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Abstract

The isomorphism classes of several types of graph coverings of a graph have been enumerated
by many authors [M. Hofmeister, Graph covering projections arising from finite vector space over
finite fields, Discrete Math. 143 (1995) 87–97; S. Hong, J.H. Kwak, J. Lee, Regular graph cover-
ings whose covering transformation groups have the isomorphism extention property, Discrete Math.
148 (1996) 85–105; J.H. Kwak, J.H. Chun, J.Lee, Enumeration of regular graph coverings having
finite abelian covering transformation groups, SIAM J. Discrete Math. 11 (1998) 273–285; J.H.
Kwak, J. Lee, Isomorphism classes of graph bundles, Canad. J. Math. XLII (1990) 747–761; J.H.
Kwak, J. Lee, Enumeration of connected graph coverings, J. Graph Theory 23 (1996) 105–109].
Recently, Kwak et al [Balanced regular coverings of a signed graph and regular branched orientable
surface coverings over a non-orientable surface, Discrete Math. 275 (2004) 177–193] enumerated
the isomorphism classes of balanced regular coverings of a signed graph, as a continuation of an
enumeration work done by Archdeacon et al [Bipartite covering graphs, Discrete Math. 214 (2000)
51–63] the isomorphism classes of branched orientable regular surface coverings of a non-orientable
surface having a finite abelian covering transformation group. In this paper, we enumerate the iso-
morphism classes of connected balanced (regular or irregular) coverings of a signed graph and
those of unbranched orientable coverings of a non-orientable surface, as an answer of the question
raised by Liskovets [Reductive enumeration under mutually orthogonal group actions, Acta-Appl.
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Math. 52 (1998) 91–120]. As a consequence of these two results, we also enumerate the isomorphism
classes of branched orientable surface coverings of a non-orientable surface.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

LetG be a finite connected graph with vertex setV (G) and edge setE(G). Every edge
of a graphG gives rise to a pair of oppositely directed edges. Bye−1 = vu, we mean the
reverse edge to a directed edgee= uv. We denote the set of directed edges ofG byD(G).

Theneighborhoodof a vertexv ∈ V (G), denoted byN(v), is the set of directed edges
emanating fromv. We use|X| for the cardinality of a setX. The number�(G)= |E(G)| −
|V (G)| + 1 is equal to the number of independent cycles inG and it is referred to as the
betti numberof G.

A graphG̃ is called acoveringof G with projectionp : G̃→ G if there is a surjection
p : V (G̃)→ V (G) such thatp|N(ṽ) : N(ṽ)→ N(v) is a bijection for all verticesv ∈ V (G)

andṽ ∈ p−1(v). We say that the projectionp : G̃→ G is ann-fold coveringof G if p is
n-to-one. Two coveringspi : G̃i → G, i = 1,2 are said to beisomorphicif there exists a
graph isomorphism� : G̃1 → G̃2 such thatp1 = p2 ◦ �. Such a� is called acovering
isomorphism.

Let Sn denote a symmetric group onn elements{1,2, . . . , n}. A permutation voltage
assignment(or, voltage assignment) of G is a function� : D(G)→ Sn with the property
that�(e−1) = �(e)−1 for eache ∈ D(G). Thepermutation-derived graphG� is defined
as follows:V (G�) = V (G) × {1, . . . , n} andE(G�) = E(G) × {1,2, . . . , n}, so that an
edge(e, i) of G� joins a vertex(u, i) to (v,�(e)i) for e= uv ∈ D(G) andi = 1,2, . . . , n.
The first coordinate projectionp� : G� → G is ann-fold covering. Following Gross and
Tucker[2], everyn-fold coveringG̃ of a graphG can be derived from a voltage assignment
which assigns the identity element on the directed edges of a fixed spanning treeT of G.
We call such a� reduced. That is, for a coveringp : G̃ → G, there exists a reduced
voltage assignment� of G such that the derived coveringp� : G� → G is isomorphic to
p : G̃ → G. Moreover, for a reduced voltage assignment� : D(G) → Sn, the derived
graphG� is connected if and only if the subgroup ofSn generated by the image of the
voltage assignment� acts transitively on the set{1,2, . . . , n}, (see[2]). Such a voltage
assignment is said to betransitive. From now on, we assume that every voltage assignment
is reduced and transitive.

A signed graphis a pairG� = (G, �) of a graphG and a function� : E(G) → Z2,
Z2 = {1,−1}. We callG theunderlying graphof G� and� thesigningof G. An edgeeof
G� is said to be positive (resp. negative) if�(e)= 1 (resp.�(e)=−1). A signed graphG�
is balancedif its vertex set can be partitioned into two partite sets such that a positive edge
has the ends in the same partite set, and a negative edge has the ends in different partite sets.
Notice that a signed graphG� is balanced if and only if every closed walk inG� contains
even number of negative edges, i.e., the value

∏
e∈W �(e) = 1 for every closed walkW

in G�.
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A graph maph : G� → H�′ between two signed graphs is a graph map between their
underlying graphsG andH which preserves the signing of each edge, i.e.,�′(h(e))= �(e)
for eache ∈ E(G). A signed graphG̃�̃ is called acoveringof anotherG� with projection

p : G̃�̃ → G� if p : G̃ → G is a covering and� ◦ p = �̃. Two coveringsp : G̃�̃ → G�

andp′ : G̃′
�̃
′ → G� of a signed graphG� are isomorphicif the underlying coverings

p : G̃→ G andp′ : G̃′ → G of the graphG are isomorphic.
By a method similar to the construction of a covering graph in[2], one can see that

every covering of a signed graph can be derived from a reduced voltage assignment� of
G. That is, for a coveringp : G̃�̃ → G�, there exists a reduced voltage assignment� of G

such that the derived coveringp� : G� → G is isomorphic top̃ : G̃ → G. We define a
signing�� : E(G�)→ {−1,1} by ��(ei)= �(e) for eachei ∈ E(G�). Then, the covering
p� : (G�)�� → G� is isomorphic top : G̃�̃→ G�.

In [11], Kwak et al. enumerate the isomorphism classes of regular balanced coverings of
a signed graph and those of regular bipartite coverings of a graph[4–7,9]. As an application
of the results, they also enumerate the isomorphism classes of regular branched orientable
surface coverings of a non-orientable surface having a finite abelian covering transformation
group. It gives a partial answer for the question raised by Liskovets in[13].

In Section 2, we discuss an enumeration method for the isomorphism classes of (regular
or not) balanced coverings of an unbalanced graph. In Section 3, we enumerate the isomor-
phism classes of balanced coverings of a signed graph. As an application of our results, we
enumerate the isomorphism classes of bipartite coverings over a non-bipartite graphG and
in Section 4, we obtain an enumeration formula for the isomorphism classes of branched
or unbranched orientable surface coverings of a non-orientable surface.

2. A characterization of balanced coverings

Let Isoc(G; n) denote the number of the isomorphism classes of connectedn-fold cover-
ings of a graphG. Similarly, Isoc(G�; n) denotes the signed ones. Notice that Isoc(G; n)=
Isoc(G�; n) for any signing� on a graphG. Let IsocB(G�; n) denote the number of the
isomorphism classes of connected balancedn-fold coverings of a signed graphG�.

Notice that ifG� is balanced, then every covering ofG� is also balanced, which gives
IsocB(G�; n) = Isoc(G�; n) = Isoc(G; n) for any natural numbern. We also notice that
every odd-fold covering of an unbalanced graph is also unbalanced. Therefore, we restrict
our discussion to the even-fold coverings of an unbalanced graphG�. We observe that
there are some analogous properties between the balancedness and bipartiteness. For ex-
ample, a graph is bipartite if and only if every cycle has an even length, and analogously
a signed graph is balanced if and only if every cycle contains an even number of negative
edges. Some of such analogous properties are listed inTable 1. From the correspondence in
Table 1, one can image that the enumeration method for the bipartite coverings of a graph
used in[1] can be applied to derive some enumeration formulae for the balanced coverings
of a signed graph.

Let G� be an unbalanced graph and letT be a fixed spanning tree ofG. A cotree edge
e in E(G) − E(T ) is said to beunbalanced(resp.,balanced) if T + e has an unbalanced
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Table 1
A relationship

GraphG Signed graphG�

Bipartiteness ←→ balancedness
Even cycle ←→ balanced cycle
Odd cycle ←→ unbalanced cycle

(resp., balanced) cycle. LetEB
T (G�) (resp.EU

T (G�)) denote the set of all balanced (resp.
unbalanced) cotree edges inE(G) − E(T ). Let �U(G, T ) = |EU

T (G�)| and�B(G, T ) =
|EB

T (G�)|, so that�(G)= �B(G, T )+ �U(G, T ).
For convenience, letP2n be the set of all permutations in the symmetric groupS2n which

preserve the parity in{1,2, . . . ,2n}, and letR2n be the set of all permutations inS2n which
reverse the parity in{1,2, . . . ,2n}. ThenPR2n := P2n ∪ R2n is a subgroup ofS2n and
|PR2n| = 2(n!)2.

Let � : D(G)→ S2={1, �= (12)} be a reduced voltage assignment defined by�(e)= 1
for eache ∈ EB

T (G�) and �(e) = � for eache ∈ EU
T (G�). Then the derived double

covering graph(G�)�� is balanced. By a method similar to the proof of Theorem 3.1 in
[1], one can show that every balanced covering of the unbalanced graphG� is a covering
of the double covering graph(G�)�� as a signed graph. More precisely, for any balanced
coveringp : G̃�̃ → G� of G� there exists a covering mapq : G̃�̃ → (G�)�� such
thatp = p� ◦ q. We call (G�)�� the canonical balanced double coveringof G�. Notice
thatp−1(v) = q−1((p�)−1(v)) = q−1(v1) ∪ q−1(v2). Now, by labellingq−1(v1) = {vi :
i = 1,3, . . . ,2n − 1} andq−1(v2) = {vi : i = 2,4, . . . ,2n}, one can have the following
theorem.

Theorem 1. LetG� be an unbalanced graph and let T be a spanning tree of G. Let p :
G̃�̃ → G� be an even-fold(say, 2n) connected balanced covering. Then there exists a
reduced transitive voltage assignment� : D(G) → PR2n such that�(e) ∈ P2n if
e ∈ EB

T (G�), �(e) ∈ R2n if e ∈ EU
T (G�), andp

� : (G�)�� → G� is isomorphic to

p : G̃�̃→ G�.

LetCB
T (G�,2n) denote the set of all reduced transitive voltage assignments� : D(G)→

PR2n such that�(e) ∈ P2n if e ∈ EB
T (G�) and�(e) ∈ R2n if e ∈ EU

T (G�).

Theorem 2. Let G� be an unbalanced graph and let T be a fixed spanning tree of G.
Let � and� be two voltage assignments inCB

T (G�,2n). Then(G�)�� and (G�)�� are
isomorphic as coverings if and only if there exists a permutation� ∈ PR2n such that
�(e)= � ◦ �(e) ◦ �−1 for all e ∈ D(G− T ).

Proof. It is clear that(G�)�� and(G�)�� are isomorphic if and only ifG� andG� are

isomorphic as coverings. Since� and� are reduced, by Theorem 2 in[8], G� andG�

are isomorphic as coverings if and only if there exists a permutation� ∈ S2n such that
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�(e) = � ◦ �(e) ◦ �−1 for all e ∈ D(G − T ). SinceG� andG� are connected and�,�
are elements ofCB

T (G�,2n), such an� should be an element ofPR2n. This completes the
proof. �

We observe thatCB
T (G�,2n) can be identified with the set of all transitive�(G)-tuples

(	1, . . . , 	�B(G,T ), 	�B(G,T )+1, . . . , 	�(G)) in (P2n)
�B(G,T ) × (R2n)

�U(G,T ). Define an

PR2n-action onCB
T (G�,2n) by

� · (	1, . . . , 	�B(G,T ), 	�B(G,T )+1, . . . , 	�(G))

= (�	1�
−1, . . . ,�	�B(G,T )�

−1,�	�B(G,T )+1�
−1, . . . ,�	�(G)�

−1)

for any� ∈ PR2n. From Theorem 2 and the Burnside lemma, we have the following.

Corollary 3. The number of the isomorphism classes of connected balanced2n-fold
coverings of an unbalanced graphG� is equal to

IsocB(G�,2n)= 1

2(n!)2
∑

�∈PR2n

|Fix�|,

whereFix� = {� ∈ CB
T (G�,2n) : � · �= �}.

3. Enumeration of balanced coverings

In this section, we shall give an enumerating formula for IsocB(G�;2n). To do this, we
start with the following.

With a fixed spanning treeT, letCT (G, n) denote the set of all reduced transitive voltage
assignments� : D(G) → Sn. For a convenience, we identify this setCT (G, n) with the
set of all transitive�(G)-tuples(	1, . . . , 	�(G)) in (Sn)

�(G), where the transitivity of�(G)-
tuples means that the subgroup generated by{	1, . . . , 	�(G)} acts transitively on the set
{1,2, . . . , n}. Let SA(n) denote the number of subgroups of indexn in a groupA and
let tm,� denote the number of transitive�-tuples in(Sm)�. Then, the number of subgroups
of indexn in the fundamental group of the graphG, which is a free groupF�(G) on�(G)

elements, is equal to|CT (G, n)|/(n− 1)!, i.e.,SF�(G)
(n)= tn,�(G)/(n− 1)!, (see[12]).

Lemma 4. (1) For any two natural numbers m, ��1, we have

tm,� = (m!)� −
m−1∑
j=1

(
m− 1

j − 1

)
((m− j)!)� tj,�,

where the summation over the empty index set is defined to be0.
(2) LetG� be an unbalanced graph. Then|CB

T (G�,2n)| = n! tn,2�(G)−1.

Proof. (1) comes from the Hall’s recursive formula in[3] for SF�(G)
(n) and the relation

SF�(G)
(n)= tn,�(G)/(n− 1)!.
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(2) The numberSF2�(G)−1(n) can be considered in two ways: first, the equalitySF2�(G)−1

(n)= tn,2�(G)−1/(n−1)! is known already as in (1). On the other hand, this number is equal
to the number of subgroups on indexn in the fundamental group of the canonical double
covering(G�)�� , because�(G�)= 2�(G)− 1. Furthermore, those subgroups of the funda-
mental group of(G�)�� are in one-to-one correspondence to the subgroups of index 2n in
the fundamental group ofGwhich correspond to the connected balanced 2n-fold coverings
of Gby Theorem 1. Hence, we have the equalitySF2�(G)−1(n)= |CB

T (G�,2n)|/(n−1)!n!
by noting that the number of elements inPR2n which fix the symbol 1 is(n− 1)!n!. Now,
a comparison of the two equalities gives the proof.�

Now, we aim to compute|Fix�| for an� ∈ PR2n. First, note that an� has a fixed point
if and only if � is a regular permutation, which means by definition that� is a product
of disjoint 2n/� cycles of length�. Moreover, a voltage assignment� ∈ CB

T (G�,2n) is
fixed by� if and only if for each cotree arce, �(e) belongs to the centralizerZS2n(�) of
� in S2n. We recall that� is of type� if, in the cycle decomposition of�, every cycle has
length�. For such an�, it is well-known that the centralizerZ(�) of such an� in S2n can
be represented as the wreath productZ� � S2n/�, whereZ� is the cyclic group of order�.
Notice that each elementa ∈ Z� �S2n/� can be written in the forma=(c1, c2, . . . , c2n/�; ã),
wherec1, . . . , c2n/� ∈ Z� andã ∈ S2n/�. For a� ∈ Fix�, so that�(e) ∈ ZS2n(�) for each
e ∈ D(G) − D(T ). For such a� ∈ Fix�, the function�̃ : D(G) → S2n/� define by
�̃(e)= �̃(e) is also a voltage assignment.

First, let� ∈ P2n and let� be a product of disjoint 2n/� cycles of length� for some
�|2n. Since each of these cycles of� consists of only either odd numbers or even numbers,
2n/� must be even and hence� is a divisor ofn. Moreover,Z(�)∩P2n =Z� � (Sn/� � {1}),
Z(�)∩R2n=Z��(Sn/��S2)−Z��(Sn/��{1}), andZ(�)∩PR2n=(Z��Sn/�)�S2=Z��(Sn/��S2).

Let FixP(�m)denote the set of all reduced voltage assignments� : D(G)→ Z� �(Sm �S2)

such that�(e) ∈ Z� � (Sm � {1}) if e ∈ EB
T (G�), �(e) ∈ Z� � (Sm � S2) − Z� � (Sm � {1})

if e ∈ EU
T (G�), and�̃ ∈ CB

T (G�,2m). Recall thatCB
T (G�,2m) is the set of all reduced

transitive voltage assignments� such that the 2m-fold coveringG�

��̃
of G� is balanced. Let

FixP
�n/�

be the set of all voltage assignments� ∈ CB
T (G�,2n) which is fixed by�. Then,

by a method similar to Liskovets[12], we have the following.

Lemma 5. Let� ∈ P2n. Then|Fix�| �= 0 if and only if� is a regular permutation which
is a product of disjoint2n/� cycles of length� for some�|n. For such an�, we have

|Fix�| = |FixP
�n/�
| =

∑
d|�


(d) dn/�−1
(
�

d

)(n/�)(2�(G)−1)

tn/�,2�(G)−1

 (n
�

)
! �n/�,

where
 is the Möbius function.

Next, let � ∈ R2n. Then� is a product of disjoint 2n/�′ cycles of length�′. Since
each cycle of� reverses the parity,�′ = 2� for some divisor� of n, i.e.,� is a product of
disjointn/� cycles of length 2� for some divisor� of n. Moreover,Z(�)∩P2n=〈2〉 �Sn/�,
Z(�) ∩R2n = (Z� − 〈2〉) � Sn/�.



48 I.P. Goulden et al. / Discrete Mathematics 303 (2005) 42–55

Let FixR(�m) denote the set of all reduced voltage assignments� : D(G)→ Z2� � Sm
such that�(e) ∈ 〈2〉 � Sm if e ∈ EB

T (G�), �(e) ∈ (Z� − 〈2〉) � Sm if e ∈ EU
T (G�), and

�̃ ∈ CT (G;m) such thatG�̃
� is unbalanced. Notice that the number|{� ∈ CT (G;m) :

G
�
� is balanced}| is 0 if m is odd and(m − 1)!tm/2,2�(G)−1/(m/2− 1)! if m is even. Let

FixR
�n/�

be the set of all voltage assignments� ∈ CB
T (G�,2n) which is fixed by�. Then,

by a slight modification of the method in Liskovets[12], we have the following.

Lemma 6. Let� ∈ R2n. Then|Fix�| �= 0 if and only if� is a regular permutation which
is a product of disjointn/� cycles of length2� for some�|n. For such an�, we have

|Fix�| = |FixR
�n/�
| =

∑
d|�,d:odd


(d) d(n/�)−1
(
�

d

)(n/�)�(G)

t−
n/�,�(G)

,

where
 is the Möbius function and

t−
m,�(G)

=
{
tm,�(G) if m is odd,

tm,�(G) − (m− 1)! tm/2,2�(G)−1

((m/2)− 1)! if m is even.

Now, we are ready to estimate the number IsocB(G�;2n).

Theorem 7. LetG� be an unbalanced graph. Then

IsocB(G�;2n)= 1

2n

∑
�|n

 ∑
d|(n/�)



( n

d�

)
d2�(�(G)−1)+1 t�,2�(G)−1

(�− 1)!

+
∑

d|(n/�),n/(d�):odd



( n

d�

)
d�(�(G)−1)+1

t−
�,�(G)

(�− 1)!

 ,

where
 is the Möbius function.

Proof. Let� be a permutation which can be expressed as a product of disjoint 2n/� cycles of
length�, and� is a divisor ofn.Then, the number of such elements inP2n is(n!/(n/�)!�n/�)2.
Let� be a permutation which can be expressed as a product of disjointn/� cycles of length
2� for a divisor� of n. Then, the number of such elements inR2n is (n!)2/(n/�)! �n/�. By
Corollary 3, we have

IsocB(G�;2n)= 1

2(n!)2

∑
�|n

(
n!

(n/�)! �n/�
)2

|FixP
�n/�
| +

∑
�|n

(n!)2
(n/�)! �n/� |FixR

�n/�
|
 .

Now, by Lemmas 5 and 6, we have the theorem.�

In Table 2, we list the numbers Isoc(G�;2n) and IsocB(G�;2n) for smalln and small
�= �(G).
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Table 2
Two numbers Isoc(G�;2n) and IsocB(G�;2n)
� 2 4

n 1 2 3 1 2 3
Isoc 3 26 624 15 14120 371515454
IsocB 1 5 24 1 71 23778

As a direct application of our results, one can enumerate the isomorphism classes of
bipartite 2n-fold connected coverings over a non-bipartite graphG.

LetG be a graph and let� : E(G)→ {1,−1} be a signing defined by�(e)=−1 for all
e ∈ E(G). Then,G is bipartite if and only ifG� is balanced. Hence, we have the following.

Corollary 8. Let G be a connected non-bipartite graph. Then, for any n, IsocB(G�; n)
is equal to the number of the isomorphism classes of bipartite n-fold connected coverings
of G.

4. Applications to orientable branched coverings

In this section, with an aid of the enumeration formula for the connected balanced cov-
erings of a signed graph, we enumerate the isomorphism classes of branched orientable
surface coverings of a non-orientable surface. It gives an answer for the following ques-
tion raised by Liskovets in[13]: count unramified orientable coverings of a non-orientable
surface.

A surfacemeans a compact connected 2-manifoldS without boundary. A continuous
functionp : S̃ → S from a surfaceS̃ onto anotherS is called abranched coveringif
there exists a finite setB in S such that the restriction ofp to S̃ − p−1(B), p|

S̃−p−1(B)
:

S̃ − p−1(B) → S − B, is a covering projection in a usual sense. The smallest subsetB
of S which has this property is called thebranch set. Two branched coveringsp : S̃→ S

andq : S̃
′ → S are isomorphicif there exists a homeomorphismh : S̃ → S̃

′
such that

p = q ◦ h.
An embeddingof a graphG into a surfaceS is a homeomorphismi : G→ S of G into

S. If every component ofS − i(G), called aregion, is homeomorphic to an open disk,
then i : G → S is called a 2-cell embedding. Arotation system� for a graphG is an
assignment of a cycle permutation�v on the neighborhoodN(v)= {e ∈ D(G) : ie = v} to
eachv ∈ V (G). An embedding scheme(�, �) for a graphG consists of a rotation scheme
� and a signing�, where� : E(G)→ {1,−1}.

It is well-known that every embedding scheme for a graphG determines a 2-cell embed-
ding ofG into an orientable or non-orientable surface, and every 2-cell embedding ofG
into a surface is determined by such a scheme (see[15,16]). The sign�(e) for an edgee
depends on the twistedness or untwistedness of the collar-neighborhood of the edgee in a
surfaceS.
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If an embedding scheme(�, �) for a graphG determines a 2-cell embedding ofG into
a surfaceS, then the orientability ofS can be detected by looking at the balancedness of
cycles ofG�. In fact,S is orientable if and only if every cycle ofG� is balanced.

Let i : G → S be a 2-cell embedding with the embedding scheme(�, �), and let� :
D(G) → Sn be a voltage assignment. The derived graphG� has thederived embedding
scheme(��, ��), which is defined by(��)vi (ei) = (�v(e))i and��(ei) = �(e) for each

ei ∈ D(G�). Then, the embedding scheme(��, ��) determines a 2-cell embeddingĩ :
G� → S� of the derived graphG� into a surface, sayS�. Moreover, ifG� is connected,
thenS� is connected. It is a fact[2] that the surfaceS� is a branchedn-fold covering of
the surfaceS, which is said to beinducedby an embeddingi : G → S and an voltage
assignment� : D(G)→ Sn. It is known[2] that every branchedn-fold covering of a surface
is isomorphic to a surface branched covering induced by a suitable 2-cell embedding of a
graph with suitable voltage assignment on it.

Let Nk be a non-orientable surface withk crosscaps, and letBm denote the graph con-
sisting of one vertex andm self-loops, say�1, . . . , �m. We call it thebouquet of m circles
or simply, abouquet.

As in [7], we construct thestandard embeddingBb+k ↪→ Nk − B of the bouquetBb+k
into the non-orientable surfaceNk, whereb= |B|, as follows: an embedding scheme(�, �)
for the standard embeddingBk+b ↪→ Nk − B is defined by

�v = (�1�
−1
1 �2�

−1
2 . . . �k+b�−1

k+b),

wherev is the vertex of the bouquetBk+b, with thestandard signing

�(�s)=
{−1 if s = 1,2, . . . , k,

1 if s = k + 1, k + 2, . . . , k + b.

For example, we consider the standard embedding(B3, �) ↪→ N2 − B with one branch
point setB; its embedding scheme is given by�v=(�1 �−1

1 �2 �−1
2 �3 �−1

3 ), �(�1)=�(�2)=
−1 and�(�3)=1. Note that the loops�1 and�2 are embedded as the polygonal boundary in
the polygonal representation of the Klein bottleN2, which are corresponded to the center
lines of two Möbius bands attached to the sphere with 2 holes to make 2 crosscaps in the
Klein bottle, as inFig. 1.
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Fig. 1. An embedding scheme for(B3, �) ↪→ N2 − B.
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For ab-subsetB of the surfaceNk, letBO((Bb+k, �) ↪→ Nk − B;2n) denote the set of
voltage assignments� : D(Bb+k)→ S2n which satisfy the following two conditions:

(a) � is transitive and(B�
b+k, �

�) is balanced,

(b) �(�i) �= 1 for eachi = k + 1, . . . , k + b and
∏k

i=1 �(�i)�(�i)
∏|B|

i=1 �(�k+i )= 1.

Note that condition (a) guarantees that the surfaceN
�
k is connected and orientable,

and condition (b) does that the setB is the same as the branch set of the branched cov-
ering p̃� : N�

k → Nk. Furthermore, we have the following as in[10]: every voltage
assignment inBO((Bb+k, �) ↪→ Nk −B;2n) induces a connected branched orientable 2n-
fold covering of the surfaceNk with branch setB. Conversely, every connected branched
orientable 2n-fold covering ofNk with branch setB can be derived from a voltage as-
signment inBO((Bb+k, �) ↪→ Nk − B;2n). Moreover, for any two voltage assignments
�,� ∈ BO((Bb+k, �) ↪→ Nk − B;2n), two branched 2n-fold surface coverings̃p� :
N

�
k → Nk and p̃� : N�

k → Nk are isomorphic if and only if two graph coverings

p� : B�
b+k → Bb+k andp� : B�

b+k → Bb+k are isomorphic. Equivalently, there exists
a permutation	 ∈ S2n such that�(�i) = 	�(�i)	−1 for all �i ∈ D(Bb+k). It means that
IsocO(Nk, B;2n)= |BO((Bb+k, �) ↪→ Nk − B;2n)/S2n|.

Now, by using a method similar to the proof of Theorem 2 in[10], we have the following.

Theorem 9. LetNk be a non-orientable surface of genus k and let B be a b-subset ofNk.
Then,every connected branched orientable covering ofNk must be even-fold,and for any n,
the number of the isomorphism classes of connected branched orientable2n-fold coverings
ofNk with branch set B is

IsocO(Nk, B;2n)= (−1)bIsocO(Nk,∅;2n)+
b−1∑
t=0

(−1)t IsocB((Bb+k−t−1, �);2n),

whereIsocO(Nk,∅;2n) is the number of the isomorphism classes of connected unbranched
2n-fold orientable coverings ofNk.

Since the term IsocB((Bb+k−t−1, �);2n) is already computed in Theorem 7, we need to
compute only the term IsocO(Nk,∅;2n).

To simplify this computation, we introduce a new voltage set. LetBO
2n(Nk) be the subset

of BO((Bb+k, �) ↪→ Nk − ∅;2n) consisting of all transitive voltage assignments� :
D(Bk) → PR2n such that�(�i) ∈ R2n for eachi = 1,2, . . . , k and

∏k
i=1 �(�i)2 = 1.

Then, by Theorem 2,BO
2n(Nk) contains all representatives of connected orientable 2n-fold

coverings ofNk and

IsocO(Nk,∅;2n)= |BO((Bb+k, �) ↪→ Nk − ∅;2n)/S2n| = |BO
2n(Nk)/PR2n|.

Hence, the number IsocO(Nk,∅;2n) of the isomorphism classes of connected unbranched
2n-fold orientable coverings ofNk is equal to the number of orbits of the coordinatewise
conjugacy action of the groupPR2n onBO

2n(Nk). In order to apply the Burnside lemma in
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this situation, we compute the number of fixed points of� for each element� ∈ PR2n. To
do this, we need the following lemma.

Let Sk(m) denote the number of subgroups of indexm in the fundamental group

1(Nk, ∗) of the non-orientable surfaceNk of genusk and letSk(m)+ denote the number
of subgroups of indexm in the fundamental group ofNk whose corresponding covering
surfaces are orientable.

Lemma 10 (Mednykh and Pozdnyakova[14]). Let k and m be any two natural numbers.
Then

Sk(m)=m

m∑
s=1

(−1)s+1

s

∑
i1+i2+···+is=m
i1,i2,...,is � 1

�i1�i2 . . . �is ,

where

�h =
∑
�∈Dh

(
h!
f (�)

)k−2

,

Dh is the set of all irreducible representations of the symmetric groupSh, andf (�) is the
degree of the representation�, and

S+k (m)=
{

0 if m is odd,

S2(k−1)

(m
2

)
if m is even.

Let � ∈ PR2n such that|Fix�| �= 0. If � ∈ P2n, thenZ(�) ∩P2n = Z� � (Sn/� � {1})
andZ(�) ∩R2n = Z� � (Sn/� � S2)− Z� � (Sn/� � {1}) for some�|n.

Let F̄ (�m) be the set of all transitive reduced voltage assignments� : D(Bk)→ Z(�)∩
R2n such that̃� ∈ BO

2n/�(Nk). Then, by a method similar to that used in Section 3, one can
see that

|Fix�| =
∑
d|�


(d) d2n/�−1 |F̄ ((�/d)n/�)|.

Now, by Theorem 3.1 in[14] and the fact that|BO
2n(Nk)|/(n−1)!n!=S+k (2n)=S2(k−1)(n),

one can have

|F̄ ((�/d)n/�)| =
(
�

d

)(2n/�)(k−1)+1 (n
�
− 1

)
! n
�
!S2(k−1)

(n
�

)
.

Hence, we have the following.

Lemma 11. Let� ∈ P2n.Then|Fix�| �= 0 if and only if� is a regular permutation which
is a product of disjoint2n/� cycles of length� for some�|n. For such an�

|Fix�| =
∑

d|�

(d) dn/�−1

(
�

d

)(n/�)(2k−3)+1 (n
�
− 1

)
!S2(k−1)

(n
�

) (n
�

)
! �n/�,

where
 is the Möbius function.
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Let� ∈ R2n. ThenZ(�)∩R2n= (Z2�−〈2〉) �Sn/�. Let F̃ (�m) be the set of all transitive
reduced voltage assignments� : D(G)→ Z2� � Sm such that�(e) ∈ (Z2� − 〈2〉) � Sm, and
�̃ ∈ C1

N(k;m), whereC1
N(k;m) is the set of all transitive voltage assignments� which

induce non-orientable coverings. Then, by a method similar to that used in Section 3, one
can see that

|Fix�| =
∑

d|�,d:odd


(d)dn/�−1 |F̃ ((�/d)n/�)|.

Now, by a slight modification of the proof of Theorem 3.1 in[14] and the fact that
|C1

N(k;m)| = (m− 1)! (Sk (n/�)−S+k (n/�)
)
, one can have

|F̃ ((�/d)n/�)| =
(
�

d

)(n/�)(k−1) (n
�
− 1

)
!

× 1+ (−1)(kn/�)(�/d−1)

2
gcd

(
2,

�

d

) (
Sk

(n
�

)
−S+k

(n
�

))
.

Hence, we have the following.

Lemma 12. Let� ∈ R2n.Then, |Fix�| �= 0 if and only if� is a regular permutation which
is a product of disjointn/� cycles of length2� for some�|n. For such an�,

|Fix�| =
∑

d|�,d:odd


(d) dn/�−1
(
�

d

)(n/�)(k−1) (n
�
− 1

)
!

× 1+ (−1)(kn/�)((�/d)−1)

2
gcd

(
2,

�

d

) (
Sk

(n
�

)
−S+k

(n
�

))
,

where
 is the Möbius function.

Now, by the Burnside lemma, we have the following.

Theorem 13. LetNk be a non-orientable surface of genus k. Then, every connected un-
branched orientable covering ofNk must be even-fold, and for any n, the number of the
isomorphism classes of connected unbranched2n-fold orientable coverings ofNk is

IsocO(Nk,∅;2n)

= 1

2n

∑
�|n

 ∑
d|(n/�)



( n

d�

)
d2�(k−2)+2S2(k−1)(�)+

∑
d|(n/�),n/(d�):odd



( n

d�

)
d�(k−2)+1

× 1+ (−1)k�(d−1)

2
gcd(2, d)

(
Sk(�)−S+k (�)

))
,

where
 is the Möbius function, andSk(�) andS+k (�) are the numbers mentioned in
Lemma10.
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Table 3
The number IsocO(Nk,∅;2n)
n N1 N2 N3 N4

1 1 1 1 1
2 0 3 9 39
3 0 3 57 1483
4 0 6 847 354009
5 0 4 15303 208211284

For example, ifn is a primep, then the number of the isomorphism classes of connected
unbranched 2p-fold orientable coverings ofNk is

IsocO(Nk,∅;2p)= 1

2p


S2(k−1)(2)+Sk(2)+ 22k−2

+2k−1(1+ (−1)k)− 2 if p = 2,
S2(k−1)(p)+Sk(p)+ p2k−2

+pk−1− 2 otherwise.

In particular, the number of the isomorphism classes of connected unbranched 2p-fold
orientable coverings of the Klein bottleN2 is IsocO(N2,∅;2p)= �(p+ 3)/2�. In Table 3,
we compute the number IsocO(Nk,∅;2n) for smalln andk.
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