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Abstract. We determine the rank generating function, the zeta polynomial and the Mobius
function for the poset NC(B) (p, q) of annular non-crossing partitions of type B, where p and g
are two positive integers. We give an alternative treatment of some of these results in the case
g = 1, for which this poset is a lattice. We also consider the general case of multiannular non-
crossing partitions of type B, and prove that this reduces to the cases of non-crossing partitions
of type B in the annulus and the disc.
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1. Introduction

The enumerative properties of the lattice NC(n) of non-crossing partitions of {1,...,
n} have been studied since the early 1970’s, starting with the paper [8] of Kreweras.
An important feature of this lattice is its connection to the symmetric group .S,,. More
precisely, one has a natural poset isomorphism

NC(n) ~[g, o, :={t€ 8 |e<T<04}, (1.1)

where “<” is a natural partial order on S, € is the unit of .§,, and o, is the long cycle
(1,...,n) (see [3,5]).

In 1997, Reiner [11] introduced the lattice NC'®) (n) of non-crossing partitions of
type B. Soon after that (see [2,4,6]) it was noticed that one has a poset isomorphism
analogous to the one from (1.1):

NCB (n) ~ [e, 1] := {t € By | e <T< W}, (12)
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where “<” is a natural partial order on the hyperoctahedral group B, € is the unit of

By, and Y, is the long cycle (1,...,n, —1,..., —n). (Here B, is viewed as the group of
permutations tof {1,...,n}U{—1,..., —n} that satisfy the condition T(—i) = —1(i),
1<i<n.)

The recent paper [10] introduced a family of posets NC®) (p, q), where p, q are
two positive integers. One has a poset isomorphism

NC(B)(p7 Q) = [8, Yp,q] ngJrqa (1.3)

where the partial order on the hyperoctahedral group B, is the same as in (1.2), and
Yp,q 1s now the permutation with two cycles

Yog:=0,...,p,—1,...,=p)(p+1,....,p+q,—(p+1),..., —=(P+q)) € Bpyqg.

The elements of NC®)(p, ¢) are certain partitions of the set {1,..., p+q}U{—1,...,
—(p+q)}, and the partial order considered on NC®)(p, q) is given by reverse re-
finement: 1 < p if and only if every block of T is contained in a block of p. The
distinctive feature of the partitions in NC (B) (p, q) is that one can draw them as non-
crossing diagrams in an annulus with 2p points marked on its outside circle and 2g
points marked on its inside circle. (This is unlike the diagrams drawn for partitions
in NC(8) (n), which are drawn in a disc with 2n points marked on its boundary.) The
poset NC'B) (p, q) is not generally a lattice, but we have a notable exception occur-
ring in the case when g = 1. In this case the meet operation coincides with the usual
“intersection meet” for partitions — the blocks of the meet T Ap € NCB)(p, 1) are
precisely the non-empty intersections A N B where A is a block of  and B is a block
of p.

In the present paper, we determine the rank generating function, the zeta poly-
nomial, and the Mdbius function of the poset NC®) (p, q). Here is how the paper
is organized. In Section 2, we give a brief review of NC®) (p, q) and its properties
that are needed in the present paper. Then in Section 3, we discuss the special “lat-
tice” case ¢ = 1, when the formulas for both the rank generating function and the
Mbobius function are nicer, and have simpler derivations. It is amusing to note that
NC®)(n—1,1) has the same rank generating function as NC®)(n). Nevertheless,
one has NC®) (n — 1, 1) ¢ NC®)(n) for all n > 3, by looking at Mbius functions.

Section 4 is about the rank generating function of NC®) (p,q) for general
p,q. We observe that we still have nice formulas when we focus on partitions
in NC® (p, q) that have a given connectivity (the connectivity of a partition T €
NC®B)(p, ) is the number of pairs of blocks A, —A of T such that A # —A and A
intersects both sets {+1,..., +p} and {£(p+1),..., £(p+¢)}). But when we just
enumerate the partitions in NC(#) (p, q) by their rank we get 1-parameter sums (Which
can be summed up to a “closed form” when g = 1, but not for general q). A nice fact
arising in our analysis, stated as Theorem 4.5.3, is that the total number of partitions
in NCB)(p, q) is given by

p+q+pq (2p\ (2q
e =" () ()

Section 5 is devoted to determining the Mobius function for NC®)(p, ¢). The
method used there is to count multichains via suitable “systems of parentheses”, on



Enumerative Properties of NC® (p,q) 279

the same lines that were used by Edelman [7] to count multichains in NC(n) and then
by Reiner [11] to count multichains in NC(®) (n). A benefit of this approach is that
it also yields concrete formulas for the zeta polynomial for NC (B) (p, q), and for the
number of maximal chains in NC&) (p, q). The formulas obtained are again not in
closed form, but (again) they can be summed up to closed form in the particular case
when g = 1.

In Section 6, we give a brief description of the general case of multiannular non-
crossing partitions of type B. The main point of the section is to establish that, due
to a topological restriction called the genus inequality, the general multiannular case
reduces in fact to the cases of non-crossing partitions of type B in a disc or an annulus.

2. Review of NC'®)(p, q)

In this section we review, following [10], a few basic facts about the poset NC (B) (p,q).
We will start with a set S,Ef) (p, q) of “annular non-crossing permutations of type B”,
and we will then define NC®)(p, ¢) in terms of s\ (p, q).

Definition 2.1. (Partial order on B, , and the definition of s (p,q))

We will introduce S,Ef) (p, q) via a natural partial order on the hyperoctahedral group
Byig. Let us denote for convenience n := p +q. Recall that B, is the group of
permutations T of {£1,..., £n} that satisfy the condition ©(—i) = —1(i), V1 <i<n.

1° We consider the following (non-minimal) set of n> generators of By:

{(iv j)(_ia _]) ‘ 1 §i7j§n7 l'#j}U{(i, _j)(_iv ]) | 1 §i7j§n7 l#]}
U{@, =) |1 <i<n}. 2.1

The generators from (2.1) define a length function £ on By, as follows: For every
T € By, the length {5(7) is the smallest possible k > 0 such that T can be factored
as a product of k generators (with the convention that the product of 0 generators
is equal to the unit € of By).

29 The length function £ satisfies the triangle inequality
g(c) < (1) + L (1 'o), (2.2)

and using the case of equality, we define a partial order on B,,, where fort,c € B,
we put

1< 06 <L 15(0) = ls(1) + L (t'o). (2.3)
In other words, the order relation T < 6 means that one can find minimal factor-

izations for T and for T~ 16 into products of generators, such that the concatena-
tion of these two factorizations gives a minimal factorization for G.

3% We define
S (p.q) = {T € By | T< g}, 2.4)
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where the partial order considered in By, is the one defined above, and v, 4 € By
is the permutation with two cycles

Yp,q = (la“'vpa_11‘“3_p)(p+17"'7p+q7_(p+l)v"'v_(p"’_q))éBlr
(2.5)

Since the inequality € < T holds for every T € B, we thus have that S;Sf?) (p,q)is
the interval [€, Y, 4] in the group B,.

We mention here that one could give several other equivalent descriptions for

5,&5) (p, q). Two such descriptions were discussed in [10] — one of them is in terms of
“genus inequality”, and the other is in terms of “annular crossing patterns” (see, [10,
Section 2.5]). But these alternative descriptions will not be used in the present paper
(although the genus inequality will be used in Section 6 for other reasons).

Definition 2.2. (Orbit partitions and the definition of NC®)(p, ¢))
Let p, g, and n := p+ q be as above.

19 For every Tt € By, we will use the notation Q(7) for the partition of {£1,..., £n}
into orbits of T. (Thus two numbers a, b from {x1,..., £n} belong to the same
block of Q(t) if and only if there exists an m € Z such that ©"(a) = b.) It is
obvious that if A is a block of (%) then —A is a block of Q(t) as well. In the case
when A = —A we say that A is inversion-invariant, or that it is a zero-block of
Q(1). Clearly, the blocks of Q(t) that are not inversion-invariant come in pairs
(A and —A, with A # —A).

2° For every T € B, we will use the notation Q<) for the partition of {£1,...,£n}
which is obtained from Q(t) by grouping together all the inversion-invariant
blocks of Q(t) (if such blocks exist) into one block of Q(t). That is, if

Q(’C) = {Al,...,Ak,Bl, —By,..., By, —Bz},
with A; = —A; for 1 <i <k, then
ﬁ(’t) = {A]U---UA/(,Bl7 —By,..., By, —Bl}.

3° The set NCB) (p, q) of annular non-crossing partitions of type B is defined as

NC® (p, q) = {ﬁ(r) Ites®(p, q)} . (2.6)

Remark 2.3. 1° The set NC8)(p, ¢) is defined in such a way that the map Q:
s (p, q) — NC®)(p, q) is surjective. It is remarkable that this map is in fact a
poset isomorphism, where 5,55’) (p, q) is partially ordered as an interval of B,

(and where B, is partially ordered as in Definition 2.1.2), while NC (B) (p,q)is
partially ordered by reverse refinement. This is the content of [10, Theorem 1.4].

2° From Definition 2.2 it is clear that a partition T € NC®)(p, ¢) can never have
more than one inversion-invariant block (if such a block exists, then it is unique).
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3()

Let 0 be the partition of {£1,...,£(p+¢q)} into 2(p + g) singletons, and let
1 be the partition of {#1,..., £(p +¢)} that has only one block. Then, 0,1 €
NC®)(p, q), as it is clear that 0 = Q(e) and 1 = ﬁ(yp’q) (where € is the unit of
B, 4, while v, 4 is as in Equation (2.5)). The partitions 0 and 1 are the minimal
and maximal elements respectively of the poset NC®)(p, ¢).

Remark 2.4. (Rank and connectivity for a partition in NC®)(p, ¢))

10

2()

It is immediate that 5,55) (p, q) is aranked poset, where the rank of a permutation

T€ 5}5?) (p, q) is given by the length ¢p(t) from Definition 2.1.1. It is moreover
not hard to see that ¢5(t) can be alternatively described in terms of the cycle
structure of T, by the formula

1
(V) = (p+4)— - (# of orbits A of T such that A # —A). 2.7)

As a consequence, we see that NC (B) (p, q) is a ranked poset as well, where the
rank of a partition T € NC®)(p, ¢) is given by the formula

1
rank(®) = (p+¢q) — 5 (# of blocks of w that are not inversion-invariant) .
2.8)

Another important statistic for partitions in NC(#) (p, q) is the connectivity. For
n e NCB)(p, q), the connectivity of T is the number

# of blocks A of T such that A # —A
c:= and such that A intersects both sets . 2.9)
{£1,...,tp}tand {+(p+1),..., £(p+q)}

An important fact concerning the concept of connectivity is

(2.10)

if 1 € NC®)(p, ¢) has connectivity ¢ > 0,
then 1 has no inversion-invariant blocks

(see [10, Proposition 3.4]). Thus the blocks of a partition T with connectivity
¢ > 0 all come in pairs A, —A with A # —A; there are ¢ pairs of blocks as in (2.9),
while each of the remaining pairs is either “exterior” (A, —A C {%1,..., £p})
or “interior” (A, —A C {£(p+1),..., £(p+4)}). Note moreover that if ¢ > 0
and if e and i denote the number of exterior and of interior pairs of blocks of &
respectively, then one has the inequalities:

{ 1 <c¢<min{p, ¢}, and

2.11)
0<e<p—c, 0<i<g—c.

Remark 2.5. 1t is instructive at this point to give a brief discussion, based on con-

nectivity, about how the adjusted orbit map Q: S\2 (p, ¢) — NC®)(p, q) works. Let
T be a partition in NCB) (p, q), and let ¢ be the connectivity of ®. There are two
possible cases.
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(a) ¢ > 0. Then by the fact in (2.10) above we have T = Q(t) = Q(t), where T is a

(uniquely determined) permutation in S,Sf) (p, q), and T has no inversion-invariant
orbits.

(b) ¢=0. Let T denote the unique permutation in S8 ) (p, q) such that Q(t) = 7. Then
every orbit of T is contained either in {£1,..., £p}orin {£(p+1),..., £(p+
q)} (see [10, Lemma 3.3]). Moreover, T can have at most one inversion-invariant
orbit contained in {£1,..., £p}, and at most one inversion-invariant orbit con-
tained in {£(p+1),..., £(p+¢)} (this is due to the fundamental fact from [11]
that partitions in NC®) (p) or NC'®) (¢) can have at most one zero-block). If T has
two inversion-invariant orbits, then T is obtained from the orbit partition Q(7)
by joining together these two orbits; otherwise (if T has at most one inversion-
invariant orbit) we just have 1 = Q(7).

The case (b) of the discussion was the more complicated one to describe, but one
should keep in mind that typically this is the simpler case to handle. Indeed, the case
(b) can be summarized as follows: If m € NC(®) (p, q) has connectivity equal to 0,
then 7 is obtained by “putting together” a partition T,y € NC®) (p) and a partition
Tint € NC (B) (q), with a special rule for what to do when both 7., and 7;,,, have zero-
blocks.

Remark 2.6. We conclude this section with a comment on “how to draw pictures” of
partitions in NC(#) (p, q). In fact, what one does is to draw (equivalently) pictures of
permutations in S,Sf-;) (p, q). In order to do this, one starts by representing the elements
of {£1,..., £(p+4q)} as points on the boundary of an annulus: On the outside circle
of the annulus we mark 2p points which we label clockwise as 1,..., p, —1,..., —p
(in this order), and on the inside circle of the annulus we mark 2¢ points which we
label counterclockwise as p+1,..., p+q, —(p+1),..., —(p+¢q) (in this order). In
terms of pictures drawn in this annulus, the fact that a permutation t € B, belongs

to .Sy(,f ) (p, q) corresponds then to the following prescription: One can draw a closed
contour for each of the cycles of 1, such that

(i) each of the contours does not self-intersect, and goes clockwise around the re-
gion it encloses;
(i1) the region enclosed by each of the contours is contained in the annulus;
(iii) regions enclosed by different contours are mutually disjoint.

Two concrete examples of such drawings are given in Figure 1 below, in the par-
ticular case when p =4 and ¢ = 2. On the left we have the drawing of the permutation

1 =(1,2,5)(—1, -2, —5)(3, —6)(—3,6)(4)(—4) € 5\P (4, 2);
the partition corresponding to it is
n = Q(Tl) = 5(11) = {{17 2, 5}’ {_1’ -2, _5}7 {37 _6}7 {_3’ 6}7 {4}7 {_4}}7

which has connectivity ¢ = 2. On the right of Figure 1 we have the drawing of the
permutation

= (1, -1)(2,3,4)(=2, =3, —4)(5, —5)(6)(—6) € 5P (4, 2);
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Figure 1: Examples of pictures of permutations in 5,55) (4,2).

the partition corresponding to it is
T =Q(t) ={{1, 1,5, —5},{2,3,4}, {2, =3, -4}, {6}, {—6} },

which has connectivity ¢ = 0. Note that in the latter example we have Q(T2) # Q(12),
since the inversion-invariant block {1, —1,5, =5} of Q(t2) is obtained by joining
together the two inversion-invariant orbits of T;.

3. Rank Cardinalities and Mébius Function for NC®)(n — 1, 1)

Whereas the poset NCB)(p, ¢) isn’t a lattice in general, it is nevertheless true that
NCB) (n—1,1) is a lattice for every n > 2; and moreover, the meet operation on
NC®) (n— 1, 1) coincides with the usual “intersection meet” for partitions — the
blocks of the meet TAp € NC(P) (n— 1, 1) are precisely the non-empty intersections
AN B where A is a block of w and B is a block of p. For a proof of these facts,
see [10, Theorem 1.5]. The present section is devoted to this special “lattice” case,
when the formulas for both the rank generating function and the M6bius function are
nicer, and can be easily derived from known facts about NC(n) and NC®) (n).

The rank cardinalities for NC®)(n — 1, 1) will be presented in Theorem 3.2. We
first record a few known facts that will be used in the proof of this theorem.

Remark 3.1. 1° We will use the well-known binomial identity

:;z <Z> <k1r> - (nz_nr> 3.1

for any integers 0 < r < n. This is a special case of the Chu-Vandermonde identity
(see for instance, [1, Corollary 2.2.3, p. 67]).

2° We will use the rank generating functions for the posets NC(n) (: NC(A)(n))
and NC®) (n).
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(A) The rank of a partition T € NC4 (n) is given by the formula
rank(m) = n — (# of blocks of ).

For every 0 < k <n— 1, we have (see [8, Corollary 4.1]) that

HEGNC(A)(nHrank(n):k}’:’11<Z) (kil). (3.2)

The numbers appearing on the right-hand side of (3.2) are called Narayana
numbers. The total number of partitions in NC4) (n) is the Catalan number

1 /2
’NC(A) (n)‘ = (:) (3.3)

(B) The rank of a partition T € NC®)(n) is given by the formula

1 [ #of blocks A of T
rank(n) =n — .

2 \ such thatA # —A

For every 0 < k < n, we have (see [11, Proposition 6]) that

‘ {n € NC®)(n) | rank(m) = k} ‘ - (Z) } (3.4)

The total number of partitions in NC) (n) is

‘NC(B) (n)’ - <2n”) (3.5)

3° We will use a natural “absolute value map” that sends NC®)(n) to NCW (n).
We start with the map Abs: {£1,..., £n} — {1,..., n} that sends =i to i, for
every 1 <i < n. Note that for every T € NC®) (n) it makes sense to consider
the partition of {1,..., n} into blocks of the form Abs(B), with B a block of
; this partition of {1,...,n} will be denoted by “Abs(w)”. It turns out that
Abs(mt) € NC (n) for every © € NCB) (n), and moreover, the map

NC®)(n) 51— Abs(r) € NCW(n) (3.6)

defined in this way is an (n+ 1)-to-1 map (see [4, Section 1.3]). In the proof of
the next theorem, we will use the following property (also observed in [4, Section
1.3]) of the map Abs from (3.6):

Given a partition T, € NC“) (n) and a block A of 7,

there exists a unique © € NC(®) (n) with a zero-block Z, (3.7)

such that Abs(nt) = m, and Abs(Z) = A.



Enumerative Properties of NC® (p,q) 285

Theorem 3.2. Let n > 2 be an integer. Then

’NC(B)(n— 1, 1)‘ - (2:) (3.8)
and for every 0 < k < n we have
n 2
HneNdB)(n—L1)\mnk(n):k}‘: <k> . (3.9)

Proof. Equation (3.8) follows from (3.9) and (3.1), hence it will suffice to verify (3.9).
We fix a k, for which we will prove (3.9). We will assume k # O (the case k = 0 is
obvious).

From the first inequality (2.11) in Remark 2.4, it is clear that every partition in
NC®)(n—1,1) has connectivity equal to 0 or 1. Let us denote

C = {Tt eNCB® (n—1,1) | @ has rank k and connectivity 1} ,
(3.10)
D = {TI: eNCB (n—1,1) |7t has rank k and connectivity 0} .

We note that every partition T € 9 must be of the form © = §~2(T), where T is a

permutation in 5,(,f ) (n—1, 1) that leaves the set {n, —n} invariant. Clearly, there are
only two possibilities for how T can act on {n, —n}: Either t(n) = n and t(—n) = —n,
or t(n) = —n and T(—n) = n. We will denote by D and D_ respectively the set of
partitions T € D for which the first (the second, respectively) of these possibilities
occurs. Thus we have D = D, U D_, disjoint, and it is clear that

Hn e NCB)(n— 1, 1) | rank() = k}‘ —|C|+|Ds|+|D . (1D

It is immediate to see that D, and D_ are in bijection with the sets of partitions
in NC(B) (n— 1) that have rank equal to k, and k — 1, respectively. (For instance, for
D_ we observe that every T € D_ is canonically obtained from a partition 7, of rank
k—1in NC®) (n—1), as follows: If T, has no zero-block then we add to it a 2-element
block {n, —n}, while if 7, has a zero-block Z then we replace Z by ZU{n, —n}.) By
taking (3.4) into account, we thus find that

D, | n—1\2 d D | n—1\?
= an _ | = .
- k k—1

Let us now count the partitions in the set C from (3.10). Let ® be in C, and
let us denote by A the block of & that contains n. We know that A # —A, and that
An{£l,...,£(m—1)} #0. Let &, be the partition of {£1,..., £(n— 1)} that is
obtained from 7 by taking its blocks A and —A and replacing them with just one
block, Z := (AU (—A))\ {n, —n}. It is immediately seen that T, € NC*) (n — 1), and
that the rank of 7, in NC'®) (n — 1) is equal to k. The partition 7t we started with cannot
be uniquely retrieved from 7t,,, but a moment’s thought shows that © can be uniquely

retrieved from the pair (7,, T(n)), where T € s (n—1,1) is the permutation that
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corresponds to . (The number m = t(n) € {1,...,+£(n— 1)} could simply be
described as “the point of A that follows n”, when we move around A in clockwise
order.)

The observations made in the preceding paragraph give us a one-to-one map

T, € NC®)(n—1) of rank k and
Con— (T, (n)) € % (T, m) . (3.12)
with zero-block Z, and m € Z

It is quite easy to see that the map in (3.12) is surjective as well. In pictorial terms:
Given 1w, € NC (B) (n— 1) with zero-block Z, and given an element m € Z, we always
know how to deform the convex polygon enclosed by Z so that it becomes a union
of three regions — a small disc (which is part of a newly created annulus), and two
regions enclosed by blocks A, —A of a partition T € NC(5) (n—1,1). The role of the
element m € Z in this geometric construction is to determine what side of the convex
polygon enclosed by Z has to be deformed, and to indicate where on the emerging
small disc we should place the labels n and —n.

Let us next observe that by using the “Abs” map and its property reviewed in (3.7)
of Remark 3.1.2, we get another bijection

(Mo, m) — (Abs(m,), m), (3.13)

T, € NCB) (n — 1) of rank k and
with zero-block Z, and m € Z
product {p € NCH (n—1) ‘rank(p) =k—1} x{£l,...,£(n—1)}. By using the
bijections (3.12) and (3.13) we thus find that

which sends the set { (1o, m) } onto the Cartesian

€= [{p e NCW n— 1) |rank(p) =k~ 1}| -2(n 1)

1 n—1\/n—-1
=n_1(k_l)< . )-2(n—1) (by (3.2))

n—1\/n—1
(%)
We finally return to (3.11) and substitute on its right-hand side the values found
for the cardinalities of C, D,, and D_, thus (3.9) immediately follows.

Remark 3.3. We note the somewhat surprising fact that NC() (n—1, 1) has exactly
the same rank generating function as the lattice NC®)(n). For n = 2, we have in
fact NC®)(1, 1) = NCB)(2) (equality of sets of partitions of {1,2}U{-1,-2}).
But already for n = 3, it is no longer true that NC®) (2, 1) = NC®)(3); moreover, by
comparing the Hasse diagrams of NC®)(2, 1) and of NC®)(3), one easily sees that
NC®B)(2,1) % NC®)(3). (The Hasse diagram for NC'®)(2, 1) is drawn in Figure 2,
while the one for NC(?) (3) appears in Reiner’s paper [11, p. 199]. In order to establish
that NC®)(2, 1) 2 NC®)(3), one can for instance count edges in the Hasse diagrams
— the Hasse diagram for NC(8)(2, 1) has 46 edges, while the one for NC(®)(3) has
44 edges.)
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1@ @ .
13 ((12) 31 ((‘23)1 {(12- 3)P 12 ((1-3- 2]) ((13-2))

( 2I!)l3 (21131
s L i

. Nt o %
(13)) (1-3)) (23)) (2-3) ((1-2)

SOl IOl I lT

Figure 2: The Hasse diagram for NC(®)(2, 1). The bracket notations ((---)) and
[---] refer to the cycles of the corresponding permutations (e.g., ((1 2,-3)) and
((1, —2))[3] are shorthand notations for the permutations (1,2, —3)(—1, —2,3) and
(1,=2)(—1,2)(3, —3), respectively).
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By comparing the specific formulas that give the Mdbius functions for NC(5) (n)
and for NC'®)(n — 1, 1), we will find in fact that NCB) (n — 1, 1) ¢ NC®)(n) for all
n > 3; see Remark 3.7 below.

So let us now consider the Mobius function of NC®)(n — 1, 1). Its calculation
will be presented in Theorem 3.6, and will be based on a partial M6bius inversion
formula that is described as follows.

Lemma 3.4. Let P be a finite lattice, let 0 and 1 denote the minimal andA the maximal
element of P respectively, and let ® be a fixed element of P, where ® # 1. Then,

Y (n,T) —0. (3.14)

neP
TA®=0

For a proof of Lemma 3.4, see [12, Corollary 3.9.3]. A few other facts needed in
the proof of Theorem 3.6 are collected in the next remark.

Remark 3.5. 1° We will use the explicit formulas known for the Mdbius functions
of the posets NC) (n) and NC®) (n).

(A) Foreveryn > 1, we have

nNT) n+1 (2]’1—2)'
enalB1) - B

where t1y ) ) is the Mobius function of NC@(n), and 0, 1 are the minimal

and maximal element of NC4) (n), respectively. (See [8, Theorem 6].)
(B) For every n > 1, we have

~ N a [ 2n—1
:uNC(B)(n) (Oa 1) = (_1) ' ( n ) ’ (316)

where pycs)(,) is the Mobius function of NC®(n), and 0, 1 now stand
for the minimal and maximal element of NC8) (n), respectively. (See [11,
Proposition 7].)

2° Let p, q be positive integers. It is an easy exercise (left to the reader) to check
that the formula 5
CT) =1y T€SD(p,q) (3.17)

defines a bijection C: 5,55) (p.q) — 5;55) (p, q), that is order-reversing — for
G,T€E s (p, g) one has that 6 <1 < C(0) > C(t), where the partial order
on 50 (p, q) is as in Definition 2.1.2.

Now, by using the canonical isomorphism Q: 5,55?) (p,q) — NC (B) (p, q) (see Re-
mark 2.3.1), we can transport the map C from (3.17) to an anti-isomorphism
K: NC®)(p, q) — NCB)(p, q), defined via the formula

K(Q®) =8( ), teSP(P q). (3.18)
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This anti-isomorphism K is the NC®) (p, ¢)-analogue for an anti-isomorphism of
the lattice NC4) (n) introduced by Kreweras in [8], which is commonly called the
Kreweras complementation map. Following this trend, we will also refer to the
map K from (3.18) as the Kreweras complementation map of NC (B) (p, q). Note
that, due to the fact that it is an anti-isomorphism, the Kreweras complementation
map has the property that

u(m,p) =u(K(p),K(n)), Vm,peNCP(p, g)suchthatn<p,  (3.19)

where u is the Mébius function of NC®)(p, q).

Theorem 3.6. Let n > 2 be an integer, let uy s (n—1,1) be the Mobius function of

NC®B)(n—1,1), and let 0, 1 be the minimal and maximal element of NCB)(n—1, 1),
respectively. Then

— Sn—4
2n 1> n (3.20)

luNC(B)(nfl,l)(O’l) :(—1)", ( y .4n—2.

@, 9

Proof. Throughout the proof we will write “u” instead of “wy») (n—1 1)”, for com-

pactness. We will apply Lemma 3.4 to the particular case when P = NC'®) (n—1,1)
and

o= {{£1,..., £(n— 1D}, {n}, {-n}}. (3.21)

By taking into account that the meet operation of NC) (n—1,1) is just the usual
“Intersection” meet, one immediately sees that the partitions in {T € NC B (n—1,1)|

TA®= 6} can be listed explicitly as 6, 0, Ty vy W1, ety - oo, T (1), Where

o = {{n, —n}, {1}, {=1},.... {n= 1}, {=(n = 1)}},

and where forevery i € {£1,..., £(n— 1)} we put
T 1= {{l7 i’l}, {_ia —I’l}}U {{J} | .] € {:I:lv (] :|:(I’l - 1)}a |]| 7é |l|}
When applied to this particular situation, Lemma 3.4 thus implies that
SR R n—1 R n—1 R
0=p(0,1) +u(m0. 1)+ Lue(m 1)+ Lu(niT). G2
i=1 i=1

It is convenient to consider the equivalent restatement of (3.22) that is obtained by
taking Kreweras complements and by invoking formula (3.19) from Remark 3.5.2:

o:p(ﬁ, T) +,u(6, po) +'i:y(6, p,») +'i:p(6, p_,»), (3.23)

where we denoted p; := K(w;), fori e {0}U{£l,...,£(n—1)}.
Let us now determine explicitly the partitions po and p1,..., P+(,—1). We do

this by using the corresponding permutations in 5,55) (n—1,1), and formula (3.18)
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from Remark 3.5.2. For i€ {£l,...,+(n—1)}, we write T; = Q(1;) with 7, =
(i, n)(—i, —n) € B,, and we compute

T et = (1, n) (—i, —n)((1,...,n—1,—1,..., —(n—1))(n, —n))
=((1,...;i—1,n,—i,...,—(n—1)((—1,...,—(i— 1), —n,i,...,n—1).

Since p; =K (é(r,)) =Q (Tfly,,_lq 1), we thus obtain that, for i > 0,

pi={{l,....i—1l,n,—i,....,—(n—1)},{=1,...,—(i—=1),—n,i,...,n—1}},
(3.24)
with a similar formula (left to the reader) in the case i < 0. For pg, one does a similar
calculation, by writing 7y = EZ(’C()) for ©o = (n, —n) € B,. The reader should have no
difficulty in checking that this calculation simply leads to the equality po = ®, with
o taken from (3.21).

From the explicit form found in (3.24) for p; with i € {£1,..., £(n— 1)}, one
easily infers that the interval [6, p,-} of NC(B) (n—1,1) is a poset isomorphic with the
lattice NC(n). Indeed, the process of constructing a partition 6 € NC®)(n—1, 1)
such that ¢ < p; amounts precisely to breaking in a non-crossing way the block
{1,...;i=1,n,—i,...,—(n—1)} of p;, where the cyclic order of the n elements
of the block is as listed above. (This must be of course matched by the corre-
sponding, uniquely determined, non-crossing breaking of the other block {—1,...,
—(i—1), =n,i,...,n—1} of p;.) The isomorphism [0, p;] ~ NC)(n) and (3.15)
thus give us that

n _ n+1 (211 - 2)'
“(0’ p’) =0
In a similar way, one finds that the interval [6, po} of NC(B) (n—1, 1) is isomorphic
with NC®) (n— 1), hence (by (3.16)) we have

)= ()

AFinally, by substituting in (3.23) the concrete values obtained above for the
,u(O, pi), we find that

u(®1) = (37 +en e

n—1 (n—1)!n!’
and the required formula for ,u(A, T) follows by straightforward calculation.

Remark 3.7. By comparing formula (3.20) in Theorem 3.6 with the corresponding
formula (3.16) that holds for NC®)(n), we see that HNCB) () (0, 1) is different from

HNC(®) (1 1)(6, 1) for all n > 3. This implies, of course, that NC®)(n — 1, 1) %
NC®)(n) forn > 3.
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4. Rank Generating Function for NC®)(p, ¢)

In this section, we determine the rank generating function for NC®)(p, ¢). Our re-
sults follow directly from a bijection, in Proposition 4.2 below, which is similar to [7,
Lemma 2.1] and [11, Proposition 6]. As a preliminary, we have the following discus-
sion of strings of parentheses.

Remark 4.1. We let {(,)}* be the set of strings of left parentheses “(” and right
parentheses ““)”. With multiplication given by concatenation, this set forms a monoid,
with the empty string acting as identity element.

Ifs=s1---5, € {(, )}, n> 1, then the nontrivial left-substrings of s are given by
ui:=s1---8i, i =1,..., n. If all nontrivial left-substrings of s have (strictly) more left
parentheses than right parentheses, then we will say that s is legal from the left.

For s =s1---s, € {(,)}*, n > 1, the cyclic shifts of s are the n strings

n—1) = SpS182 Sp—1, S(”) =5.

S(l) =82 -8,51, S(z) =83 SpS182, ...,y S(
Suppose that s has m more left parentheses than right parentheses, for some m > 1.
Then the well-known Cycle Lemma (see for instance, the discussion in [13, p. 67])
says that exactly m of the cyclic shifts of s are legal from the left.

For example, if s is the string () (() (( , which has 5 left parentheses and 2 right
parentheses, then the 3 cyclic shifts of s that are legal from the left are

sP =000, sP =000, s¥ =00

Symmetrically, if all nontrivial right-substrings of s have more right parentheses
than left parentheses, then we say that s is legal from the right. For this case, suppose
that s has m more right parentheses than left parentheses, for some m > 1. Then the
Cycle Lemma says that exactly m of the cyclic shifts of s are legal from the right.

Proposition 4.2. Let p, g be positive integers. Suppose that c, e, i are integers sat-
isfying the inequalities stated in (2.11) of Remark 2.4, that is, 1 < ¢ < min{p, ¢},
0<e<p—c 0<i<qg—c. Then there exists a bijection between the set

1<d<2c,
(d,LF,RE,L'R") LE,REC{1,....p}, |LE| =e+c,|RE| =e, 4.1)
L'RIC{p+1,....,p+q}, [L'| =i, |Rl|=i+c

and the set of partitions in NCB) (p, q) that have connectivity equal to ¢, have e
exterior pairs of blocks, and have i interior pairs of blocks.

Proof. We will describe explicitly the constructions for two maps (d, L, RE, L', R")
— mand T — (d JLE RE LI R! ) , and we will leave it as an exercise to the reader to
check that these two maps are inverse to each other (thus giving together a bijection
as stated). We recommend that the general descriptions given below for the two
maps are read in parallel with Remark 4.3, which illustrates how the maps work on a
concrete example.
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A. Description of the map (d, LE RE LI RI) — 7. Given (d, LE RE LI, RI) as
in (4.1), insert left and right parentheses into the string

,....,p,—1,...,—p

by placing a left (right, respectively) parenthesis before (after, respectively) each oc-
currence of j and — j, for each value j in LF (RE, respectively). In this way we obtain
the string u of length 2(p+ 2e -+ c¢), consisting of numbers and parentheses. In u, there
are 2¢ more left parentheses than right parentheses, so the Cycle Lemma in Remark
4.1 implies that there are 2c¢ cyclic shifts of u beginning with a left parenthesis such
that the subsequence consisting of parentheses only is legal from the left. Suppose
that these 2c¢ cyclic shifts are given by ul) . ul2e) ordered so that ip < --- < in.
Then lett; = ulia),
Similarly, insert left and right parentheses into the string

p+l,...,p+q,—(p+1),....—(p+q)

by placing a left (right, respectively) parenthesis before (after, respectively) each oc-
currence of j and — j, for each value j in L' (R, respectively), to obtain the string v
of numbers and parentheses. In v there are 2¢ more right parentheses than left paren-
theses, so the Cycle Lemma in Remark 4.1 implies that there are 2¢ cyclic shifts of
v ending with a right parenthesis such that the subsequence consisting of parentheses
only is legal from the right. If these 2¢ cyclic shifts are vU1), ... v(i2)  ordered so
that j; < --- < joc, then letf, = ylize),

Now consider the concatenation ##; of the two strings #; and t, found above.
From the string #1t, we read off a unique partition T in NCB) (p, q) in the following
way: The numbers inside a lowest-level pair of matching parentheses form a block
of ; remove these numbers and this pair of parentheses from the string, and iterate
until the string is empty. (See part A of Remark 4.3 below, for a concrete example of
how this works.)

B. Description of the map m— (d,L*,RE, LI R"). Let m be a partition in
NCB) (p, q) that has connectivity equal to ¢, has e pairs of external blocks and has
i pairs of internal blocks. A significant fact we will use here is that (even though ©
is drawn on a circular picture) every block of T that is either an external block or an
internal block comes with a canonical total order on it, and thus has a first element
and a last element.

Indeed, say for instance, that A is an external (i.e., such that A C {#£1,..., :I:p})
block of m. Let us choose an element i € —A and, by starting from this i, let us
travel around the external circle of the annulus (in the sense that we always use for
this circle, that is, clockwise). When we do this, we encounter the elements of A in
a certain order, and this order does not depend on our choice of the starting point
i € —A. (The latter fact is an immediate consequence of the fact that the blocks A and
—A of w do not cross.) We thus end with a “canonical” total order for the elements of
A. Clearly, a similar argument can be given when we deal with an internal block of
7. Moreover, the same argument can also be used to introduce a total order on each
of the sets AN{=£1,...,£p}and AN{x(p+1),...,£(p+¢q)} in the case when A
is a connecting block of 7.
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So then, starting from the givent € NC (B) (p, q), let us draw some parentheses on
the picture representing 7, according to the following recipe:

(a) For every block A of 7 that is either an external block or an internal block, we
draw a left parenthesis immediately before the first element of A, and a right
parenthesis immediately after the last element of A.

(b) For every connecting block A of T we draw a left parenthesis immediately before
the first element of AN{=1,..., =p}, and a right parenthesis immediately after
the last element of AN{x(p+1),..., £(p+q)}.

But now, if the parentheses added to the picture of 7 are read starting from 1 on
the outside circle and starting from p+ 1 on the inside circle, then one gets two strings
of numbers and parentheses u and v, that are exactly of the same kind as the strings

denoted by “u” and “v” in part A of the proof. Furthermore, it is immediate that the
strings # and v obtained here correspond to some subsets

LELREC{1,....,p}, L' ,RIC{p+1,....,p+q},

which have the properties required in (4.1).

In order to complete the description of the map 7 — (d ,LE RE LI R! ) , we are
thus left to explain how we obtain the number d € {1,..., 2c}. It is immediate that
determining d (in the context where we have already identified the strings u# and v)
is equivalent to choosing one of the 2¢ cyclic shifts of u that are legal from the left.
Expressed directly in terms of the partition 7, this in turn amounts to choosing one of
the 2¢ connecting blocks of 7. (To be precise: If a connecting block A is chosen, then
we pick the cyclic shift of u that starts with the left parenthesis placed immediately
before the first element of AN {*1,..., ip}.) So what we have to do is to give a
procedure for canonically selecting a connecting block of ®. To do so, we look at
how the connecting blocks intersect the interior circle of the annulus: We start from
p+ 1 and move counterclockwise around the interior circle, and stop the first time
that we meet an element belonging to a connecting block. (See part B of Remark 4.3
below for a concrete example of how this works.)

Remark 4.3. Let us illustrate how the two maps described in the proof of the preced-
ing proposition work on a concrete example. Consider the situation when the integers
P, q,c,e,igivenin Proposition4.2are p=5,g=3,c=1,e=2,i=1.

A. Let us determine explicitly the partition 7t € NCB) (5,3) that corresponds (by
the first of the two maps described in the proof of Proposition 4.2) to the tuple
(d,LE,RE,LI,R’) where

d=2, [F={2,4,5}, RE={1,2}, L'={7}, R'={6,7}. (4.2)

By inserting parentheses in 1,...,5, —1,..., —5, we obtain the following string
of length 20, consisting of numbers and parentheses:

u=1)(2)3(4(5—1)(-2) —3(—-4(-s5. (4.3)
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The two cyclic shifts of u that begin with a left parenthesis and are legal from the
left are u(®) and u(1%). Since we have d = 2, the string ¢; from the description of
the above bijection is hence

n=ull%=(—4(=51)(2)3(4(5-1)(=2) —3.
In a similar way, by inserting parentheses in 6, 7, 8, —6, —7, —8 we get
v=6)(7)8 —6)(-7) 38, 4.4)

and then have
n=v®=(-7)-86)(7)8—6).

Finally, we concatenate #; and t,, and from the string ¢, we read off the desired
partition T € NC®)(5, 3), which is

n={{1,-5},{-1,5},{2},{-2},{3,—4,-6,8},{-3,4,6,-8}, {7}, {—Zj}s)

B. Conversely, let us now start from the partition © € NC®) (5,3) that appeared
in (4.5) above, and determine explicitly the tuple (d JLE RE LI R! ) that corre-
sponds to T by the second map described in the proof of Proposition 4.2.

The annular picture for © and the parentheses that have to be added to it are
shown in Figure 3 below. When looking at Figure 3, the reader should keep in
mind that the placing of a parenthesis “immediately before” (or “immediately
after”) a labelled point on one of the circles of the annulus must be always done
in agreement with the chosen running direction on that particular circle. Thus
for instance the parenthesis sitting next to —5 in Figure 3 is a “left parenthesis
placed immediately before —5”, since the outside circle is run clockwise; while
next to 6 we have a “right parenthesis placed immediately after 6™, as the running
direction on the inside circle is counterclockwise.

& 3
&L \ 43
Tl
':') A

Figure 3. Adding parentheses to the picture of a partition in NCB) (p, q).
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If we read Figure 3 starting with 1 on the outside circle and starting with 6 on the
inside circle, we find the strings # and v displayed in (4.3) and (4.4), respectively,
and from these u and v we clearly get back to the sets LE, RE, L, R! indicated in
4.2).

Finally, let us also follow on Figure 3 the procedure for finding the value of
d. What we have to do is to start from p + 1 (= 6) and move counterclockwise
around the interior circle of the annulus, and stop the first time that we meet
an element belonging to a connecting block. But in this example the number 6
belongs to the connecting block A = {3, —4, 6, —8} of m; so this is the connecting
block of m that is chosen. The first element of AN{=1,..., £ p} is —4, hence we
choose the cyclic shift of u that starts with “( —4”, and this corresponds to the
value d = 2.

Corollary 4.4. Let p, q, c, e, i be integers such that 1 < ¢ <min{p, q} and 0 < e <
p—c, 0<i<qg—c. Then there are exactly

2()02) OE) “o

partitions in NC (B) (p, q) that have connectivity equal to ¢, e exterior pairs of blocks,
and i interior pairs of blocks.

Proof. This follows by taking cardinalities in the bijection from Proposition 4.2.

As an immediate consequence of the above corollary, one can enumerate the par-
titions in NC'®) (p, ¢) by their connectivity.

Theorem 4.5. Let p, g be positive integers.

19 Forevery 1 < c¢ <min{p, q}, there are exactly

(7))
p—c¢/j\g—=¢

partitions in NC (B) (p, q) that have connectivity equal to c.

20 The’e are €xactlv
p q

partitions in NC'B) (p, q) that have connectivity equal to 0.
3° The total number of partitions in NC®) (p, q) is

+qg+ 2 2
perwal =" G)E) e

Proof. 1° From Proposition 4.2, the number of partitions of connectivity ¢ in the set
NC®)(p,q) equals

22 (DO =(EO ) (EOL)
()
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where for the second equality we used identity (3.1).

2° As observed in Remark 2.5, the partitions with connectivity 0 in NCB) (p, q) are
given by the direct product of NC'®)(p) with NC®)(g); hence their number is

‘Nc“?) (p)‘ : ‘NC(B)(q)‘ - (2;) : (2;) (by using (3.5)).

3% From the above arguments it follows that

‘NC(B) (p, q)} = (if) (2qq> +§l 2¢ (pzf C) (qZ_qC). (4.10)

In the summation over ¢ in (4.10), we observe that the ratio of two consecutive terms
is a rational function of ¢, hence we are dealing with a hypergeometric summation.
Referring to the standard notations for hypergeometric series one sees, more pre-
cisely, that

()2 () et
=1 \P—¢/\g—¢ p—1/\g—1 p+2,q+2
N 4.11)
(For the precise definition of 3F, see for instance formula (2.1.2) on [1, p. 62].)
Now, it turns out that the special 3F; series on the right-hand side of (4.11) can be

summed in closed form; this is by a theorem of Dixon (see formula (2.2.11) on [, p.
72]), which gives us that

2,=(p=1),~(¢g=1) ;) _ (p+Dlg+1)

By substituting this expression into (4.11), and then by plugging the result into (4.10),
we obtain the stated formula for the cardinality of NC®) (p, q).

From Corollary 4.4, one can also infer a formula for the rank generating function
of NC®)(p, q).

Theorem 4.6. Let p, g be positive integers and let F(x) denote the rank generating
function for NC'®)(p, q). Then

ro- () () B2

Proof. The first summation on the right-hand side of the result gives the contribution
to F (x) from partitions & € NC®) (p, ¢) that have connectivity equal to 0. Indeed, we
saw in Remark 2.5 how such a partition 7 is obtained by putting together a partition
Ty € NCB)(p) and a partition 7;,, € NC')(g); it is moreover immediate that when
this is done, the rank of 7 in NC(8) (p, q) is the sum of the ranks of 7., and T;, in
NC®)(p) and in NCB)(g), respectively. Thus when summing over partitions T €



Enumerative Properties of NC® (p,q) 297

NC®)(p, q) with connectivity equal to 0, we get

rank(m) __ xrank(nm) rank (7,
L r ro

Teext ENC<B) (P) Tint ENC(B) (q)

_ <f5 <’l’ > 2x’> <]i) (j) fo) (by (3.4)).

On the other hand, let us observe that if 1 € NC (B) (p, q) has connectivity ¢ > 1, e
pairs of exterior blocks, and i pairs of internal blocks, then from (2.8) it follows that

rank(nt) = (p+¢q) — (c+e+1).

Hence in view of Corollary 4.4, the contribution to F(x) from the partitions T €
NC®B) (p, q) that have connectivity different from 0 is given precisely by the second
summation on the right-hand side of the result.

Remark 4.7. It can be shown that the second summation on the right-hand side of
Theorem 4.6 can be reexpressed with only two summation indices instead of three, in
the form:

5 (OO o

The proof of this fact is technical, and is omitted.

5. Zeta Polynomial and Mébius Function for NC(?) (p,q)

In this section, we determine the zeta polynomial and M6bius function for NC (B) (p, q).
These follow immediately by extending the bijection given in Proposition 4.2 to count
multichains in NC(8) (p, q), similar to [7, Theorem 3.2] and [11, Proposition 7].

Proposition 5.1. For p,q > 1 and m > 2, the bijection given in Proposition 4.2
extends to a bijection between

1<c, 1<d<2c,

LERE .. RE |, C{1,...,p},

L', RL,...,RL_))  |LE|=|RE|+-+|RE_,| +e,
LR ..RL  C{p+1,...,p+q},
L] = |RY[ 4+ Ry e,

(c,d; LE RE, ..., RE

m—1>

(5.1)
and the set of multichains T < -+ < T, in NCB) (p, q), in which

rank(m;) = p+q— (|RF |+ + R |+ R |+ +|Rl,_4]), 1<i<m—1,
(5.2)
and at least one of the ; has positive connectivity.
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Proof. This proof is to a good extent a repetition of the one given earlier for Propo-
sition 4.2 (which corresponds to the case m = 2 of the present proposition). Because
of this, we will only give an outline of the argument, with emphasis on the points that
are specific to the situation at hand.

Given a tuple (c7 d;LF, Rf, RN Rﬁfﬁ L, RI17 U lefl) as in (5.1), insert left
and right parentheses into the string

,....,p,—1,...,—p,
with m — 1 types of right parentheses )* for k = 1,...,m — 1, as follows: Place a
left parenthesis before each occurrence of j and —j, for each value j in LF; for
k=1,...,m— 1, place a right parenthesis of type )* after each occurrence of j and

—Jj, for each value j in Rf . (If J occurs in both Rf and Rf , for a < b, then place
the corresponding )” to the right of the )a) In the resulting string of numbers and
parentheses, there are 2¢ more left parentheses than right parentheses, so the Cycle
Lemma in Remark 4.1 implies that there are 2c¢ cyclic shifts of the string beginning
with a left parenthesis such that the subsequence consisting of parentheses only is
legal from the left. Order these 2c¢ cyclic shifts in the canonical way (by the same
method as in the proof of Proposition 4.2), and choose the dth of them to give the
string fy.
Similarly, insert left and right parentheses into the string

P+1’7P+C]»—(P+1)»»—(P+CI),

by placing a left parenthesis before each occurrence of j and —j, for each value j in
L'; fork=1,...,m— 1, place a right parenthesis of type ) after each occurrence of
j and —j, for each value j in Ri. In the resulting string of numbers and parentheses,
there are 2c more right parentheses than left parentheses, so the Cycle Lemma in
Remark 4.1 implies that there are 2c¢ cyclic shifts of the sequence ending with a right
parenthesis such that the subsequence consisting of parentheses only is legal from
the right. Let 7, be the canonical choice (found in the same way as in the proof of
Proposition 4.2) from among these 2¢ cyclic shifts.

Now, from the string 717>, we create a partition T; in NC?) (p, q) in the following
way: The numbers inside a lowest-level pair of matching parentheses form a block
of 11; remove these numbers and this pair of parentheses from the string, and iterate
until the string is empty. Then for j = 2,..., m — 1, remove the right parentheses
of types )!,...,)/~! from ¢,t,, together with the left parentheses that pair with them,
and read the remaining string as above to obtain 7;. This produces the multichain
< <My in NCB) (p, q), and gives a bijection with the required properties.

To see that at least one of the ; has positive connectivity, note that the string ¢,

starts with (a--- and ends with ---b)‘1 .- )%, wherea € {1,..., p, —1,..., —p}, b €
{p+1,....,p+q,—p—1,....—p—q},k>1l,and 1 </{; <--- < {; <m— 1. Then,
198

in t1,, the initial left parenthesis ( is paired with the terminal right parenthesis )
and therefore ©; must have positive connectivity when ¢ < i < ¢4, since for these
choices of i, elements a and b must appear in the same block of 7; in the construction
above.
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Remark 5.2. As a concrete example for how Proposition 5.1 works, suppose we
have p =6, =3,m =3, with c =2, d = 1, LF = {1,2,3,5,6}, RE = {1,3},
RE = {3}, and L' = {8,9}, R} = {7,8,9}, R} = {7}. By inserting parentheses in
1,...,6,—1,..., —6, we obtain the string

(D'(2(3)")4(5(6(~1)"(=2(=3)")* = 4(-=5(~6,

which has 4 cyclic shifts that we might consider. Since we are given that d = 1, the
cyclic shift we select is the one that begins with “(5”, thus getting

n=(5(6(=1)"(=2(=3)")* —4(=5(-6(1)'2(3)")*4.
Similarly, we obtain
n=(=8)"(-9)'7))*®8)' ()" -7)"?,
and from the string #1>, we obtain the partitions
m ={{4,-6,7},{—4,6, -7} U{{i} 1<i| <9, |i|#4,6,7},
m, ={{1,4,-5,-6,7,-8, -9}, {-1,-4,5,6,-7,8,9},{2,3}, {-2, -3}}.

Note that ©; < 7p, and that both m; and ®, have positive connectivity (both have
connectivity equal to 1).

As an immediate enumerative consequence of Proposition 5.1, we obtain the zeta
polynomial for NCB)(p, q).

Theorem 5.3. Let p, g be positive integers.

1° The zeta polynomial of NCB)(p, q) is given by

p
Zyc®) (p.9) (m) = (n;p) (n:]q) * ;26 (pm—p C) (qnfc*)' (5-3)

2° The number of maximal chains in NC®) (p, q) is equal to

(p :q) P+ Y 2 (iff) PG (5:4)

c>1

Proof. 1° The zeta polynomial Zp of a partially ordered set P is defined via the
condition that for every m > 2, the value Zp(m) is equal to the number of multichains
m < --- <@y_1 in P (see [12, Section 3.11]). From Proposition 5.1, the number of
such multichains in which at least one of the &t; has positive connectivity is given by

p - TG )
2c .
L; al,..g’m_l, <al+---+am1+6> <b1+---+bm1—c>]Hl aj) \bj

Bloeos by >0
(5.5)
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The summation in (5.5) can be simplified if one invokes a well-known multinomial
formula (which incidentally is a generalization of the binomial identity (3.1) used in
the preceding sections), stating that for any integers Ay, ..., Ag, Axg+1 > 0and 0 < b <
Ags1, we have

y <A1> <Ak> < At > _ <A1+"'+Ak+1) (5.6)
ap. >0 \d1 ag) \a1+---+ag+b Apr1—b ' ’

By applying (5.6) to the inner summation, we find that (5.5) can be simplified to

27 () 5

On the other hand, we also have a simple formula for multichains ) < --- <
T,,—1 in which all of the m; have connectivity equal to 0. Indeed, these are simply
multichains in the direct product of NC®)(p) with NC®)(g), and thus the number of
these is given by

Znietw) () () - Zyycio gy () = (";"’ ) (";q) (5:8)

from [11, Proposition 7].
The expression for Zy, ) ) (m) now follows by adding together (5.7) and (5.8).

2 For any partially ordered set P, the number of maximal chains is given by d!
times the coefficient of m? in Zp(m), where the zeta polynomial Zp(m) has degree d
(see [12, Proposition 3.11.1(a)]). From part 1° of this result, we have d = p + ¢ in
this case, and the result follows from part 1°.

Corollary 5.4. For p,q> 1, NC®)(p, q) has Mobius function

HNc®) (p,q) (6’ T)

2p—1\ [2g—1 2 2 -1\ /2 -1
- ()0 )20
p q = -1 g—1
Proof. This follows immediately from Theorem 5.3, using the fact that for any par-
tially ordered set P, one has ,up(O 1) Zp(—1) (see [12, Proposition 3.11.1(c)]).

Remark 5.5. 1t is straightforward to specialize Corollary 5.4 to the case p =n—1,
q = 1, either by directly evaluating the summation or by setting p =1, g =n—1
and using the symmetry between p and ¢g. Using either of these means, we obtain
the expression given in Theorem 3.6. Note further that we can specialize Theorem
5.3 itself in the same way, to obtain that for every n > 2, the zeta polynomial of
NC®)(n—1,1) is given by the formula

Zyets)uet, 1) (m) = (2+ 1) 1)> - (m(”n_ 1)>. (5.9)
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6. The Case NC®)(n,... ny)

In this section, we consider the extension to multiannular non-crossing partitions of
type B. The main point of the section is to establish that, due to a topological restric-
tion called “the genus inequality”, the general multiannular case reduces in fact to the
cases of non-crossing partitions of type B in a disc or an annulus.

We find it convenient to introduce the following notation.

Notation 6.1. 1° For T € By, let #(1) denote the number of orbits of 1, and let ii(T)
denote the number of inversion-invariant orbits of 7.

2° For T, G € By, let #(1, ) denote the number of orbits for the action of the sub-
group of B, generated by {1, 6}.

Remark 6.2. 1° In terms of the notations introduced above, the formula (2.7) for the
length of an element T € B,, is now written in the form

lg(t) =n— , (#(t) —ii(T)). (6.1)

2° The genus inequality mentioned at the beginning of the section is an inequality
that arises in multiplying arbitrary permutations, and is stated as follows: For any
permutations T, ¢ of a finite set X, we have

#(0) +#(1) +#(t"'o) < |X|+2-#(1,0). (6.2)

The name “genus inequality” comes from the fact that the difference of the right-
hand side and left-hand side of (6.2) is a non-negative even integer 2g, where
g is the genus for a certain orientable surface constructed from T and G (see,
e.g., [9, Proposition 1.5.3]).

Definition 6.3. Throughout the rest of the section, we let Y be a fixed element of
By, with #(y) = ii(y) = k, in which the k orbits of ¥ have sizes 2n,...,2ny, where
ni,...,np > landny +-- -+ n = n. Analogously to (2.4) and (2.5), we define

Sy, ) ={t€B,|T<Y}, 6.3)

where the partial order < was defined in (2.3). We then define NC'B) (n1,...,nk) as
in (2.6), by putting

NC® (ny,... my) = {Ez(r) |t e 5,$f)(nl,...,nk)}, (6.4)

where the adjusted orbit map Qisasin Definition 2.2.

Proposition 6.4. Let T be a permutation in 5,§f> (n1,...,ng). We denote #(1,Y) =:m
(1 <m<k). LetY,...,Y, denote the orbits counted by #(t,7), with |Yj‘ =2y,
j=1,...,m. Moreover, for every 1 < j < m, let us denote the restrictions of T and 'y
toY; by T and vj, respectively. We then have

#(yj) =i (v)) <2, j=1...,m. (6.5)
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Proof. Note that Y; = X; U (—X;), for j=1,..., m, where {Xi,..., X,,} is a partition
of {1,..., n} into nonempty subsets, with ‘Xj‘ =y, for 1 < j < m. Now, the triangle
inequality (2.2) gives

) <tm)+(v'y),  j=l.m

Then these inequalities, together with (2.3), (6.3) and the facts that £5(y) = (Y1) +
s +€B(’Ym), EB(T) = 63(11 ) —+ .- —|—€B(’Cm), give

TE 5,55)(n1,...,nk) =g (yj) =g (t;)+{p (r;lyj) ) j=1,....m.  (6.6)

But, from (6.1), rearranging the equation in (6.6), and using the fact that #(y;) =
ii (y;), we obtain

#y) +#(5) (1) =20 i) i) i (1), = Tem.
6.7)
On the other hand, the genus inequality (6.2) implies that

# )+ () +# (T 115) <2042, ©68)
since #(t;,7Y;) = 1. Thus (6.7) and (6.8) together imply that
ii () + i () + ii (r;lyj) <2,
and, in particular, that ii (y;) < 2, as required.

Remark 6.5. When rephrased in terms of partitions, Proposition 6.4 says that every
partition © € NC(®) (n1,..., ng) splits the k orbits of y into groups of cardinality 1 or
2; thus 7 is obtained by putting together several separate “pieces”, where each piece
is either a non-crossing partition of type B in a disc, or a non-crossing partition of
type B in an annulus — precisely the cases that were considered earlier in the paper.
Due to this phenomenon, the enumerative properties of NCB) (n1,...,ng) are quickly
reduced to what we know from the disc and the annular cases, where one also has to
do a suitable summation over partial matchings for the & orbits of . For illustration,
we finish with an example of how such a calculation is carried out, in the particular
case when k = 3.

Example 6.6. Suppose k = 3, and we want to determine the total number of partitions
in NC®) (n1, n2, n3). By invoking Proposition 6.4, taking into account that there are
4 possible partial matchings of the set of 3 orbits of y, we find that

NC® (ny, o, n3)’ - ‘NC(B) (m1 )] |NE®) (ns, m)‘ + ‘NC<B) (nz)‘ : ‘Nc@ (n1, n3)

+ ‘NC<B) (n3)|- ‘NC(+B) (n1, nz)’

o+ [NC® )| [N )| - [N ()
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where N C(f) (p, q) denotes the subset of NC'®) (p, ¢) with positive connectivity. But
Theorems 4.5.2 and 4.5.3 give

’NC&BJ (p, q)’ = ppfq (25) (zqq)’

and from these results together with (3.5) we conclude that

2 2 2
NC(B)(m,nz,m)‘: pq MR, M i & 2 "3
ny+ny ni+n3 n3+n3 n ny n3
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