 3.2 gives a machine for developing
and proving recurrences and explicit formulas for Hurwitz numbers, given that the
necessary Hodge integrals can be calculated by Faber's program [12]. As an
example, in [20], a conjectured recursion of Graber and Pandharipande was
proved using Theorem 3.2 in genus 2 (proved there). We now give further examples.

The examples are for the case in which there is no rami®cation over 1. We
will refer to the corresponding numbers as simple Hurwitz numbers. They are
obtained by setting p1 � 1 and pi � 0 for i 6� 1. Under this specialization,
fi�x; p� � x for all i, and, from (15), s � w where w is the unique solution of

w � xew;

and is given explicitly by

w �
X
n > 1

nnÿ1 xn

n!
:
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Then Hg becomes

fHg �
X
d > 1

H
g

�1 d �
�2d � 2gÿ 2�! xd;

the generating series for simple Hurwitz numbers.

Example 4.1 (a recurrence equation for genus 3). From a geometric
perspective, `it is not likely such simple recursive formulas (similar to the
Graber±Pandharipande formula in genus 2, and simpler recursions in genus 0 and
1 [39, Theorem 2.7] (our intercalation)) occur in g > 3' [15, p. 18]. However,
using Theorem 3.2, one can obtain recurrences as follows. Let D � x d=dx. Then

D2 fH0�x� � w;fH1�x� � 1
24
�log�1ÿ w�ÿ1 ÿ w�;

fH2�x� �
1

5760

�
4w2

�1ÿ w�4 �
28w3

�1ÿ w�5
�
;

fH3�x� �
1

80640

w2

�1ÿ w�6 �
73

90720

w3

�1ÿ w�7 �
37

5184

w4

�1ÿ w�8

� 89

5184

w5

�1ÿ w�9 �
245

20736

w6

�1ÿ w�10
:

These are from [20], although the ®nal two can now be obtained from Theorem 3.2,
with the help of Faber's program [12] to compute the necessary Hodge integrals.

It is convenient to set w � 1ÿW ÿ1, so D � W 2�W ÿ 1�d=dW . Then DnfHg�x�
is a polynomial in W provided 2gÿ 2� n > 0. (The resemblance to the stability
condition for Mg; n is probably not coincidental; D can be interpreted as marking

a point above a ®xed general point of P1.) For �g; n� � �0; 1�, �0; 2�, DnfHg�x� is
a rational series in W . A number of these series are given below:

DfH0�x� � �1ÿW ÿ2�=2;

fH1�x� �
log�W �W ÿW � 1

24W
;

DfH1�x� � �W ÿ 1�2=24;fH2�x� � �W ÿ 1�2W 2�ÿ6� 7W �=1440;fH3�x� � �W ÿ 1�2W 4

? �720ÿ 6696W � 19250W 2 ÿ 21840W 3 � 8575W 4�=725760:

Various relations can be found between the DnfHg�x� for �g; n� 6� �0; 0� , �1; 0�
by positing a general form for them and equating coef®cients of powers of W to
obtain a set of linear equations for the parameters appearing in this form.

With the form containing the twenty-six terms �D pfHi��DqfHj� for p� q � 4,
i� j � 3, and D pfHi , for i � 3, 1 < p < 4, for i � 2 , 1 < p < 5, and for i � 1,
1 < p < 7, the null space has dimension 11. (We choose this form for potential
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recursions because this is the form of the recursions previously produced via
Gromov±Witten theory.) Thus further conditions on the parameters may be
applied, although it is not at all clear whether there is a geometrically natural
choice to make. One such expression, obtained by imposing linearity, is

2880fH3 � ÿ
�

2

49
ÿ 227

294
D� 99845

588
D2

�fH2

ÿ
�

1

490
D2 ÿ 11

294
D3 � 38845

14112
D4 ÿ 1225

576
D5

�fH1:

This gives the following explicit formula for H 3
�1 d � linearly in terms of H 2

�1 d �
and H 1

�1 d �:

2880H 3
�1 d � � ÿ�24ÿ 454d � 99845d 2�

�
2d � 4

2

�
H 2
�1 d �

294

� d 2�ÿ288� 5280d ÿ 388450d 2 � 300125d 3�
�

2d � 4

4

�
H 1
�1 d �

5880
:

Similar recursions exist for all genera, and these may be obtained in the same way.

Example 4.2 (another recurrence equation for genus 3, of `geometric
form'). As another example to show how common recursions are, we give a
genus 3 recursion that is of a potentially geometrically meaningful form:

H 3
�1 d � � f �d �

�
d

2

�
H 2
�1 d � �

X
i� j� d

�
g�i; j�

�
2d � 2

2iÿ 2

�
i jH 0

�1 i �H
3
�1 j �

� h�i; j�
�

2d � 2

2 i

�
i jH 1

�1 i �H
2
�1 j �

�
;

where f �d �, g�i; j�, and h�i; j� are polynomials of low degree.
Any formula coming from a divisorial relation on the space of maps would

have such a form. Even though such a divisorial relation should not exist, a
geometrically-motivated recursion of this form might still exist; the recursion for
genus 1 plane curves of [6] has this property, for example. One might hope for
some geometrical understanding from such a recursion.

The terms on the right-hand side of the equation correspond to divisors on the
space of maps. The ®rst term corresponds to degree d genus 2 covers where two
of the d points mapping to the same point of P1 are attached; hence the
multiplicity of d

2

ÿ �
. The second term corresponds to maps where the cover is a

genus 0 degree i cover (a general such cover has 2 iÿ 2 branch points) and a
genus 3 degree j cover (a general such cover has 2 j� 4 branch points) such that
two points mapping to the same point of P1 (one on each component) are glued
together; the multiplicity i j comes from the choice of the two points, and the
multiplicity 2d�2

2 iÿ2

ÿ �
comes from partitioning the branch points between the two

components. The third corresponds to maps where the cover is a genus 1 degree i
cover and a genus 2 degree j cover with a point of one glued to a point of the
other; the multiplicity calculation is similar to the second term. These divisors
might appear with various multiplicities, given by the polynomials f , g and h.
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Unfortunately, many such recursions can be found (by the same method as in
Example 4.1), even if the degrees of f , g, and h are required to be small. One
such is

f �d � � 1

1702263010
�1532127678d ÿ 2213123851�;

g�i; j� � ÿ 2

121590215
�760192125i jÿ 12054428314i

ÿ 2006745110 j� 1033797958�;

h�i; j� � ÿ 4

2553394515
�798201731250i jÿ 217500288725i

ÿ 473678414332 jÿ 42109762821�:
There seems to be no reason why this recursion should admit a geometrical
explanation.

Example 4.3 (a recurrence equation for genus 2). The method of Example 4.1
can be applied to the genus 2 case; we suppress the details. The linear differential
equation that is satis®ed is

4320fH2�x� � ÿ300D2fH1 � 7�D5 ÿ D4�fH0 :

The corresponding linear recurrence equation is

180H 2
�1 d � � ÿ25d 2

�
2d � 2

2

�
H 1
�1 d � � 7d 4�d ÿ 1�

�
2d � 2

4

�
H 0
�1 d �:

For genus 2 and 3, H
g

�1 d � has been expressed in terms of H
gÿ1

�1 d � and H
gÿ2

�1 d � . A

reason this is not entirely unexpected is that D preserves the parity of the degree
of polynomials in W . But the degree in W of DnH g�x� is 2n� 5gÿ 5, and the parity
of this modulo 2 is the parity of gÿ 1 modulo 2. Polynomials of both parities are
required on the right-hand side in the posited form of the differential equation to
match terms on the left-hand side. This is to be expected to persist for g > 2.

Example 4.4 (recurrence equations for genus 1 and 0). The parity argument
in the previous example suggests that, if there is a recurrence equation, it must be
of degree (at least) 2 for the genus 1 case, and indeed a degree 2 example is
known (due to Graber and Pandharipande [38, § 5.11] or [15, p. 18]). This
recurrence can be rewritten as the differential equation

DfH1 � 1
24

D3 fH0 ÿ 1
24

D2 fH0 � �D2 fH0��DfH1�
which is an immediate consequence of the observations that DfH1�x� � 1

24
�W ÿ 1�2,

D2 fH0�x� � 1ÿW ÿ1 and D3 fH0�x� � W ÿ 1.

An even simpler recursion exists originating from the differential equation

DfH1 � 1
24
�D3 fH0�2:

This gives

H 1
�1 d � �

1

d

�
2d

4

�Xdÿ1

i� 1

i3�d ÿ i�3
�

2d ÿ 4

2iÿ 2

�
H 0
�1 i �H

0
�1 dÿ i �: �26�
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The differential equation is an immediate consequence of the above expressions for

DfH1 and D3 fH0 . Although it might not be dif®cult to prove (26) geometrically, there

was no geometrical reason to suspect its existence.
The sphere is included for completeness from this point of view. Again, by

the parity argument, a recurrence of degree 2 is expected. The simplest such
differential equation is

D2 fH0 � 1
2
�D2 fH0�2 � DfH0 ;

which is an immediate consequence of the observations that D2 fH0�x� � 1ÿW ÿ1

and DfH0�x� � 1
2
�1ÿW ÿ2�. The resulting recurrence equation is

H 0
�1 d � �

1

d�d ÿ 1�
�

2d ÿ 2

2

�Xdÿ1

i� 1

i2�d ÿ i�2
�

2d ÿ 4

2iÿ 2

�
H 0
�1 i �H

0
�1 dÿ i �; �27�

which is a well-known recurrence found by Pandharipande (see [38, § 5.11] or
[15, p. 17]). Other (more complicated) genus 0 recurrences can also be found in
this manner.

Example 4.5 (closed form expressions for simple Hurwitz numbers). Closed
form expressions for simple Hurwitz numbers can be found for all genera (using
the method of [20, Corollary 4.1]). The expression for the genus g case can be
obtained from Theorem 3.2, with the specializations of p, s and fi given above,
and is the following:

H
g

�1 d �
�2d � 2gÿ 2�! � �x

d �fHg�x� �
X5gÿ5

r� 2gÿ1

Xr�gÿ1

n� rÿ1

Kn; g; r

�
�xd � wn

�1ÿ w�r
�

where

Kn; g; r �
X
vo n

l�v�� rÿ2�gÿ1�

�ÿ1�khtv1
tv 2

. . . lkig

and k �P i �1ÿ i�vi � 3gÿ 3. Thus Kn; g; r can be computed by Faber's program
[12]. The remaining term is obtained by Lagrange inversion as

�xd � wn

�1ÿ w�r �
1

d
�mdÿ1�

�
nmnÿ1

�1ÿ m�r �
rmn

�1ÿ m�r�1

�
edm

�
Xdÿn

i� 0

�
r � iÿ 1

r ÿ 1

�
nd dÿnÿ iÿ1

�d ÿ nÿ i�!�
Xdÿnÿ1

i� 0

�
r � i

r

�
rd dÿnÿ iÿ2

�d ÿ nÿ iÿ 1�! :

For example, for fH3�x� , by Lagrange inversion,

H 3
�1 d �

�2d � 4�! �
1

1008
A4�d � ÿ

113

10080
A5�d � �

2383

51840
A6�d � ÿ

16759

181440
A7�d �

� 227

2304
A8�d � ÿ

557

10368
A9�d � �

245

20736
A10�d �; �28�

where

Ak�d � �
k

d

Xdÿ1

r� 0

�
k � r

k

�
d dÿ rÿ1

�d ÿ r ÿ 1�! :
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This can be rewritten as

H 3
�1 d � �

�2d � 4�!
25 33 9!

Xdÿ1

r� 0

d dÿ rÿ2

�d ÿ r ÿ 1�!
�

r � 4

5

�
�r � 1�

? �1225r 4 � 3770r 3 � 35r 2 ÿ 2822r � 1680�:
It is clear that in general the simple Hurwitz numbers have the form

H
g

�1 d � � �2d � 2gÿ 2�!
Xdÿ1

r� 0

d dÿ rÿ2

�d ÿ r ÿ 1�! Pg�d ÿ r ÿ 1�

where Pg�r� is a polynomial in r of degree 5gÿ 5.
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