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Abstract

The isomorphism classes of several types of graph coverings of a graph have been enumerated
by many authors [M. Hofmeister, Graph covering projections arising from finite vector space over
finite fields, Discrete Math. 143 (1995) 87-97; S. Hong, J.H. Kwak, J. Lee, Regular graph cover-
ings whose covering transformation groups have the isomorphism extention property, Discrete Math.
148 (1996) 85-105; J.H. Kwak, J.H. Chun, J.Lee, Enumeration of regular graph coverings having
finite abelian covering transformation groups, SIAM J. Discrete Math. 11 (1998) 273-285; J.H.
Kwak, J. Lee, Isomorphism classes of graph bundles, Canad. J. Math. XLIl (1990) 747-761; J.H.
Kwak, J. Lee, Enumeration of connected graph coverings, J. Graph Theory 23 (1996) 105-109].
Recently, Kwak et al [Balanced regular coverings of a signed graph and regular branched orientable
surface coverings over a non-orientable surface, Discrete Math. 275 (2004) 177-193] enumerated
the isomorphism classes of balanced regular coverings of a signed graph, as a continuation of an
enumeration work done by Archdeacon et al [Bipartite covering graphs, Discrete Math. 214 (2000)
51-63] the isomorphism classes of branched orientable regular surface coverings of a non-orientable
surface having a finite abelian covering transformation group. In this paper, we enumerate the iso-
morphism classes of connected balanced (regular or irregular) coverings of a signed graph and
those of unbranched orientable coverings of a non-orientable surface, as an answer of the question
raised by Liskovets [Reductive enumeration under mutually orthogonal group actions, Acta-Appl.
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Math. 52 (1998) 91-120]. As a consequence of these two results, we also enumerate the isomorphism
classes of branched orientable surface coverings of a non-orientable surface.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Let G be a finite connected graph with vertex $&iG) and edge seE (G). Every edge
of a graphG gives rise to a pair of oppositely directed edges.eBYy = vu, we mean the
reverse edge to a directed edge uv. We denote the set of directed edge&diy D(G).

Theneighborhoodf a vertexv € V(G), denoted byV (v), is the set of directed edges
emanating from. We useg X | for the cardinality of a seX. The numbef(G) = |E(G)| —
[V(G)| + 1is equal to the number of independent cycle§iand it is referred to as the
betti numberof G.

A graphG is called acoveringof G with projectionp : G — G if there is a surjection
p:V(G) — V(G)suchthap|ya) : N(¥) — N(v)isabijectionforall vertices € V(G)
and? € p~1(v). We say that the projectiop : G — G is ann-fold coveringof G if pis
n-to-one. Two coveringp; : G; — G,i = 1, 2 are said to besomorphicif there exists a
graph isomorphisn® : G1 — G» such thatp1 = p» o ®. Such ad is called acovering
isomorphism

Let S, denote a symmetric group onelements(1, 2, ..., n}. A permutation voltage
assignmen(or, voltage assignmepof G is a function¢ : D(G) — S, with the property
that¢(e~1) = ¢(e)~* for eache € D(G). Thepermutation-derived grapty? is defined
as follows:V(G?) = V(G) x {1, ...,n} and E(G?) = E(G) x {1,2,...,n}, so that an
edge(e, i) of G? joins a verteXu, i) to (v, ¢p(e)i) fore=uv € D(G)andi =1,2, ..., n.
The first coordinate projecti0p¢~: G? — G is ann-fold covering. Following Gross and
Tucker[2], everyn-fold coveringG of a graphG can be derived from a voltage assignment
which assigns the identity element on the directed edges of a fixed spannifigaféz
We call such ap reduced. That is, for a covering : G — G, there exists a reduced
voltage assignment of G such that the derived covering’ : G® — G is isomorphic to
p : G — G. Moreover, for a reduced voltage assignmént D(G) — S, the derived
graphG? is connected if and only if the subgroup 8f generated by the image of the
voltage assignmenp acts transitively on the s€l, 2, ..., n}, (see[2]). Such a voltage
assignment is said to heansitive From now on, we assume that every voltage assignment
is reduced and transitive.

A signed graphis a pairGy = (G, 0) of a graphG and a functiorf) : E(G) — Z,

72 = {1, —1}. We callG theunderlying graplof Gy and@ the signingof G. An edgee of

Gy is said to be positive (resp. negativeik) = 1 (resp.f(e) = —1). A signed graplG g

is balancedf its vertex set can be partitioned into two partite sets such that a positive edge
has the ends in the same partite set, and a negative edge has the ends in different partite sets.
Notice that a signed grapfiy is balanced if and only if every closed walk @7y contains

even number of negative edges, i.e., the vdllie, 0(e) = 1 for every closed walkV

in Gy.
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A graph map: : Gy — Hy between two signed graphs is a graph map between their
underlying graph&s andH which preserves the signing of each edge, &L (e)) = O(e)
for eache € E(G). A signed graptGj is called acoveringof anotherG with projection

p:G;— Gyif p: G — Gisacovering and o p = 0. Two coveringsp : G; — Gy
and p’ : G;}, — Gy of a signed graptGy areisomorphicif the underlying coverings

p:G — Gandp' : G’ — G of the graphG are isomorphic.

By a method similar to the construction of a covering grapfi2in one can see that
every covering of a signed graph can be derived from a reduced voltage assighofent
G. That is, for a covering : éé — Gy, there exists a reduced voltage assignngeat G

such that the derived covering® : G® — G is isomorphic top : G — G. We define a
signingéﬁb :E(G?) — {—1,1} by 9¢(e,-) = 0(e) for eache; € E(G?). Then, the covering
p? 1 (G?)ys — Gy isisomorphictop : G, — Gy.

In [11], Kwak et al. enumerate the isomorphism classes of regular balanced coverings of
a signed graph and those of regular bipartite coverings of a §fapto] As an application
of the results, they also enumerate the isomorphism classes of regular branched orientable
surface coverings of a non-orientable surface having a finite abelian covering transformation
group. It gives a partial answer for the question raised by Liskovdfis3ijn

In Section 2, we discuss an enumeration method for the isomorphism classes of (regular
or not) balanced coverings of an unbalanced graph. In Section 3, we enumerate the isomor-
phism classes of balanced coverings of a signed graph. As an application of our results, we
enumerate the isomorphism classes of bipartite coverings over a non-bipartit&sgraph
in Section 4, we obtain an enumeration formula for the isomorphism classes of branched
or unbranched orientable surface coverings of a non-orientable surface.

2. A characterization of balanced coverings

Let Isod G; n) denote the number of the isomorphism classes of connadtad cover-
ings of a graplG. Similarly, IsodGy; n) denotes the signed ones. Notice that (§b01) =
Isod(Gy; n) for any signingd on a graphG. Let Iso? (Gy: n) denote the number of the
isomorphism classes of connected balaneéald coverings of a signed gragh.

Notice that ifGy is balanced, then every covering Gf is also balanced, which gives
Isoc@(Gg; n) = 1sodGy; n) = Isod G; n) for any natural numben. We also notice that
every odd-fold covering of an unbalanced graph is also unbalanced. Therefore, we restrict
our discussion to the even-fold coverings of an unbalanced gapiWe observe that
there are some analogous properties between the balancedness and bipartiteness. For ex-
ample, a graph is bipartite if and only if every cycle has an even length, and analogously
a signed graph is balanced if and only if every cycle contains an even number of negative
edges. Some of such analogous properties are listezhile 1 From the correspondence in
Table 1 one can image that the enumeration method for the bipartite coverings of a graph
used in[1] can be applied to derive some enumeration formulae for the balanced coverings
of a signed graph.

Let Gy be an unbalanced graph andTebe a fixed spanning tree @. A cotree edge
ein E(G) — E(T) is said to baunbalancedresp.,balanced if T + ¢ has an unbalanced
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Table 1

A relationship

GraphG Signed graptGy
Bipartiteness > balancedness
Even cycle <« balanced cycle
Odd cycle > unbalanced cycle

(resp., balanced) cycle. LE;J(GQ) (resp.E?‘(Gg)) denote the set of all balanced (resp.
unbalanced) cotree edgesi{G) — E(T). Let (G, T) = |E?‘(GH)| andf4(G, T) =
|EZ(Gp)l, so thatB(G) = B4(G, T) + f4(G, T).

For convenience, le?,, be the set of all permutations in the symmetric grégpwhich
preserve the parity ifil, 2, . .., 2n}, and let%#», be the set of all permutations §3,, which
reverse the parity i1, 2, ..., 2n}. Then?%#,, := %2, U %2, is a subgroup of>, and
| P A0 ] = 2(n1)°.

Letv: D(G) — S2=1{1, 1= (12)} be areduced voltage assignment defined(y= 1
for eache ¢ E?(Gg) andv(e) = 1 for eache € E”T’/(Gg). Then the derived double
covering graph(G")y is balanced. By a method similar to the proof of Theorem 3.1 in
[1], one can show that every balanced covering of the unbalanced @rajgha covering
of the double covering graptG"), as a signed graph. More precisely, for any balanced
coveringp : Gé — Gy of Gy there exists a covering map : Gé — (G")yv such
that p = p* o ¢g. We call (G")y the canonical balanced double coverira§ Gy. Notice
that p~1(v) = ¢ ((p") () = ¢~ (v1) U ¢~ (v2). Now, by labellingg ' (v1) = {v; :
i=13,....,2n -1} andq_l(vz) ={v; : i =2,4,...,2n}, one can have the following
theorem.

Theorem 1. Let Gy be an unbalanced graph and let T be a spanning tree .dfe& p :
G; — Gy be an even-foldsay, 2n) connected balanced coveringhen there exists a
reduced transitive voltage assignmeﬁlt: D(G) — PRy, such thatp(e) € Py, if
e € EZ(Gy), p(e) € A2, if e € EY(Gy), and p? : (G?)ys — Gy is isomorphic to
p: Gé — Gy.

LetC?(Gg, 2n) denote the set of all reduced transitive voltage assignngeni3(G) —
PRy such thap(e) € Py, if e € EF(Gy) andp(e) € R, if e € EX(Gy).

Theorem 2. Let Gy be an unbalanced graph and let T be a fixed spanning tree.of G
Let ¢ andy be two voltage assignments GT?(GH, 2n). Then(G¢)9¢ and (Gl//)ew are
isomorphic as coverings if and only if there exists a permutatioe #%2, such that
Ye)=wode)ow Lforalle e D(G —T).

Proof. It is clear that(G?) s and(G¥),, are isomorphic if and only it;% andG¥ are

isomorphic as coverings. Singeandy are reduced, by Theorem 2 j8], G and G¥
are isomorphic as coverings if and only if there exists a permutatian Sy, such that
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Y(e)=wo d(e)ow Lforalle € D(G — T). SinceG? andG¥ are connected angl,
are elements orf?’(Go, 2n), such anw should be an element 6%, . This completes the
proof. [

We observe that??(Gg, 2n) can be identified with the set of all transitipeG)-tuples
(o1,..., OB4(G.T)> O 4(G.T)+1s+ -+ > Uﬁ(G)) in (gzn)[f%(G,T) X ((@%)/}W(G’T). Define an
PRan-action onC7 (Gy, 2n) by

- (O']_, ey O-ﬂgg(G,T)’ aﬁ%(G,T)-‘rl’ ey Gﬁ(G))

1

- -1 -1 -1
= (wo1w™ ", ..., WO (G TYD s WOB(G.T)+10 ., WTRG)D )

foranyw € 2%2,. From Theorem 2 and the Burnside lemma, we have the following.

Corollary 3. The number of the isomorphism classes of connected bala?céold
coverings of an unbalanced graygky is equal to

1 .
|soc/5'(Gg,2n)=m Y IFixgl,

WEP R

whereFix, = {¢ € CZ(Gy, 2n) : - ¢ = P}

3. Enumeration of balanced coverings

In this section, we shall give an enumerating formula for 5@&; 2n). To do this, we
start with the following.

With a fixed spanning tre€, let C7 (G, n) denote the set of all reduced transitive voltage
assignment® : D(G) — S,. For a convenience, we identify this s€t (G, n) with the
set of all transitived (G)-tuples(ay, . . ., ) in (S,)P©), where the transitivity of(G)-
tuples means that the subgroup generateddy. . ., )} acts transitively on the set
{1,2,...,n}. Let ¥ (n) denote the number of subgroups of indein a group.«Z and
let 7, . denote the number of transitivetuples in(S,,)*. Then, the number of subgroups
of indexn in the fundamental group of the grah which is a free group” 4y on (G)
elements, is equal t&'7 (G, n)|/(n — 1)!, i.e.,yg]ﬁ(c) (n) =t, pG)/(n — D!, (see[12]).

Lemma 4. (1) For any two natural numbers né > 1, we have

m—1

-1
e = ()t =) <’;’_ 1) (m — Y 1),

j=1
where the summation over the empty index set is defined@o be
(2) Let Gy be an unbalanced graph. Thw?(GQ, 2n)| =n't, 25G)-1-

Proof. (1) comes from the Hall's recursive formulali8] for y%}@) (n) and the relation
S F y6y M) = p)/(n — DL
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(2)The numbeﬂ{g;zﬁ@_1 (n) can be considered in two ways: first, the equa}ﬁyzﬁ(m_l
(n) =t, 2p(G)—1/(n — )!is known already as in (1). On the other hand, this number is equal
to the number of subgroups on indejn the fundamental group of the canonical double
covering(G"),, becausg(G") = 2(G) — 1. Furthermore, those subgroups of the funda-
mental group of G")» are in one-to-one correspondence to the subgroups of index 2
the fundamental group @ which correspond to the connected balanceddld coverings
of G by Theorem 1. Hence, we have the equaﬁ‘tyzzﬁ«;)_l(n) = |C§”(G(), 2n)|/(n — 1)'n!
by noting that the number of elements#¥2,, which fix the symbol 1 ign — 1)!n!. Now,
a comparison of the two equalities gives the prodf]

Now, we aim to computéFix,,| for anw € 2%5,. First, note that am has a fixed point
if and only if @ is a regular permutation, which means by definition that a product
of disjoint 21/¢ cycles of length?. Moreover, a voltage assignmefite C?(Go, 2n) is
fixed by w if and only if for each cotree arg ¢(e) belongs to the centralizéfs,, (w) of
w in S2,. We recall thatw is of type/ if, in the cycle decomposition ab, every cycle has
length¢. For such amw, it is well-known that the centralizef (w) of such anw in Sy, can
be represented as the wreath prodzct Sz, whereZ, is the cyclic group of ordet.
Notice that each elemeate Z,: Sz,,, can be written in the form=(c1, c2, . . ., c24/¢; @),
wherecy, ..., c2u¢ € Zg anda € S, 0. FOr a¢ € Fix,, so thatp(e) € Zs,, (w) for each
e € D(G) — D(T). For such ap € Fix,, the functiong : D(G) — Sz, define by
d(e) = ¢(e) is also a voltage assignment.

First, letw € 2, and letw be a product of disjoint/2/¢ cycles of lengthy for some
£|2n. Since each of these cycleswofconsists of only either odd numbers or even numbers,
2n /€ must be even and henéés a divisor ofn. Moreover,Z (w) N P2, = Z¢ 2 (Suye 1{1}),
Z(w)ﬂe@z,?:Zgl(S,l/gZSz)—Zz?(sn//gl{l}), andZ(w)ﬂﬂ%z,l=(ZlzSn/g)zS2=Zgz(Sn/ngg).

Let Fix” (¢) denote the set of all reduced voltage assignm@nt® (G) — Z¢2(S;252)
such thatp(e) € Zy 21 (S, 1 {1}) if e € E?(GQ), Pe) € Zy 2 (S 2 S2) — Zy 2 (S 1 {1})
if e € EX(Gyg), and$ € CZ(Gy, 2m). Recall thatC (Gy, 2m) is the set of all reduced

transitive voltage assignmenjssuch that the 2-fold coveringGZ;6 of Gy is balanced. Let

Fixﬁ/( be the set of all voltage assignmexts= C?(GQ, 2n) which is fixed byw. Then,
by a method similar to Liskove{d2], we have the following.

Lemma 5. Letw € #5,. Then|Fix,| # 0if and only ifw is a regular permutation which
is a product of disjoinkn /¢ cycles of length for somet|n. For such anw, we have

F = 0(2B(G)—1
IFiXe| = |FixZ,| ,l/g_1<e><n/ )(2B(G)-1)
¢ et > ud)yd -

n
7 tn/e,2B(G)—1 <Z>! e
dle

wherepu is the Mdbius function

Next, letw € Z2,. Thenw is a product of disjoint 2/¢’ cycles of length?’. Since
each cycle ofo reverses the parity, = 2¢ for some divisor of n, i.e.,w is a product of
disjointn /¢ cycles of length 2 for some diviso of n. Moreover,Z (o) N 2, =(2) ¢ Sy /¢,
Z(w) N Ropy = Ly — (2)) 2 Snye.
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Let FixZ(¢™) denote the set of all reduced voltage assignmentsD (G) - Z2¢ 2 Sy
such thatp(e) € (2): S, if e € E?’(Go), Ple) € (Zy — (2) 1Sy, ife e E}”(G()), and

&) € Cr(G;m) such thatGg’ is unbalanced. Notice that the numbgy € Cr(G; m) :
Gg is balancedl is 0 if mis odd and(m — D't,, /2 25Gy-1/(m/2 — 1)! if mis even. Let

Fix” , be the set of all voltage assignmegits= C:/(Gy, 2n) which is fixed byw. Then,
by a slight modification of the method in Liskovéi], we have the following.

Lemma 6. Letw € #2,. Then|Fix,,| # 0if and only ifw is a regular permutation which
is a product of disjointz /¢ cycles of lengtl2¢ for somel|n. For such anw, we have

2\ /OBG)
; _IEivZ | — (n/O-1( = -
IFixe| = |Fixgr, | = dw;ddu(d) d" ( d) fuje,BG)
,a:0l

wherep is the Mdbius function and

B tm,ﬁ(G) if mis odd,
BG) =

Imj2,20(G)—1
_ _ |\ /=77 -
. pi6) = m = D )

Now, we are ready to estimate the number %a&,; 2n).

if mis even.

Theorem 7. Let Gy be an unbalanced grapfihen

L 2p(G)-1
Isoc” (Gy; 2n) = Z 3 H(de) J2LBG) -1+ (el_( i)'
4\" d|(n/t)

n fe.p(6)
Y JLBG-D+1_L ,
+ 2. K (dz) Y
d|(n/€),n/(dt):odd

wherep is the Mdbius function

Proof. Letw be a permutation which can be expressed as a product of dispgitcgcles of
length¢, ande is a divisor of. Then, the number of such elementsAg, is (n!/(n/£)1€"/4)?.
Letw be a permutation which can be expressed as a product of digjdict/cles of length

2¢ for a divisor¢ of n. Then, the number of such elements#n, is (n!)?/(n/¢)! £"/¢. By
Corollary 3, we have

g1 n! (n!)?
Isoc” (Gy; 2n) = 202 (zzp; (W) iXye| + Z (n /g)!en/f' zn/€|) :

Now, by Lemmas 5 and 6, we have the theorerml

In Table 2 we list the numbers I1s@Gy; 2n) and Isodg(Gg; 2n) for smalln and small

B = B(G).
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Table 2

Two numbers 1so@y; 2n) and 1so& (Gy; 2n)

p 2 4

n 1 2 3 1 2 3
Isoc 3 26 624 15 14120 371515454
Isoc? 1 5 24 1 71 23778

As a direct application of our results, one can enumerate the isomorphism classes of
bipartite 2:-fold connected coverings over a non-bipartite gr&ph

LetGbeagraphandlet : E(G) — {1, —1} be a signing defined by (e) = —1 for all
e € E(G). Then,Gis bipartite if and only ifG, is balanced. Hence, we have the following.

Corollary 8. Let G be a connected non-bipartite grapfhen for any n 1soc? (G ; n)
is equal to the number of the isomorphism classes of bipartite n-fold connected coverings
of G.

4. Applications to orientable branched coverings

In this section, with an aid of the enumeration formula for the connected balanced cov-
erings of a signed graph, we enumerate the isomorphism classes of branched orientable
surface coverings of a non-orientable surface. It gives an answer for the following ques-
tion raised by Liskovets ifiL3]: count unramified orientable coverings of a non-orientable
surface.

A surfacemeans a compact connected 2-manif§ldvithout boundary. A continuous
functionp : S — S from a surfaceS onto anothesS is called abranched coveringf

there exists a finite s& in S such that the restriction gfto S — p—1(B), p|§7p,1(3) :

S — p~X(B) — S — B, is a covering projection in a usual sense. The smallest s@bset
of S WhICh has this property is called theanch setTwo branched Covermgs S—>'S
andgq : § >'s areisomorphicif there exists a homeomorphisim: S — §' such that
p=qoh.

An embeddingf a graphG into a surfaceS is a homeomorphism: G — S of G into
S. If every component o — i(G), called aregion, is homeomorphic to an open disk,
theni : G — S is called a 2eell embedding. Arotation systenp for a graphG is an
assignment of a cycle permutatipp on the neighborhoo® (v) ={e € D(G) : i, =v} to
eachv € V(G). An embedding schenfg, 0) for a graphG consists of a rotation scheme
p and a signind), wheref : E(G) — {1, —1}.

It is well-known that every embedding scheme for a grggdetermines a 2-cell embed-
ding of G into an orientable or non-orientable surface, and every 2-cell embeddiBg of
into a surface is determined by such a scheme [(58é&6]). The signd(e) for an edgee
depends on the twistedness or untwistedness of the collar-neighborhood of theirdge
surfaces.
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If an embedding schemg, 6) for a graphG determines a 2-cell embedding Gfinto
a surfaces, then the orientability oS can be detected by looking at the balancedness of
cycles ofGy. In fact, S is orientable if and only if every cycle @ is balanced.

Leti : G — S be a 2-cell embedding with the embedding schéme)), and let¢ :
D(G) — S, be a voltage assignment. The derived graphhas thederived embedding
scheme(p?, 69), which is defined by(p?), (e;) = (p,(e)); and 6% (e;) = O(e) for each
e; € D(G?). Then, the embedding scheme?, 09) determines a 2-cell embedding
G? — S? of the derived grapi&? into a surface, sa$?. Moreover, ifG? is connected,
thenS? is connected. It is a fa¢2] that the surfac&? is a branched-fold covering of
the surfaceS, which is said to bénducedby an embedding : G — S and an voltage
assignmeny : D(G) — S,. Itis known[2] that every brancheutfold covering of a surface
is isomorphic to a surface branched covering induced by a suitable 2-cell embedding of a
graph with suitable voltage assignment on it.

Let N, be a non-orientable surface wikicrosscaps, and 188, denote the graph con-
sisting of one vertex andh self-loops, says, ..., ¢,. We call it thebouquet of m circles
or simply, abouquet

As in [7], we construct thetandard embeddin®;, ., < N, — B of the bouquetB,, «
into the non-orientable surfacé,, whereb = | B|, as follows: an embedding scherfg 60)
for the standard embeddi¥8y.,, — Ny — B is defined by

py =l 0l ol ly),
whereuv is the vertex of the bouquéi, . ;, with thestandard signing

-1 ifs=12,...,k,

0(ts) = {1 it s=k+1k+2....k+b.

For example, we consider the standard embeddg 0) < N> — B with one branch
point seB; its embedding scheme is given py= (¢1 ql lo 651 l3 Egl), 0(t1)=0(L2)=
—1 andf(¢3) =1. Note that the loop&; and¢, are embedded as the polygonal boundary in
the polygonal representation of the Klein botie, which are corresponded to the center
lines of two Mdbius bands attached to the sphere with 2 holes to make 2 crosscaps in the
Klein bottle, as irFig. 1

Fig. 1. An embedding scheme f@B3, 0) = N, — B.
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For ab-subseB of the surfacaVy, letBC (By4x, ) = Ny — B; 2n) denote the set of
voltage assignments : D(B,.x) — S2, Which satisfy the following two conditions:

(@) ¢ is transitive andSBZ’+k, 0¢) is balanced,
(b) p(t;) # Lforeach =k +1,....k+band[T_; p()PEHTTZL dlrri) = 1.

Note that condition (a) guarantees that the surfbl;f’eis connected and orientable,

and condition (b) does that the $fis the same as the branch set of the branched cov-
ering p¢ : N,f — Ni. Furthermore, we have the following as [ih0]: every voltage
assignment i ((B,1«, ) = Nx — B; 2n) induces a connected branched orientalle 2
fold covering of the surface/; with branch seB. Conversely, every connected branched
orientable 2-fold covering of Ny with branch seB can be derived from a voltage as-
signment inBC (Bp4«, 0) = Ny — B; 2n). Moreover, for any two voltage assignments
.y € BO((Bypix, ) < Ni — B; 2n), two branched 2-fold surface coveringg? :
N,? — N¢ and p¥ N,‘(/’ — N; are isomorphic if and only if two graph coverings
p? %,‘f+k — By andp? - %f+k — B, are isomorphic. Equivalently, there exists
a permutatiorv € Sz, such that)(¢;) = o-qS(Ei)a—l for all ¢; € D(Bp4). It means that
Isoc? (Ni, B; 2n) = [BO (Bp.4x, 0) = Ni — B; 2n)/S2a].

Now, by using a method similar to the proof of Theorem R1i0], we have the following.

Theorem 9. Let N be a hon-orientable surface of genus k and let B be a b-subgét.of
Then every connected branched orientable coveringypiust be even-foJénd for any n
the number of the isomorphism classes of connected branched oriebtatullel coverings
of Ny with branch set B is

b—1
Isoc? (Ng, B; 2n) = (—1)®1s0c? (N, 3; 2n) + Z (=1)'150¢? (Bpri—i—1, 0); 2n),
t=0

wherelsoc? (N, ¥; 2n) is the number of the isomorphism classes of connected unbranched
2n-fold orientable coverings a¥y.

Since the term Iso”%((%bJrk_,_l, 0); 2n) is already computed in Theorem 7, we need to
compute only the term IS§a Ny, @; 2n).

To simplify this computation, we introduce a new voltage set.El%(Nk) be the subset
of BO((Bp4x, 0) = Ny — 9;2n) consisting of all transitive voltage assignmeuits:
D(By) — P%a, Such thatp(;) € A, for eachi = 1,2, ...,k and[[5_; ¢(£:)? = 1.
Then, by Theorem B%(Nk) contains all representatives of connected orientatéoi
coverings ofN; and

Isoc? (N #; 2n) = [BC (Bp k. 0) > Ni — 0 2n) /Sou| = [BS, (Ni) /P R2n|.

Hence, the number Is8¢Ny, ¥; 2n) of the isomorphism classes of connected unbranched
2n-fold orientable coverings aF; is equal to the number of orbits of the coordinatewise
conjugacy action of the groug%,, on BZOn(Nk). In order to apply the Burnside lemma in
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this situation, we compute the number of fixed pointe)dbr each elemenb € 2%,,. To
do this, we need the following lemma.

Let ¥x(m) denote the number of subgroups of indexin the fundamental group
n1(Ng, *) of the non-orientable surfadé, of genusk and let¥; (m)* denote the number
of subgroups of indexn in the fundamental group a¥;, whose corresponding covering
surfaces are orientable.

Lemma 10 (Mednykh and Pozdnyakoy®4]). Let k and m be any two natural numbers
Then

(DT
Srm)y=my > BubBiy---Bis

N L .
s=1 i1 Fig+-tis=m
1,090 =1

where

! k—2
=3 (77) -

1EDn

Dy, is the set of all irreducible representations of the symmetric gr§umnd 1% is the
degree of the representatignand

N 0 " if mis odd
S (m) = {yz(k_l) (3) if m is even

Letw € 22, such thatFix,| # 0. If € P, thenZ(w) N P, = Zy 2 (Spye 1 {1))
andZ(w) N Ron = Lo 2 (Sppe 2 S2) — Zg 2 (Spye 2 {1}) for somet|n.

Let F(¢™) be the set of all transitive reduced voltage assignmgnt® (By) — Z(w) N
A2, such thaip e BZO,,/@(Nk)- Then, by a method similar to that used in Section 3, one can
see that

Fixo = Y u(d) a1 E((¢/d)"").
d|e

Now, by Theorem 3.1 iflL4] and the fact thaBgn(Nk) |/(n—1)! n!:y,f(Zn)zyz(k_l) (n),

one can have

B ¢ (2n/0)(k—1)+1 n n n

F(e/ay's = (= (--1)!-!;/ B (- .
|F (/)] (d) C - 1)1 S (5)

Hence, we have the following.

Lemma 11. Letw € Z2,. Then|Fix,,| # 0if and only ifw is a regular permutation which
is a product of disjoinn /¢ cycles of lengthf for somel|n. For such anm

(- aa () (e

0)(2k—3)+1
|FiXU,| — Z,u(d) dn/f—l é (n/ )( )+
d

dle

wherep is the Mdbius function
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Letw € #2,. ThenZ(w) N Koy = (L2e — (2)) 2 Snye- Let F(¢™) be the set of all transitive
reduced voltage assignmeiits D(G) — Zz S, such thatp(e) € (Z2¢ — (2)) 1 Sy, and
¢ € C%,(k; m), WhereC]{,(k; m) is the set of all transitive voltage assignmedtsvhich
induce non-orientable coverings. Then, by a method similar to that used in Section 3, one
can see that

Fixol= Y wdyd”* " F(e/d)y"").
d|¢,d:odd

Now, by a slight modification of the proof of Theorem 3.1[l¥] and the fact that
|CY (ks m)| = (m — D! (Fk (n/0) — F; (n/0)), one can have

(2o
12
14+ (_1)(kn/€)(€/dfl)

S g ) (4 (2) - 2)

)(n/f)(kl)

~ V4
|F((¢/d)y"")| = (3

Hence, we have the following.

Lemma 12. Letw € #2,. Then |Fix,,| # 0if and only ifw is a regular permutation which
is a product of disjoiniz /¢ cycles of lengtl2¢ for somel|n. For such anw,

o\ @/0G-D
1 — n/K—l _ _ |
Fixol= Y ud)d <d> <z 1).

d|¢,d:odd
14 (—1)kn/OW/d)=1)

e (2g) (76 () -t (7).

whereu is the Mobius function

Now, by the Burnside lemma, we have the following.

Theorem 13. Let N, be a non-orientable surface of genusTken every connected un-
branched orientable covering @&, must be even-foJaand for any nthe number of the
isomorphism classes of connected unbrancheébld orientable coverings aVy, is

Isoc? (N, ¥: 2n)

:% > ( d o (;7) A2y y@0+ Y ((;’_E) Jlk=2+1

Ln \d|(n/t) d|(n/€),n/(dt):odd

14+ (_1)k€(d—l)
X —_—

5 ged2, d) (Sx(6) — <¢Z(€))>,

where u is the Moébius functionand %, (¢) and ,S/’,j(Z) are the numbers mentioned in
Lemmalo.
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Table 3

The number Iso@ (N, #; 2n)

n N1 N> N3 Ny

1 1 1 1 1
2 0 3 9 39
3 0 3 57 1483
4 0 6 847 354009
5 0 4 15303 208211284

For example, ifh is a primep, then the number of the isomorphism classes of connected
unbranched g-fold orientable coverings aVy is

Lot—1)(2) + L (2) + 2%2

1) +2'a+-vhH-2 if p=2
Isoc? (Ny, 8; 2p) = — - ’
(Ni 2 2p | L20-1(p) + Lk (p) + p*2
+pk-1—-2 otherwise

In particular, the number of the isomorphism classes of connected unbrangkett 2
orientable coverings of the Klein botthé is Isoc® (N2, #; 2p) = [(p + 3)/2]. In Table 3
we compute the number ISBEN, #; 2n) for smalln andk.
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