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Abstract

In a study of surface branched coverings, one can ask naturally:In how many different ways can a
given surface be a branched covering of another given surface?This problem was studied by many
authors in Quart. J. Math. Oxford Ser. 2 46 (1995) 485, Math. Scand. 84 (1999) 23, Discrete Math.
156 (1996) 141, Discrete Math. 183 (1998) 193, Discrete Math. (in press), European J. Combin.
22 (2001) 1125, Sibirsk. Mat. Zh. 25 (1984) 606 etc. In this paper, as a complete answer to the
question for regular coverings, we determine the distribution of the regular branched coverings of
any nonorientable surfaceS when the covering transformation group and a set of branch points are
freely assigned.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Throughout this paper, a surfaceS means a compact connected 2-manifold without
boundary, which is homeomorphic to one of the following:

Sk =
{

the orientable surface withk handles ifk ≥ 0,
thenonorientable surface with− k crosscaps ifk < 0,

whose Euler characteristicχ(Sk) is 2− 2k if k ≥ 0 and 2+ k if k < 0.
A continuous functionp : S̃ → S from a surfacẽS onto anotherS is called abranched

coveringif there exists a finite subsetB of S such that the restriction ofp to S̃ − p−1(B),
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p|
S̃−p−1(B) : S̃ − p−1(B) → S − B, is a coveringprojection in the usual sense. The

smallest subsetB of S which has this property is called thebranch set.

Let A be a finite group. For anyaction of A on a topological spaceX, a fixed point
of the action is a pointx ∈ X suchthat gx = x for some nonidentity elementg of A.
An action with no fixed points is calledfree and an action with a finite number of fixed
points is calledpseudofree. A branched coveringp : S̃ → S is regular if there exists a
(finite) groupA which acts pseudofreely oñS so that the surfaceS is homeomorphic to the
quotient spacẽS/A, say byh, and the quotient map̃S → S̃/A is the compositionh ◦ p
of p andh. We call it simply abranchedA-covering. In this case, the groupA becomes
the covering transformation group of the branched coveringp : S̃ → S. Two branched
coveringsp : S̃ → S andq : S̃′ → S areequivalentif there exists ahomeomorphism
h : S̃ → S̃′ suchthat p = q ◦ h.

Mednykh [12] obtained a formula for the number of nonequivalent coverings over
an arbitrary compact Riemann surface with prescribed ramification type. This gives a
complete answer for the question when covering surfaces are orientable.

Kwak et al. [7] introduced a polynomialR(S,B,A)(x), called abranched covering
distribution polynomial, for a surfaceS defined as follows: for a finite groupA,

R(S,B,A)(x) =
∞∑

i=−∞
ai (S, B,A)xi ,

whereai (S, B,A) denotes the number of equivalence classes of branchedA-coverings
p : Si → S with branch setB. This polynomial can have at most finitely many nonzero
terms by the Riemann–Hurwitz equation:χ(S̃) = |A|χ(S)−∑x∈B defp(x) for a branched
coveringp : S̃ → S, wheredefp(x) = |A| − |p−1(x)| is called thedeficiencyof x.

The polynomialR(S,B,A)(x) has been computed in [7, 8, 11] whenA is the cyclic group
Zp, thedihedral groupDp of order 2p, or thedirect sum ofm copies of the cyclic group
Zp, herep is prime, respectively. Recently, Kwak et al. [9] computed the total number of
equivalence classes of branched orientableA-coverings of a nonorientable surface for any
finite Abelian groupA.

For a finite group A, Jones [6] enumerated the equivalence classes of the branched
A-coverings of any given surface according to the degrees of branch points. This enables us
to determine the distribution of the branchedA-coverings of an orientable surface for any
finite groupA. But, this does not work when the base is nonorientable because a covering
surface of a nonorientable surface can be orientable. As a main result of this paper, we
compute the branched covering distribution polynomialR(S,B,A)(x) for any nonorientable
surfaceS, any branch setB and any finite groupA.

2. A classification of regular branched coverings

Let Bm denote the bouquet ofm loops, say�1, . . . , �m. Everyloop of a graphBm gives
rise to a pair of oppositely directed loops. A surfaceSk can be represented by a 4k-gon with
identification data

∏k
s=1 asbsa−1

s b−1
s on its boundary ifk > 0;−2k-gon withidentification
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data
∏−k

s=1 asas on its boundary ifk < 0; and bigonwith identification dataaa−1 on its
boundary ifk = 0.

Let B be a finite subset ofSk. For our purpose, we assume that|B| > 0 whenk = 0.
For apoint ∗ ∈ Sk − B, the fundamental groupπ1(Sk − B, ∗) of the punctured surface
Sk − B with basepoint∗ can be presented as follows:〈

a1, . . . ,ak,b1, . . . ,bk, c1, . . . , c|B|;
k∏

s=1

asbsa
−1
s b−1

s

|B|∏
t=1

ct = 1

〉
if k > 0;

〈
a1, . . . ,a−k, c1, . . . , c|B|;

−k∏
s=1

asas

|B|∏
t=1

ct = 1

〉
if k < 0;

〈
c1, . . . , c|B|;

|B|∏
t=1

ct = 1

〉
if k = 0.

We call it the standard presentationof the fundamental groupπ1(Sk − B, ∗). For each
t = 1,2, . . . , |B|, we take a simple closed curve based at∗ lying in the face determined by
the polygonal representation of the surfaceSk so that it represents the homeotopy class of
the generatorct . Then, it induces a 2-cell embedding of a bouquetBm of m circles into the
surfaceSk such that the embedding has|B|1-sided regions and one(|B|+4k)-sided region
if k > 0; |B|1-sided regions and one(|B| − 2k)-sided region ifk < 0; and|B|1-sided
regions and one|B|-sided region ifk = 0, wherem is the number of the generators of the
corresponding fundamental group, that is,m = 2k + |B| if k ≥ 0 andm = −k + |B| if
k < 0. We call this embeddingı : Bm → Sk thestandard embedding, anddenote it by
Bm ↪→ Sk − B.

Let us denote the set of directed loops ofBm by D(Bm) and identify the
loops �1, . . . , �m considering as positively directed loops with the generators of the
corresponding fundamental groupπ1(Sk − B, ∗). Let C1(Bm;A) denote the set of all
functionsϕ : D(Bm) → A such that ϕ(e−1) = ϕ(e)−1 for eache ∈ Bm, where
e−1 denotes the reverse loop to a directed loope. We call an element ofC1(Bm;A)
an A-voltage assignment ofBm. In fact, such anA-voltage assignment ofBm can be
identified with an orderedm-tuple of elements inA, so that one can assumeC1(Bm;A) =
A × · · · × A, (m-times). LetC1(Bm ↪→ Sk − B;A) denote the set ofA-voltage
assignmentsϕ of Bm satisfying the following two conditions:

(C1) ϕ(�1), . . . , ϕ(�m) generateA, and
(C2) if k ≥ 0, thenϕ(�i ) �= idA for eachi = 2k + 1, . . . ,2k + |B| = m and

k∏
i=1

ϕ(�i )ϕ(�k+i )ϕ(�i )
−1ϕ(�k+i )

−1
|B|∏
i=1

ϕ(�2k+i ) = 1,

if k < 0, thenϕ(�i ) �= idA for eachi = −k + 1, . . . ,−k + |B| = m and

−k∏
i=1

ϕ(�i )ϕ(�i )

|B|∏
i=1

ϕ(�−k+i ) = 1.



440 I.P. Goulden et al. / European Journal of Combinatorics 25 (2004) 437–455

By using a method to construct surface branched coverings from a voltage assignment
given in [1], Kwak et al. [7] obtained the following variant of the Hurwitz existence and
classification of branched surface coverings.

Theorem 1 ([7] Existence and Classification of Regular Branched Coverings). (a)For
a finite groupA, every connected branchedA-covering ofSk with branch set B
can be derived from a voltage assignmentϕ in C1(Bm ↪→ Sk − B;A). (Such a
covering is denoted bỹpϕ : S

ϕ
k → Sk.)

(b) For any two voltage assignmentsϕ andψ in C1(Bm ↪→ Sk − B;A), thebranched
A-coveringsp̃ϕ : S

ϕ
k → Sk and p̃ψ : S

ψ
k → Sk are equivalent if and only if

there exists a group automorphismσ : A → A suchthatψ(�i ) = σ(ϕ(�i )) for all
�i ∈ D(Bm), where m= 2k + |B| if k ≥ 0 and m= −k + |B| if k < 0.

Remark. (1) Thecondition (C1) guarantees that the covering surfaceS
ϕ
k is connected,

and the condition (C2) does that the setB is nothing but the branch set of the covering
p̃ϕ : S

ϕ
k → Sk.

(2) Let Aut(A) denote the automorphism group of the groupA. Then, from
Theorem 1(b), one can define naturally an Aut(A)-action on the setC1(Bm ↪→
Sk − B;A). It is free (no fixed point) because of the condition (C1).

(3) Let Epi(π1(Sk − B, ∗),A) denote the set of all epimorphisms fromπ1(Sk − B, ∗)
to A. Then the setC1(Bm ↪→ Sk − B;A) can be identified with the subset of
Epi(π1(Sk − B, ∗),A) consisting of epimorphismsϕ satisfying the condition that
ϕ(�i ) �= idA as in (C2).

Notice that every branched covering surfaceof an orientable surface is orientable.
But a branched covering surface of a nonorientable surface can be orientable or
nonorientable. So, to compute the branched covering distribution polynomialR(Sk,B,A)(x)
for a nonorientable surfaceSk, it is necessary to compute the number of equivalence classes
of its branched orientable coverings.

For k < 0, letϕ be a voltage assignment inC1(B−k+|B| ↪→ Sk − B;A). It is known
that the derived branched covering surfaceS

ϕ
k is orientable if and only if there exists a

subgroupS of index 2 inA suchthatϕ(�i ) ∈ A − S for i = 1, . . . ,−k andϕ(�i ) ∈ S
for i = −k + 1, . . . ,−k + |B| (see Theorem 4.1.5 in [2]). From this fact andTheorem 1,
one can see that ifϕ andψ are two voltage assignments inC1(B−k+|B| ↪→ Sk − B;A)
which induce orientable covering surfacesand their corresponding subgroups of index 2
areS1 andS2 respectively, then two coverings̃pϕ : S

ϕ
k → Sk and p̃ψ : S

ψ
k → Sk are

equivalent if and only if there exists an automorphismσ onA suchthatσ(S1) = S2 and
ψ(�i ) = σ(ϕ(�i )) for i = 1, . . . ,−k + |B|.

Let A be a finite group and letS be a subgroup of index 2 inA. For a finite subsetB
of a nonorientable surfaceSk, let C1(B−k+|B| ↪→ Sk − B; (A,S)) denote the subset of
C1(B−k+|B| ↪→ Sk − B;A) consisting of voltage assignmentsϕ satisfying the condition:

(C3) ϕ(�1), . . . , ϕ(�−k) belongs toA − S, while ϕ(�−k+1), . . . , ϕ(�−k+|B|) belongs toS
but not idA.

Then, one can say

C1(B−k+|B| ↪→ Sk − B; (A,S)) = {ϕ ∈ Epi(π1(Sk − B, ∗),A) : ϕ satisfies (C3)},
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which contains all representatives ofbranched orientableA-coverings of a nonorientable
surfaceSk whose corresponding subgroup of index 2 isS. We summarize our discussions
as follows.

Theorem 2. LetA be a finite group and let k< 0 so that the surfaceSk is nonorientable.
Then wehave the following.

(a) Every connected branched orientableA-covering ofSk with branch set B can
be derived from a voltage assignment in C1(B−k+|B| ↪→ Sk − B; (A,S)) for a
subgroupS of index 2 inA.

(b) For any two voltage assignmentsϕ ∈ C1(B−k+|B| ↪→ Sk − B; (A,S1)) and
ψ ∈ C1(B−k+|B| ↪→ Sk − B; (A,S2)), thebranchedA-coveringsp̃ϕ : S

ϕ
k → Sk

and p̃ψ : S
ψ
k → Sk are equivalent if and only if there exists an automorphismσ on

A suchthatσ(S1) = S2 andψ(�i ) = σ(ϕ(�i )) for all �i ∈ D(B−k+|B|).

Clearly, if the groupA does not have a subgroup of index 2, then everyA-covering
of a nonorientable surfaceSk is nonorientable. We say that two subgroupsS1 andS2 of
a groupA aresimilar if there exists an automorphismσ on A suchthat σ(S1) = S2.
Now, fromTheorem 2, one can see that∪SC1(B−k+|B| ↪→ Sk − B; (A,S)) contains all
representatives of branched orientableA-coverings of the nonorientable surfaceSk whose
branch sets areB, whereS runs over all representatives of similarity classes of subgroups
of index 2 inA.

3. Polynomial R(Sk,B,A )(x)

From now on, we only consider nonorientable surfaceSk, that is,k < 0. Let A be
a finite group and let|B| = b for convenience. For a sequence of positive integers
α1, α2, . . . , αb greater than 1, letEk(A; α1, α2, . . . , αb) denote the number ofm-tuples
(x1, . . . , x−k, y1, . . . , yb) in C1(Bm ↪→ Sk − B;A) such that the ordero(yi ) of yi in A is
αi for i = 1, . . . ,b. That is,

Ek(A; α1, α2, . . . , αb)

= |{ϕ ∈ Epi(π1(Sk − B, ∗),A) : o(ϕ(ci )) = αi for i = 1, . . . ,b}|.
Let Ek((A,S); α1, α2, . . . , αb) denote the number of(−k + b)-tuples (x1, . . . , x−k,

y1, . . . , yb) in C1(B−k+b ↪→ Sk − B; (A,S)) such that the ordero(yi ) of yi is αi for
i = 1, . . . ,b. That is,

Ek((A,S); α1, α2, . . . , αb) = |{ϕ ∈ Epi(π1(Sk − B, ∗),A) : o(ϕ(ci ))

= αi for i = 1, . . . ,b, andϕ satisfies (C3)}|.
Clearly, Ek(A; α1, α2, . . . , αb) or Ek((A,S); α1, α2, . . . , αb) is zero if there exists anαi

which is not a divisor of the order ofA. Notice that the Euler characteristic of the surface
S
ϕ
k is

χ(S
ϕ
k ) = |A|

(
χ(Sk)− b +

b∑
i=1

1

o(ϕ(ci ))

)
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for a voltage assignmentϕ in C1(Bm ↪→ Sk − B;A), because the deficiency of a branch
point is|A|(1− 1

αi
) for i = 1, . . . ,b. Let Aut(A,S) be the set of all automorphisms onA

which fixes the subgroupS, i.e.σ(S) = S. Now, the following comes fromTheorems 1
and2.

Theorem 3. LetA be a finite group and let B be a b-subset of a nonorientable surfaceSk.
Then

ai (Sk, B,A)

=




∑
S

1
|Aut(A,S)|

∑
f ′(α)=2(1−i )

Ek((A,S); α1, α2, . . . , αb) if i ≥ 0,

0 if k < i < 0,

1
|Aut(A)|

∑
f ′(α)=2+i

Ek(A; α1, α2, . . . , αb)

−
∑
S

1
|Aut(A,S)|

∑
f ′(α)=2+i

Ek((A,S); α1, α2, . . . , αb) if i ≤ k,

whereS ranges over the representatives of similarity classes of subgroups of index2 in A
and f′(α) = |A|

(
2 + k − b +∑b

j =1
1
α j

)
.

Now, we compute thenumbersEk(A; α1, α2, . . . , αb) andEk((A,S); α1, α2, . . . , αb).
Let Hk(A; α1, α2, . . . , αb) denote the number ofm-tuples (x1, . . . , x−k, y1, . . . , yb) in
C1(Bm;A) which satisfy the condition (C2) and the ordero(yi ) of yi is αi for i =
1, . . . ,b. Then Hk(A; α1, α2, . . . , αb) is equal to the number of homeomorphisms from
π1(Sk − B) toA such that the image of the generator corresponding to thei th branch point
is of orderαi for i = 1, . . . ,b. That is,

Hk(A; α1, α2, . . . , αb)

= |{ϕ ∈ Hom(π1(Sk − B, ∗),A) : o(ϕ(ci )) = αi for i = 1, . . . ,b}|.
It comes from Möbius inversion that

Ek(A; α1, α2, . . . , αb) =
∑
K≤A

µ(K ) Hk(K ; α1, α2, . . . , αb),

whereµ is theMöbius functionfor a groupA, which assigns an integerµ(K ) to each
subgroupK of A by the recursive formula∑

H≥K

µ(H ) = δK ,A =
{

1 if K = A,
0 if K < A.

Similarly, let Hk((A,S); α1, α2, . . . , αb) denote the number of homeomorphisms from
π1(Sk − B, ∗) to A such that the image of the generator corresponding to thei th branch
point is of orderαi for i = 1, . . . ,b, and the image of a generator lies inS if and only if
the generator corresponds to a branch point. That is,

Hk((A,S); α1, α2, . . . , αb) = |{ϕ ∈ Hom(π1(Sk − B, ∗),A) : o(ϕ(ci )) = αi for i

= 1, . . . ,b, andϕ satisfies (C3)}|.
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Let S be a subgroup of index 2 inA. A subgroupK of A is said to be asubgroup of the
pair (A,S) if K ∩ S �= K , denoted byK ≤ (A,S). Then, an analogous argument gives
that

Ek((A,S); α1, α2, . . . , αb) =
∑

K≤(A,S)
µ(K )Hk((K , K ∩ S); α1, α2, . . . , αb).

For computational convenience, we describeTheorem 3in another way. Let

Hk(r,b,A) =
∑

g(α)=r

Hk(A; α1, α2, . . . , αb);

Hk(r,b, (A,S)) =
∑

g(α)=r

Hk((A,S); α1, α2, . . . , αb),

whereg(α) = ∑b
j =1

|A|
α j

. It implies that

∑
g(α)=r

Ek(A; α1, α2, . . . , αb) =
∑

K≤A, |A|
|K |
∣∣∣r
µ(K )Hk

( |K |
|A| r,b, K

)
;

∑
g(α)=r

Ek((A,S); α1, α2, . . . , αb)

=
∑

K≤(A,S), |A|
|K |
∣∣∣r
µ(K )Hk

( |K |
|A| r,b, (K , K ∩ S)

)
,

which are the numbers of epimorphisms with the total deficiency
∑

b∈B defp(b) =
b |A| − g(α) in the respective cases. In the following result, we can rephraseTheorem 3.

Theorem 4. LetA be a finite group and let B be a b-subset of a nonorientable surfaceSk.
Then

ai (Sk, B,A)

=




∑
S

1
|Aut(A,S)|

∑
K≤(A,S), |A|

|K |
∣∣∣γ ′(i )

µ(K ) Hk

( |K |
|A| γ

′(i ), b, (K , K ∩ S)
)

if i ≥ 0,

0 if k < i < 0,

1
|Aut(A)|

∑
K≤A, |A|

|K |
∣∣∣γ ′′(i )

µ(K ) Hk

( |K |
|A| γ

′′(i ), b, K
)

−
∑
S

1
|Aut(A,S)|

∑
K≤(A,S), |A|

|K |
∣∣∣γ ′′(i )

µ(K ) Hk

( |K |
|A| γ

′′(i ), b, (K , K ∩ S)
)

if i ≤ k,

whereγ ′(i ) = |A|(b−k−2)−2(i −1) andγ ′′(i ) = |A|(b−k−2)+ i +2, andS ranges
over the representatives of similarity classes of subgroups of index 2 inA.

To complete the computation ofai (Sk, B,A), one should determine the numbers
Hk(A; α1, α2, . . . , αb) and Hk((A,S); α1, α2, . . . , αb) for any finite groupA and its
subgroupS of index 2. This will be carried out in the following section.
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4. Enumeration of homeomorphisms

By using the computational method given in [5], Jones [6] expressed the number
Hk(A; α1, α2, . . . , αb) in terms of irreducible characters ofA and computed it explicitly
in some special cases. Throughout this section, let Irr(A) denote the set of all irreducible
complex characters of the groupA, and forξ ∈ Irr(A), let ξ〈αi 〉 = ∑

g∈A, o(g)=αi
ξ(g).

Theorem 5 ([6]). LetA be a finite group and let k< 0. Then

Hk(A; α1, α2, . . . , αb) = |A|−k−1
∑

ξ∈ Irr(A)
c−k
ξ ξ(1)2+k−bξ〈α1〉 · · · ξ〈αb〉,

where cξ denotes the Frobenius–Schur indicator ofξ defined by cξ = 1
|A|

∑
g∈A ξ(g2),

and it is equal to


1 if ρ is real,
−1 if ξ is real butρ is not real,
0 if ξ is not real,

andρ is the representation corresponding toξ .

Now, we aim to determineHk((A,S); α1, α2, . . . , αb) for k < 0 in terms ofirreducible
characters ofA andS. Let C1 = {1}, . . . ,Ck be the conjugacy classes of the groupA.
Then, for each characterξ of A, ξ(g) is constant for allg ∈ Ci , and wecall this common
valueξ(i ) for eachi = 1,2, . . . , k. In thegroup algebraC[A] over the complex fieldC,
let Ci = ∑

x∈Ci
x for eachi = 1,2, . . . , k, and for each irreducible characterξ ∈ Irr(A),

we definee(ξ) = ξ(1)
|A|

∑k
i=1 ξ(i )Ci . Then, one can show that

Ci = |Ci |
∑

ξ∈ Irr(A)

ξ(i )

ξ(1)
e(ξ),

and e(ξ)e(η) = e(ξ)δξ,η, forming mutually orthogonal central idempotents in the group
algebraC[A] (see e.g. [10], p. 147). These results allow us to describeTheorem 5in a
compact manner. Also, from these results, we have

Ci1 · · ·Cim = |Ci1 | · · · |Cim |
∑

ξ∈ Irr(A)

ξ(i1) · · · ξ(im)
ξ(1)m

e(ξ)

= |Ci1 | · · · |Cim |
|A|

k∑
i=1


 ∑
ξ∈ Irr(A)

ξ(i1) · · · ξ(im)ξ(i )
ξ(1)m−1


 Ci .

Now, the following lemma comes from the fact that the set{g ∈ A : o(g) = αi } is aunion
of conjugacy classes ofA.

Lemma 1. LetA be a finite group and letαi be natural numbers, i= 1, . . . ,b. Then, we
have the following equation in the group algebraC[A]:



I.P. Goulden et al. / European Journal of Combinatorics 25 (2004) 437–455 445


 ∑

g∈A,o(g)=α1

g


 · · ·


 ∑

g∈A,o(g)=αb

g


 =

∑
ξ ∈ Irr(A)

ξ〈α1〉 · · · ξ〈αb〉
ξ(1)b

e(ξ)

= 1

|A|
k∑

i=1

(
ξ〈α1〉 · · · ξ〈αb〉ξ(i )

ξ(1)b−1

)
Ci .

Let S be a subgroup of index 2 inA and fix an elementt ∈ A − S. Then for each
ξ ∈ Irr(S) the characterξt defined byξt (s) = ξ(tst−1)(s ∈ S) is also an irreducible
character ofS. An irreducible characterξ of S is said to beof type 1 (orξ ∈ 1(S))
if ξ andξt are distinct, and of type 2 (orξ ∈ 2(S)) otherwise. It is known [4, 10] that
ξ ∈ 1(S) if and only if there exists an irreducible characterξ̂ of A suchthatξ̂S = ξ + ξt ,
and thatξ ∈ 2(S) if and only if there exists an irreducible characterξ̂ of A suchthat
ξ̂S = ξ , whereξ̂S is the restriction of̂ξ to S.

Let C1 = {1}, . . . ,Ch be the conjugacy classes in the subgroupS. Notice that the
union of two distinct conjugacy classes inS can be a conjugacy class inA. Hence∑

g∈A g2 = ∑h
i=1 Ni Ci is an element of thegroup algebra ofS, becauseg2 ∈ S for

eachg ∈ A. If ξ ∈ 1(S), then

c
ξ̂
|A| =

∑
g∈A

ξ̂ (g2) =
∑
g∈A

ξ(g2)+
∑
g∈A

ξt (g
2) = 2

∑
g∈A

ξ(g2),

and hence

|S| c
ξ̂

=
∑
g∈A

ξ(g2) =
h∑

i=1

Ni |Ci | ξ(i ).

Multiplying this equation by 1
|S|ξ(a) and summing overξ ∈ 1(S), one can obtain

h∑
i=1

Ni
|Ci |
|S|

∑
ξ∈ 1(S)

ξ (a) ξ(i ) =
∑

ξ∈ 1(S)
ξ (a) c

ξ̂
.

If ξ ∈ 2(S), then, by a similar computation, we have

2|S| c
ξ̂

= |A| c
ξ̂

=
∑
g∈A

ξ(g2) =
h∑

i=1

Ni |Ci | ξ(i ),

and
h∑

i=1

Ni
|Ci |
|S|

∑
ξ∈ 2(S)

ξ (a) ξ(i ) = 2
∑

ξ∈ 2(S)
ξ(a) c

ξ̂
.

Hence,

h∑
i=1

Ni
|Ci |
|S|

∑
ξ∈ Irr(S)

ξ (a) ξ(i ) =
∑

ξ∈ 1(S)
ξ(a) c

ξ̂
+ 2

∑
ξ∈ 2(S)

ξ (a) c
ξ̂
.
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Since |Ci |
|S|

∑
ξ∈ Irr(S) ξ(a) ξ(i ) = δa,i , we have

Na =
∑

ξ∈ 1(S)
ξ (a) c

ξ̂
+ 2

∑
ξ∈ 2(S)

ξ (a) c
ξ̂

for eacha = 1, . . . ,h, andhence

∑
g∈A

g2 =
h∑

i=1


 ∑
ξ∈ 1(S)

ξ (i ) c
ξ̂
+ 2

∑
ξ∈ 2(S)

ξ(i ) c
ξ̂


 Ci .

SinceCi = |Ci |∑ξ∈ Irr(A)
ξ(i )
ξ(1) e(ξ) and

∑h
i=1 |Ci | ξ(i ) η(i ) = |S| δξ, η, we have

∑
g∈A

g2 = |S|

 ∑
ξ∈ 1(S)

c
ξ̂

ξ(1)
e(ξ) +

∑
ξ∈ 2(S)

2
c
ξ̂

ξ(1)
e(ξ)


 .

By a similar computation, we can see that∑
g∈S

g2 = |S|
∑

ξ∈ Irr(S)

cξ
ξ(1)

e(ξ)

and ∑
g∈A−S

g2

=
∑
g∈A

g2 −
∑
g∈S

g2 = |S|

 ∑
ξ∈ 1(S)

c
ξ̂

− cξ

ξ(1)
e(ξ) +

∑
ξ∈ 2(S)

2c
ξ̂

− cξ

ξ(1)
e(ξ)


 .

We summarize our discussions as follows.

Lemma 2. LetA be a finite group and letS be a subgroup of index 2 inA. Then

(a)
∑

g∈S g2 = |S|∑ξ∈ Irr(S)
cξ
ξ(1) e(ξ) = ∑h

i=1

(∑
ξ∈ Irr(S) cξ ξ (i )

)
Ci .

(b)
∑

g∈A−S g2 = |S|∑ξ∈ Irr(S)
dξ
ξ(1) e(ξ) = ∑h

i=1

(∑
ξ∈ Irr(S) dξ ξ(i )

)
Ci ,

where dξ = c
ξ̂

− cξ if ξ ∈ 1(S) and dξ = 2c
ξ̂

− cξ if ξ ∈ 2(S).
Now, we are ready to compute the numberHk((A,S); α1, α2, . . . , αb). First, observe that
Hk((A,S); α1, α2, . . . , αb) is equal to the coefficient ofC1 = 1 in the element

 ∑
g∈A−S

g2




−k
 ∑

g∈S,o(g)=α1

g


 · · ·


 ∑

g∈S, o(g)=αb

g




of the group algebraC[A]. By usingLemmas 1and2, and the fact thate(ξ)e(η) = e(ξ)δξ,η,
we have
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 ∑

g∈A−S
g2




−k
 ∑

g∈S,o(g)=α1

g


 · · ·


 ∑

g∈S, o(g)=αb

g




= |S|−k
∑

ξ∈ Irr(S)

(
dξ
ξ(1)

)−k
ξ〈α1〉 · · · ξ〈αb〉

ξ(1)b
e(ξ)

= |S|−k−1
h∑

i=1


 ∑
ξ∈ Irr(S)

d−k
ξ

ξ(1)−k+b−1 ξ〈α1〉 · · · ξ〈αb〉ξ(i )

 Ci ,

where the second equality comes from the definition ofe(ξ). Now, by taking the coefficient
of C1 = 1, we have the following theorem.

Theorem 6. LetA be a finite group with a subgroupS of index 2 and let k< 0. Then

Hk((A,S); α1, α2, . . . , αb) = |S|−k−1
∑

ξ∈ Irr(S)

d−k
ξ

ξ(1)−k+b−2
ξ〈α1〉 · · · ξ〈αb〉,

where dξ = c
ξ̂

− cξ if ξ ∈ 1(S) and dξ = 2c
ξ̂

− cξ if ξ ∈ 2(S).
Notice that ifA = S × Z2, then everyirreducible character ofS is of type 2 andc

ξ̂
= cξ .

Hence,dξ = 2c
ξ̂

− cξ = cξ for each irreducible characterξ of S.

Corollary 1. LetS be any finite group and let k< 0. Then

Hk((S × Z2,S); α1, α2, . . . , αb) = Hk(S; α1, α2, . . . , αb).

Notice that

∑
αi ||A|,αi �=1

ξ〈α1〉 · · · ξ〈αb〉z
|A|
α1

+···+ |A|
αb =


 ∑
α‖A|,α �=1

ξ〈α〉z
|A|
α




b

for any fixed irreducible characterξ of a groupA.
For convenience, let[zr ] f (z) be the coefficient ofzr in the polynomial f (z). Now, the

following comes fromTheorems 5and6.

Corollary 2. LetA be a finite group and let k< 0. Then we have

Hk(r,b,A) = [zr ]|A|−k−1
∑

ξ∈ Irr(A)
c−k
ξ ξ(1)2+k−b


 ∑
α‖A|,α �=1

ξ〈α〉z
|A|
α




b

and for any subgroupS of index2 in A,

Hk(r,b, (A,S)) = [zr ] |S|−k−1
∑

ξ∈ Irr(S)
d−k
ξ ξ(1)2+k−b


 ∑
α‖S|,α �=1

ξ〈α〉z
|A|
α




b

,

where dξ = c
ξ̂

− cξ if ξ ∈ 1(S) and dξ = 2c
ξ̂

− cξ if ξ ∈ 2(S).
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As the last part of this section, we compute the numberHk((A,S); α1, α2, . . . , αb) for
an finite Abelian groupA. In this case, it is possible to find a formula for the number in
terms of only ξ ∈ Irr(S) andcξ , butnot involving c

ξ̂
. For a fixed elementg in A − S, let

CS (g, α1, α2, . . . , αb) = {(x, y1, . . . , yb) ∈ Sb+1 : x2y1 . . . yb = g2,o(yi ) = αi ,

αi �= 1, i = 1, . . . ,b}.
For any irreducible characterξ of S, it comes from the definition ofcξ that cξ �= 0
if and only if ξ takes real values. Then we can determine the cardinality of the set
CS (g, α1, α2, . . . , αb) as follows:

Lemma 3. LetA be a finite group and letS be a subgroup of index 2 inA. Then, for a
fixed element g inA − S, wehave

|CS (g, α1, α2, . . . , αb)| =
∑

ξ∈ Irr(S)
cξ ξ(1)1−bξ〈α1〉 . . . ξ〈αb〉ξ(g2).

Let A be a finite Abelian group and letS be a subgroup of index 2 inA. Then the
numberHk((A,S); α1, α2, . . . , αb) is equal to the cardinality of the set

X = {(x1, . . . , x−k, y1, . . . , yb) ∈ (A − S)−k

×Sb : x2
1 . . . x

2−ky1 . . . yb = 1,o(yi ) = αi }.
From this, we can see that ifk is even, then thenumberHk((A,S); α1, α2, . . . , αb) is equal
to the cardinality of the set

Y = {(x1, . . . , x−k−1, y, y1, . . . , yb) ∈ (A − S)−k−1

×Sb+1 : y2y1 . . . yb = 1,o(yi ) = αi },
and that ifk is odd, thenHk((A,S); α1, α2, . . . , αb) is equal to the cardinality of the set

Z = {(x1, . . . , x−k−1, y, y1, . . . , yb) ∈ (A − S)−k−1

×Sb+1 : y2y1 . . . yb = g2,o(yi ) = αi }
for a fixed elementg in A − S. The correspondence betweenX and Y which
sends (x1, . . . , x−k, y1, . . . , yb) to (x1, . . . , x−k−1, x1 . . . x−k, y1, . . . , yb) is a bijection
and the correspondence betweenX and Z which sends (x1, . . . , x−k, y1, . . . , yb) to
(x1, . . . , x−k−1, gx1 . . . x−k, y1, . . . , yb), g ∈ A − S, is a bijection. Hence,

Hk((A,S); α1, α2, . . . , αb) =
{|S|−k−1|CS (g, α1, α2, . . . , αb)| if k is odd,
|S|−k−1H1(S; α1, α2, . . . , αb) if k is even,

whereg is a fixed element inA − S. Now, the following comes fromTheorem 5and
Lemma 3.

Theorem 7. Let k< 0 and letA be a finite Abelian group with a subgroupS of index 2.
Then
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Hk((A,S); α1, α2, . . . , αb)

=




|S|−k−1
∑

ξ∈ Irr(S)
cξ ξ〈α1〉 . . . ξ〈αb〉ξ(g2) if k isodd,

|S|−k−1
∑

ξ∈ Irr(S)
cξ ξ〈α1〉 . . . ξ〈αb〉 if k is even,

where g isa fixed element inA − S.

Corollary 3. LetA be a finite Abelian group. Then we have

Hk(r,b,A) = [zr ]




|A|2k−1
∑

ξ∈ Irr(A)


 ∑
α‖A|,α �=1

ξ〈α〉z
|A|
α




b

if k ≥ 0,

|A|−k−1
∑

ξ∈ Irr(A)
c−k
ξ


 ∑
α‖A|,α �=1

ξ〈α〉z
|A|
α




b

if k < 0,

and for any subgroupS of index 2 inA,

Hk(r,b, (A,S))

= [zr ]




|S|−k−1
∑

ξ∈ Irr(S)
cξ ξ(g

2)


 ∑
α‖S|,α �=1

ξ〈α〉z
|A|
α




b

if k isodd,

|S|−k−1
∑

ξ∈ Irr(S)
cξ


 ∑
α‖S|,α �=1

ξ〈α〉z
|A|
α




b

if k is even,

where g isany fixed element inA − S.

5. Applications

In this section, as a demonstration of our computational formulas, we compute explicit
formulas for the distribution polynomial when the covering transformation groupA is the
cyclic groupZn of ordern or the dihedral groupDn of order 2n.

Notice that there aren irreducible charactersξ of Zn which areobtained by mapping
a generator ofZn to annth root of unity, i.e. each irreducible character ofZn is a group
homeomorphism fromZn to the unit circle in the complex plane. Ifξ maps a generator
α of Zn to theath power of the primitiventh root of unity, thenξ〈α〉 is the sum of the
ath power of the primitiveαth roots of unity. This is a Ramanujan sum, so it comes from
Theorem 272 in [3] that

ξ〈α〉 = µ

(
α

gcd(a, α)

)
φ(α)

φ
(

α
gcd(a,α)

) ,
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whereµ is the Möbius function andφ is Euler’s function. From this, one can obtain

∑
ξ∈ Irr(Zn)


 ∑
α|n,α �=1

ξ〈α〉zn
α




b

=
n∑

a=1


 ∑
α|n,α �=1

µ

(
α

gcd(a, α)

)
φ(α)

φ
(

α
gcd(a,α)

)z
n
α




b

=
∑
a|n
φ
(n

a

) ∑
α|n,α �=1

µ

(
α

gcd(a, α)

)
φ(α)

φ
(

α
gcd(a,α)

)z
n
α




b

.

Let ξ be an irreducible character ofZn. Thencξ �= 0 if andonly if ξ sends a generator of
Zn to 1 or to−1. So, if n is odd, thenξ is the principal character, and ifn is even,ξ is
either the principal character or the alternating character. In this case,cξ = 1. Moreover,
Zn has a normal subgroup of index 2 if and only ifn is even. ByCorollary 3 and this fact,
for anyk < 0, we have

Hk(r,b,Zn)

= [zr ]n−k−1





 ∑
α|n,α �=1

φ(α)z
n
α




b

if n is odd,


 ∑
α|n,α �=1

φ(α)z
n
α




b

+


 ∑
α| n

2 ,α �=1

φ(α)z
n
α −

∑
α

n
2 ,α|n

φ(α)z
n
α




b

if n is even,

and

Hk(r,b, (Zn,Zn
2
)) = [zr ]

(n

2

)−k−1

×




0 if n is odd,
 ∑
α| n

2 ,α �=1

φ(α)z
n
α




b

if n ≡ 2 (mod 4),


 ∑
α| n

2 ,α �=1

φ(α)z
n
α




b

+ (−1)−k


 ∑
α| n

4 ,α �=1

φ(α)z
n
α −

∑
α

n
4 ,α| n

2

φ(α)z
n
α




b

if n ≡ 0 (mod 4).

Notice that a subgroup of a cyclic groupZn is also cyclic, sayZm with m | n and that
µ(Zm) = µ

( n
m

)
, and for a subgroupK of Zn, K ≤ (Zn,Zn

2
) if andonly if K is Zm with

n
m is odd. Moreover,|Aut(Zn)| = φ(n) = |Aut(Zn,Zn

2
)| for any n. Now, by applying

Theorem 4, wecan find an explicit form of the polynomialR(Sk,B,Zn)(x) for anySk, B and
n (seeTable 1). (All computations were carried out using Maple.) Whenp is prime the
polynomialR(Sk,B,Zp)(x) can be found in [7].



I.P. Goulden et al. / European Journal of Combinatorics 25 (2004) 437–455 451

Table 1
ThepolynomialR(S−1,B,Zn)(x) for smalln and smallb

n b = 2 b = 3 b = 4

4 4x−4 x2 + 12x−6 24x−8 + 16x−10

6 2x2 + 4x−4 + 4x−6 4x4 + 6x−6 + 24x−8

+ 24x−10
8 x6 + 32x−10 + 120x−12

+ 128x−14 + 16x−16

7 6x−7 36x−13 216x−19

8 2x2 + 8x−8 3x4 + 4x6 + 24x−12

+ 48x−14
4 x6 +16x8 +48x−16+192x−18

+ 192x−20 + 128x−22

9 4x−7 + 6x−9 12x−13 + 36x−15

+ 36x−17
32x−19 + 144x−21 + 288x−23

+ 216x−25

10 4x4 + 4x−6 + 8x−10 16x8+6x−10+48x−14

+ 96x−18
64x12 + 8x−16 + 48x−18

+ 48x−20 + 384x−22 + 128x−24

+ 768x−26 + 128x−28

12 2x2 + 4x4 + 8x−10 + 8 x−12 9x6 + 18x8 + 4x10

+ 36x−16 + 84x−18

+ 96x−20 + 48x−22

4 x8 + 40x10 + 80x12 + 32x14

+ 96x−22 + 336x−24 + 672x−26

+880x−28+768x−30+448x−32

+ 128x−34

To compute the covering distribution polynomialR(Sk,B,Dn)(x) for a dihedral groupDn,
let Dn = 〈ρ, τ : ρn = τ2 = 1, τρτ−1 = ρ−1〉 and letζ = exp(2π i

n ), a primitive nth root
of unity. If n is even, then there aren2 +3 irreducible characters ofDn (see [10, pp. 65–66]):


ξ(r,s)(ρuτ v) = (−1)ur+vs (r, s = 0,1): four linear characters,
ξ (a)(ρu) = ζ au + ζ au (1 ≤ a ≤ n

2 − 1): n
2 − 1 characters of dimension 2,

ξ (t)(ρuτ ) = 0.

If n is odd, then there aren−1
2 + 2 irreducible characters ofDn:


ξ(r )(ρuτ v) = (−1)vr (r = 0,1): two linear characters,
ξ (a)(ρu) = ζ au + ζ au (1 ≤ a ≤ n−1

2 ): n−1
2 characters of dimension 2.

ξ (t)(ρuτ ) = 0.

Notice thatcξ = 1 for each irreducible characterξ of Dn. From this andCorollary 2,
we can see that for anyk < 0 thenumberHk(r,b,Dn) is equal to (2n)−k−1 times the
coefficient ofzr in thepolynomial
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 ∑
α|n,α �=1

φ(α)z
2n
α + nzn




b

+

 ∑
α|n,α �=1

φ(α)z
2n
α − nzn




b

+ (1 + (−1)n)


 ∑
α| n

2 ,α �=1

φ(α)z
2n
α −

∑
α|n,α n

2

φ(α)z
2n
α




b

+ 22+k
� n−1

2 �∑
a=1


 ∑
α|n,α �=1

µ

(
α

gcd(a, α)

)
φ(α)

φ
(

α
gcd(a,α)

)z
2n
α




b

.

Notice that ifn is odd, then the cyclic subgroupZn of Dn is the unique subgroup of
index 2. Ifn is even, then there are two equivalence classes of subgroups of index 2; the
subgroupZn itself and the other consisting of two subgroups that are isomorphic toDn

2
,

sayS1 andS2. Weobserve that an irreducible characterξ of Zn is of type 2 if and only if
ξ is the principal character or the alternating character. Letξ be an irreducible character of
Dn

2
for evenn. If n ≡ 2 (mod 4), thenξ is of type 2. If n ≡ 0 (mod 4), ξ is of type 2 if

and only ifξ �= ξ(1,0) andξ �= ξ(1,1). Now, thefollowing comes from the definition ofdξ .
For an irreducible characterξ of Zn or Dn

2
,

dξ =
{

0 if (ξ = ξ(1,0) or ξ = ξ(1,1)) andn ≡ 0 (mod 4).
1 otherwise.

By Corollary 2, for anyk < 0 and anyn, we have

Hk(r,b, (Dn,Zn))

= [zr ]n−k−1
∑
a|n
φ
(n

a

) ∑
α|n,α �=1

µ

(
α

gcd(a, α)

)
φ(α)

φ
(

α
gcd(a,α)

)z
2n
α




b

,

and

Hk(r,b, (Dn,Dn
2
)) = [zr ]n−k−1

×





 ∑
α| n

2 ,α �=1

φ(α)z
2n
α + n

2
zn




b

+

 ∑
α| n

2 ,α �=1

φ(α)z
2n
α − n

2
zn




b

+ 22+k

� n−2
4 �∑

a=1


 ∑
α| n

2 ,α �=1

µ

(
α

gcd(a, α)

)
φ(α)

φ
(

α
gcd(a,α)

)z
2n
α




b



.

Notice that a subgroup ofDn is isomorphic toZm or Dm for somem | n. If n is odd, then
there is only one subgroup of index 2 ofDn which isZn, and if n is even, there are two
equivalence classes of subgroups of index 2; the subgroupZn itself and the other consisting
of two subgroups that are isomorphic toDn

2
, sayS1 andS2. For anyn, asubgroupK of Dn
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is a subgroup of(Dn,Zn) if andonly if K is a subgroup of typeDm with m|n. Moreover, the
number of such subgroups isnm, |Aut(Dn,Zn)| = nφ(n), andµ(Dm) = µ( n

m) in the lattice
of such subgroups. For evenn, asubgroupK of Dn is a subgroup of(Dn,S1) = (Dn,Dn

2
)

if and only if K is a subgroup of typeZm, a subgroup of typeDm for somem|n with
n
m is odd, or a subgroup of typeDm of S2 with n

m is even. Notice that ifnm is odd there
is only one subgroup of typeZm and there aren

m subgroups of typeDm, and if n
m is

even there are n
2m subgroups of typeDm. Moreover, by considering the lattice structure

of such subgroups, one can see thatµ(Zm) = − n
mµ(

n
m) andµ(Dm) = µ( n

m). Notice
that |Aut(Dn,Dn

2
)| = n

2φ(n). Now, by applyingTheorem 4, we can find an explicit form

of the polynomialR(Sk,B,Dn)(x) for any Sk, B andn. When p is prime the polynomial
R(Sk,B,Dp)(x) can be found in [8].

6. Further remarks

For any nonorientable surfaceSk and any finite groupA, thenumberIsocO(Sk, B;A)
of equivalence classes of connected branched orientableA-coverings ofSk with branch set
B is

IsocO(Sk, B;A) =
∞∑

i=0

ai (Sk, B,A) =
∑
S

|C1(B−k+|B| ↪→ Sk − B; (A,S)|
|Aut(A,S)| ,

whereS ranges over the representatives of similarity classes of subgroups of index 2 inA.
Notice that

|C1(B−k+|B| ↪→ Sk − B; (A,S)|

=
∑

K≤(A,S)
µ(K )


 ∑
αi | |K |

2 ,αi �=1

Hk((K , K ∩ S); α1, α2, . . . , αb)


 .

Now, the following corollary comes fromTheorems 5and6.

Corollary 4. Let A be a finite group and let B be a b-subset of a nonorientable surface
Sk. Then we have

IsocO(Sk, B;A)

=
∑
S

∑
K≤(A,S)

µ(K ) |K |−k−1

2−k−1|Aut(A,S)|


( |K |

2
− 1

)b

+ (−1)b
∑
ξ

d−k
ξ ξ(1)2+k


 ,

whereS ranges over the representatives of similarity classes of subgroups of index 2 inA
andξ does all irreducible characters of K∩ S except the principal character.

Corollary 5. LetA be a finite Abelian group and let B be a b-subset of a nonorientable
surfaceSk. Then we have
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IsocO(Sk, B;A)

=




∑
S

∑
K≤(A,S)

µ(K ) |K |−k−1

2−k−1|Aut(A,S)|


( |K |

2 − 1
)b + (−1)b

∑
ξ

cξ ξ(g
2)


 if k < 0 and k is odd,

∑
S

∑
K≤(A,S)

µ(K ) |K |−k−1

2−k−1|Aut(A,S)|


( |K |

2 − 1
)b + (−1)b

∑
ξ

cξ


 if k < 0 and k is even,

whereS ranges over the representatives of similarity classes of subgroups of index 2 inA,
andξ does all irreducible characters of K∩ S except the principal character, and g is a
fixed element in K− S.

We observe that the numberIsocOR(Sk, B; n) of equivalence classes of regular
branched connected orientablen-fold coverings of a nonorientable surfaceSk with branch
setB is equal to

IsocOR(Sk, B; n) =
∑
A

IsocO(Sk, B;A),

whereA ranges over the representatives of isomorphism classes of groups of ordern.
Hence, we can express the numbersIsocOR(Sk, B; n) in terms of irreducible characters of
groups of ordern and those of their subgroups of index 2. Moreover, if we know all groups
of ordern and all of their irreducible characters,then we can have an explicit formula
for IsocOR(Sk, B; n). For example, if n = 2p (p is an odd prime), then there are two
groups of order 2p up to isomorphisms; the cyclic groupZ2p and the dihedral groupDp.
By Corollaries 4and5 and this discussion, we have for anyb-subsetB of a nonorientable
surfaceSk

IsocOR(Sk, B; 2p) =
{

2
p−1(p

−k−1 − 1) if b = 0,

p−k−2((p − 1)b−1(p + 1)+ (−1)b) if b �= 0.

Observe that for any two surfacesSi and Sk, the number IsocR(Sk, B; Si ; n) of
equivalence classes of regular branched connectedn-fold coveringsρ : Si → Sk with
branch setB is equal to

IsocR(Sk, B; Si ; n) =
∑
A

ai (Sk, B,A),

whereA ranges over the representatives of isomorphism classes of groups of ordern. This
is an answer to the original question when the covering is regular. Now, by combining the
results in Jones [6] and the results in this paper, we can obtain a complete answer. Notice
that IsocR(Sk, B; Si ; n) is finite and constant for any finite subsetB of Sk with the same
cardinality.

For example, we consider the casei = 3 andk = −2. Assume that there is a branched
A-coveringρ : S3 → S−2 with branch setB. Then, by the Riemann–Hurwitz equation, we
can see that 1≤ |B| ≤ 2. If |B| = 1, then|A| = 6 or 8, and if|B| = 2, then|A| = 4. Now,
by the classification theorem for finite groups and our results, we haveTable 2. In Table 2,
the column entitled “the others” includes the dihedral groupD3 of order 6, andZ2⊕Z2⊕Z2
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Table 2
Thenumbera3(S−2, B,A)
A Z2 ⊕ Z2 Z4 Z6 Z4 ⊕ Z2 Z8 D4 The others Total

|B| = 0 0 0 0 0 0 0 0 0
|B| = 1 0 0 3 2 2 2 0 9
|B| = 2 2 2 0 0 0 0 0 4
|B| ≥ 3 0 0 0 0 0 0 0 0

Total 2 2 3 2 2 2 0 13

andQ8 (the quaternion group) which are of order 8, as well as all groups whose order is
not 4, 6 and 8. We conclude fromTable 2, in thenotation above, that

IsocR(S−2, B; S3; n) =




3 if n = 6 and|B| = 1,
6 if n = 8 and|B| = 1,
4 if n = 4 and|B| = 2,
0 otherwise.
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