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Abstract

We derive recurrence relations for the sequence of Maclaurin coefficients of the
function χ = χ(t) satisfying (1 + χ) ln(1 + χ) = 2χ− t.

1Supported by a Discovery Grant from NSERC
2Partly supported by ISF Grant 533-03
3Supported by a grant from the Gil’adi Foundation of the Israeli Ministry of Absorption

1

mailto:ipgoulde@uwaterloo.ca
mailto:litsyn@eng.tau.ac.il
mailto:email


1 Introduction

Consider the function χ = χ(t) satisfying

(1 + χ) ln(1 + χ) = 2χ− t (1)

The sequence of coefficients in the Maclaurin expansion of χ plays an important role in
algebraic geometry. Namely, the n-th coefficient is equal to the dimension of the cohomology
ring of the moduli space of n-pointed stable curves of genus 0. These coefficients are also
related to WDVV equations of physics. Exact definitions can be found in [4, 6, 7, 8] and
references therein.

It follows from (1) that

χ′ :=
dχ

dt
=

1 + χ

1 + t− χ
, (2)

and χ has the critical point t = e− 2. Using this, Manin [7, Chap.4, p.194] provides for the
coefficients in the Maclaurin expansion of χ,

χ(t) = t+
∞
∑

n=2

mn

tn

n!
, (3)

the following expression:

mn ∼
1√
n

(

n

e2 − 2e

)n− 1

2

. (4)

Exact computation of the defined numbers is a challenging problem. Indeed, taking into
account that

2χ− (1 + χ) ln(1 + χ) = χ+
∞
∑

n=2

(−1)n−1

(n− 1)n
χn,

and differentiating n times the identity t = t(χ(t)), we deduce from the Bruno formula [9,
p.36, (45a)] that

mn =
∑ n!(−1)j(j − 2)!

j1! · · · jn−1!

(m1

1!

)j1
(m2

2!

)j2

· · ·
(

mn

(n− 1)!

)jn−1

, n ≥ 2, (5)

where m1 = 1, j = j1+ j2+ · · ·+ jn−1, and the sum is over all non-negative integral solutions
to j1 + 2j2 + · · · + (n− 1)jn−1 = n. This allows recurrent computation of the numbers mn.
Indeed, by (5),

m2 = 0!m2
1 = 1

m3 = −1!m3
1 + 0!(3m1m2) = 2

m4 = 2!m4
1 − 1!(6m2

1m2) + 0!(3m2
2 + 4m1m3) = 7

...

However, when n increases, (5) becomes intractable due to the fast growth of the number of
partitions of n.
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Koganov [5] used the Bürmann-Lagrange inversion formula and generalizations of the
Stirling numbers of the second kind [2], to deduce an efficient 3-dimensional scheme for
computation of mn’s. Here the Stirling numbers of the second kind of first and second order
(S1(n, k) and S2(n, k)) are defined by the two-dimensional recurrences:

S1(n+ 1, k) = kS1(n, k) + S1(n, k − 1),

n ≥ k ≥ 1, S1(n, 0) = δ0,n, S1(n, 1) = 1,

S2(n+ 1, k) = kS2(n, k) + nS2(n− 1, k − 1),

n ≥ k ≥ 1, S2(n, 0) = δ1,n, S2(n, 1) = 1.

Then, [5],

mn = 1 + (n− 1)!

bn−1

2
c

∑

k=1

n(n+ 1) · · · (n+ k − 1)·

n−1
∑

q=0

min(k,q)
∑

`=0

S1(q + 1, `+ 1)

q!
(−2)k−`S2(n− 1− q − (k − `), k − `)

(n− 1− q − (k − `))!
.

This made possible [5] computing the first 10 numbers mn.
In what follows we present a simple computational method for mn based on a quadratic

recurrence.

Theorem 1.1 The numbers mn satisfy

mn =
n−1
∑

i=1

(

n− 1

i

)

mimn−i − (n− 2)mn−1, n ≥ 2, (6)

with the initial condition m1 = 1.

Proof Multiplying both sides of (2) by 1 + t− χ and rearranging, we obtain

χ′ = χχ′ + χ− tχ′ + 1.

Applying (3) to this equation, we get

∞
∑

n=1

mn

tn−1

(n− 1)!
=

∞
∑

i=1

mi

ti

i!

∞
∑

j=1

mj

tj−1

(j − 1)!

+
∞
∑

n=1

mn

tn

n!
−

∞
∑

n=1

mn

tn

(n− 1)!
+ 1.

Equating the coefficients of tn−1/(n− 1)! in this equation we accomplish the proof. 2
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2 A generalization

A natural generalization of the numbers mn is related to configuration spaces [3] and was
introduced in [7, §4.3]. For an integer k, k ≥ 1, consider the function χk = χk(t) defined by

k(1 + χk) ln(1 + χk) = (k + 1)χk − t, (7)

for some fixed k. The previously considered χ thus coincides with χ1. Evidently,

d

dt
χk =

1 + χk(t)

1 + t− kχk(t)
, (8)

and expanding at t = 0 we get ,

χk(t) = t+
∞
∑

n=2

mn(k)
t!

n!
. (9)

In particular, m1(k) = 1. Using (8) analogously to the previous section we have the following
generalization of Theorem 1.1.

Theorem 2.1 The numbers mn(k) are polynomials of degree (n − 1) in k, with integer
coefficients defined by the recursion

mn(k) = k
n−1
∑

i=1

(

n− 1

i

)

mi(k)mn−i(k)− (n− 2)mn−1(k), n ≥ 2, (10)

with initial condition m1(k) = 1. 2

2.1 Coefficients of mn(k)

Set
mn(k) = µ1(n)k

n−1 + µ2(n)k
n−2 + · · ·+ µn−1(n)k + µn(n). (11)

Computation of the coefficients µn(n), µn−1(n), µn−2(n), . . . is enabled by the following the-
orem.

Theorem 2.2 For n ≥ 2 and ` = 1, . . . , n, the following recurrence holds:

µ`(n) =
∑̀

j=1

n−1
∑

i=1

(

n− 1

i

)

µj(i)µ`+1−j(n− i)− (n− 2)µ`−1(n− 1). (12)

Proof The relation (12) is obtained by equating coefficients of kn−` in equation (10). 2
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Using (12) for ` = n, n− 1, . . . we calculate recursively

µn(n) = δn,1 n ≥ 1,

µn−1(n) = (−1)n(n− 2)! n ≥ 2,

µn−2(n) = (−1)n−1(n− 2)!
(

n− 2 + 2
∑n−2

i=1
1
i

)

n ≥ 3,

µn−3(n) = (−1)n(n− 2)!·
·
(

1
2
(n− 3)(n+ 4) + (2n− 7)

∑n−2
i=2

1
i
+ 6

∑n−2
i=2

1
i

∑i−1
j=1

1
j

)

n ≥ 4,

...

Let us now describe a recurrence for computation of the initial coefficients µ1(n), µ2(n), . . ..
Set

M`(x) =
∞
∑

n=1

µ`(n)
xn

n!
. (13)

Theorem 2.3 Let Mn ≡ Mn(
1
2
(1− t2)), t ≥ 0. Then for n ≥ 2 the following recursion

holds:

d

dt
(tMn) =

n−1
∑

i=2

(

d

dt
Mi

)

Mn+1−i − tMn−1 −
1

2
(1− t2)

d

dt
Mn−1, (14)

with initial conditions

M1 = 1− t, Mn|t=1 = 0. (15)

Proof Multiply on both sides of (12) by xn−1/(n− 1)!, and sum over n ≥ 1, to obtain the
following system of equations for M`(x):

M ′
1(x) = M1(x)M

′
1(x) + 1, M1(0) = 0, (16)

M ′
`(x) =

`−1
∑

i=2

M ′
i(x)M`−i+1(x) +M`−1(x)− xM ′

`−1(x),M`(0) = 0, ` ≥ 2. (17)

From (16) we find

M1(x) =
1

2
M2

1 (x) + x,

and
M1(x) = 1−

√
1− 2x = 1− t (18)

with t = (1− 2x)
1

2 . Finally, changing variables in (17) from x to t, and using

M ′
1(x) = t−1, x =

1

2
(1− t2),

d

dx
=

dt

dx

d

dt
= −t−1 d

dt
,

we obtain (after multiplication by −1), for n ≥ 2, the formula (14). 2
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Notice that from Theorem 2.3 it follows by induction that for n ≥ 2, Mn is a polynomial
in t and t−1 of the form:

Mn =
n
∑

i=−(2n−3)

ai(n)t
i. (19)

Thus Theorem 2.3 recursively yields

M1 = −t+ 1,

M2 =
1

6
t2 − 1

2
t+

1

2
− 1

6
t−1,

M3 =
1

72
t3 − 1

8
t+

2

9
− 1

8
t−1 +

1

72
t−3,

M4 =
1

270
t4 − 1

144
t3 − 1

72
t+

1

18
− 1

20
t−1 +

1

72
t−3 − 1

432
t−5,

M5 =
23

17280
t5 − 1

270
t4 +

1

576
t3 +

1

405
t2 − 5

1152
t+

1

90
− 59

4320
t−1

+
43

5760
t−3 − 5

1728
t−5 +

5

10368
t−7,

...

Setting (−1)!! = 1, this easily implies

µ1(n) = (2n− 3)!!, n ≥ 1,

µ2(n) = −n− 2

3
(2n− 3)!!, n ≥ 2,

µ3(n) =
(n− 1)(n− 2)(n− 3)

32
(2n− 5)!!, n ≥ 2,

µ4(n) = −(n− 3)(n− 4)(5(n− 1)2 + 1)

34 · 5 (2n− 5)!!, n ≥ 3,

µ5(n) =
(n− 3)(n− 4)(n− 5)(5(n− 1)3 + 4n− 1)

2 · 35 · 5 (2n− 7)!!, n ≥ 3.

...

Finally, we will state a conjecture we have not been able to verify.

Conjecture 1 The expressions for Mn do not contain monomials corresponding to the in-

tegral negative degrees of (1− 2x).

This conjecture is confirmed by our calculations for n ≤ 5.

2.2 Yet another property of mn(k)

In this section we consider another combinatorial property of the polynomials mn(k).

Theorem 2.4

mn(−1) = (1− n)n−1 (20)
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Proof Substitute k = −1 into (8), to obtain

χ′−1 = −χ−1χ
′
−1 + χ−1 − tχ′−1 + 1. (21)

Now let

f(t) =
∞
∑

n=1

(1− n)n−1 t
n

n!
,

and note that, from Lagrange’s Theorem as stated in [1, §1.2] we obtain

f(t) = − t

T
− 1,

where T = −teT . Differentiating the functional equation for T with respect to t, we obtain

dT

dt
=

−eT

1 + teT
=

T

t(1− T )
,

so that
df

dt
= −T − tT ′

T 2
=

1

1− T
,

and it is now routine to check that f is a solution to (21). We conclude from the initial
condition f(0) = 0 that χ−1(t) coincides with f(t). 2

3 Numerical Calculation

The derived result allows extending sequence A074059 of Sloane’s on-line Encyclopedia of
Integer Sequences which previously contained only 5 terms. We give here the first 19 terms
of the sequence:

m = {1, 1, 2, 7, 34, 213, 1630, 14747, 153946, 1821473,
24087590, 352080111, 5636451794, 98081813581,

1843315388078, 37209072076483, 802906142007946,

18443166021077145, 449326835001457846, . . .}

7



The first 10 polynomials mn(k) for n = 1, . . . , 10, are given in the following table:

n mn(k)
1 1
2 k
3 3k2 − k
4 15k3 − 10k2 + 2k
5 105k4 − 105k3 + 40k2 − 6k
6 945k5 − 1260k4 + 700k3 − 196k2 + 24k
7 10395k6 − 17325k5 + 12600k4 − 5068k3 + 1148k2 − 120k
8 135135k7 − 270270k6 + 242550k5 − 126280k4 + 40740k3−

−7848k2 + 720k
9 2027025k8 − 4729725k7 + 5045040k6 − 3213210k5+

+1332100k4 − 363660k3 + 61416k2 − 5040k
10 34459425k9 − 91891800k8 + 113513400k7 − 85345260k6+

+43022980k5 − 15020720k4 + 3584856k3 − 541728k2 + 40320k
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