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Abstract

Hurwitz numbers count branched covers of the Riemann sphere with specified ramification, or equiv-
alently, transitive permutation factorizations in the symmetric group with specified cycle types. Monotone
Hurwitz numbers count a restricted subset of these branched covers, related to the expansion of complete
symmetric functions in the Jucys–Murphy elements, and have arisen in recent work on the asymptotic ex-
pansion of the Harish-Chandra–Itzykson–Zuber integral. In previous work we gave an explicit formula for
monotone Hurwitz numbers in genus zero. In this paper we consider monotone Hurwitz numbers in higher
genera, and prove a number of results that are reminiscent of those for classical Hurwitz numbers. These
include an explicit formula for monotone Hurwitz numbers in genus one, and an explicit form for the gen-
erating function in arbitrary positive genus. From the form of the generating function we are able to prove
that monotone Hurwitz numbers exhibit a polynomiality that is reminiscent of that for the classical Hur-
witz numbers, i.e., up to a specified combinatorial factor, the monotone Hurwitz number in genus g with
ramification specified by a given partition is a polynomial indexed by g in the parts of the partition.
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1. Introduction

1.1. Classical Hurwitz numbers

Hurwitz numbers count branched covers of the Riemann sphere with specified ramification
data. The most general case which is commonly studied is that of double Hurwitz numbers
Hg(α, β), where two points on the sphere are allowed to have non-simple ramification. That is,
for two partitions α, β ⊢ d, the Hurwitz number Hg(α, β) counts degree d branched covers
of the Riemann sphere by Riemann surfaces of genus g with ramification type α over 0 (say),
ramification type β over ∞ (say), and simple ramification over r other arbitrary but fixed points
(where r = 2g − 2 + ℓ(α) + ℓ(β) by the Riemann–Hurwitz formula), up to isomorphism. The
original case of single Hurwitz numbers Hg(α) is obtained by taking β = (1d), corresponding
to having no ramification over ∞.

If we label the preimages of some unbranched point by 1, 2, . . . , d , then Hurwitz’s
monodromy construction [11] identifies Hg(α, β) bijectively with the number of (r + 2)-tuples
(ρ, σ, τ1, . . . , τr ) of permutations in the symmetric group Sd such that

(1) ρ has cycle type α, σ has cycle type β, and the τi are transpositions;
(2) the product ρστ1 · · · τr is the identity permutation;
(3) the subgroup ⟨ρ, σ, τ1, . . . , τr ⟩ ⊆ Sd is transitive; and
(4) the number of transpositions is r = 2g − 2 + ℓ(α)+ ℓ(β).

The double Hurwitz numbers were first studied by Okounkov [16], who addressed a
conjecture of Pandharipande [17] in Gromov–Witten theory by proving that a certain generating
function for these numbers is a solution of the 2-Toda lattice hierarchy from the theory of
integrable systems. Okounkov’s result implies that a related generating function for the single
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Hurwitz numbers is a solution of the KP hierarchy, and as shown by Kazarian and Lando [12,13]
via the ELSV formula [1], this further implies the celebrated Witten–Kontsevich theorem [14,22]
relating intersection theory on moduli spaces to integrable systems. These developments, which
revealed rich connections between algebraic geometry and mathematical physics, have led to
renewed interest in the Hurwitz enumeration problem.

1.2. Monotone Hurwitz numbers

Recently, a new combinatorial twist on Hurwitz numbers emerged in random matrix
theory. Fix a pair A, B of N × N normal matrices, and consider the so-called Harish-
Chandra–Itzykson–Zuber integral

I N (z; A, B) =


U(N )

e−zN Tr (AU BU−1)dU,

where the integration is over the group of N × N unitary matrices equipped with its Haar
probability measure. Since U(N ) is compact, the integral converges to define an entire function
of the complex variable z. This function is one of the basic special functions of random matrix
theory. A problem of perennial interest, whose solution would have diverse applications, is to
determine the N → ∞ asymptotics of I N (z; AN , BN ) when AN , BN are given sequences of
normal matrices which grow in a suitably regular fashion.

A new approach to the asymptotic analysis of the HCIZ integral was initiated in [2]. Fix a
simply-connected domain DN containing z = 0 on which I N (z; A, B) is non-vanishing. Then
the equation

I N (z; A, B) = eN 2 F N (z;A,B)

has a unique holomorphic solution on DN subject to F N (0; A, B) = 1. In [2], we proved that,
for 1 ≤ d ≤ N , the dth derivative of F N (z; A, B) at z = 0 is given by the absolutely convergent
series

F (d)
N (0; A, B) =

∞
g=0

Cg,d(A, B)

N 2g

with coefficients

Cg,d(A, B) =


α,β⊢d

(−1)d+ℓ(α)+ℓ(β) H⃗g(α, β)
pα(A)

N ℓ(α)

pβ(B)

N ℓ(β)
,

where pα(A), pβ(B) are power-sum symmetric functions specialized at the eigenvalues of
A, B and H⃗g(α, β) is the number of (r + 2)-tuples (ρ, σ, τ1, . . . , τr ) of permutations from the
symmetric group Sd such that

(1) ρ has cycle type α, σ has cycle type β, and the τi are transpositions;
(2) the product ρστ1 · · · τr is the identity permutation;
(3) the subgroup ⟨ρ, σ, τ1, . . . , τr ⟩ ⊆ Sd is transitive;
(4) the number of transpositions is r = 2g − 2 + ℓ(α)+ ℓ(β); and
(5) writing each τi as (ai bi ) with ai < bi , we have b1 ≤ · · · ≤ br .

Clearly, if condition (5) is suppressed, the numbers H⃗g(α, β) become the classical double
Hurwitz numbers Hg(α, β), so H⃗g(α, β) can be seen as counting a restricted subset of the
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branched covers counted by Hg(α, β). These desymmetrized Hurwitz numbers were dubbed
monotone double Hurwitz numbers in [2].

In this paper, we study the monotone single Hurwitz numbers H⃗g(α) = H⃗g(α, 1d) and prove
a monotone analogue of ELSV polynomiality in genus g ≥ 2. This result was used in [2] to prove
the N → ∞ convergence of F N (z; AN , BN ) under appropriate hypotheses. We also obtain an
exact formula for H⃗1(α). Before stating these results, we recall our previous work on monotone
Hurwitz numbers in genus zero.

1.3. Previous results for genus zero

We introduce the notational convention H⃗ r (α) = H⃗g(α), where it is understood that for a
given partition α ⊢ d, the parameters r and g determine one another via the Riemann–Hurwitz
formula r = 2g − 2 + ℓ(α)+ d .

In our previous paper [3] on monotone Hurwitz numbers in genus zero, we considered the
generating function for monotone single Hurwitz numbers

H⃗(z, t,p) =


d≥1

zd

d !


r≥0

tr

α⊢d

H⃗ r (α)pα (1.1)

as a formal power series in the indeterminates z, t and p = (p1, p2, . . .), where pα denotes the
product

ℓ(α)
j=1 pα j . We proved the following result, which gives a partial differential equation

with initial condition that uniquely determines the generating function H⃗. Our proof is a
combinatorial join–cut analysis, and we refer to the partial differential equation in this result
as the monotone join–cut equation.

Theorem 1.1 ([3]). The generating function H⃗ is the unique formal power series solution of the
partial differential equation

1
2t


z
∂H⃗
∂z

− zp1


=

1
2


i, j≥1


(i + j)pi p j

∂H⃗
∂pi+ j

+ i j pi+ j
∂2H⃗
∂pi∂p j

+ i j pi+ j
∂H⃗
∂pi

∂H⃗
∂p j



with the initial condition [z0
]H⃗ = 0.

The differential equation of Theorem 1.1 is the monotone analogue of the classical join–cut
equation which determines the single Hurwitz numbers. To make this precise, consider the
generating function for the classical single Hurwitz numbers

H(z, t,p) =


d≥1

zd

d !


r≥0

tr

r !


α⊢d

H r (α)pα. (1.2)

As shown in [4,8], H is the unique formal power series solution of the partial differential equation
(called the (classical) join–cut equation)

∂H
∂t

=
1
2


i, j≥1


(i + j)pi p j

∂H
∂pi+ j

+ i j pi+ j
∂2H
∂pi∂p j

+ i j pi+ j
∂H
∂pi

∂H
∂p j


(1.3)

with the initial condition [t0
]H = zp1. Note that the classical join–cut equation (1.3) and the

monotone join–cut equation given in Theorem 1.1 have exactly the same differential forms on
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the right-hand side, but differ on the left-hand side, where the differentiated variable is t in one
case, and z in the other.

In [3], we used the monotone join–cut equation to obtain the following explicit formula for
the genus zero monotone Hurwitz numbers.

Theorem 1.2 ([3]). The genus zero monotone single Hurwitz number H⃗0(α), α ⊢ d is given by

H⃗0(α) =
d !

|Autα|
(2d + 1)ℓ(α)−3

ℓ(α)
j=1


2α j

α j


,

where

(2d + 1)k = (2d + 1)(2d + 2) · · · (2d + k)

denotes a rising product with k factors, and by convention

(2d + 1)k =
1

(2d + k + 1)−k
, k < 0.

Theorem 1.2 is strikingly similar to the well-known explicit formula for the genus zero
Hurwitz number

H0(α) =
d !

|Autα|
(d + ℓ(α)− 2)! d ℓ(α)−3

ℓ(α)
j=1

α
α j
j

α j !
, (1.4)

published without proof by Hurwitz [11] in 1891 (see also Strehl [20]) and independently
rediscovered and proved a century later by Goulden and Jackson [4].

1.4. Main results

In this paper we consider monotone Hurwitz numbers in all positive genera. For genus one,
corresponding to branched covers of the sphere by the torus, we obtain the following exact
formula.

Theorem 1.3. The genus one monotone single Hurwitz number H⃗1(α), α ⊢ d is given by

H⃗1(α) =
1

24
d !

|Autα|

ℓ(α)
j=1


2α j

α j


(2d + 1)ℓ(α) − 3(2d + 1)ℓ(α)−1

−

ℓ(α)
k=2

(k − 2)!(2d + 1)ℓ(α)−kek(2α + 1)


,

where ek(2α + 1) is the kth elementary symmetric polynomial of the values {2αi + 1: i =

1, 2, . . . , ℓ(α)}.

For arbitrary genus g ≥ 0, let

H⃗g(p) =


d≥1


α⊢d

H⃗g(α)
pα
d !
. (1.5)

Our main result, stated below, gives explicit forms for these genus-specific generating functions
in all positive genera.
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Theorem 1.4. Let q = (q1, q2, . . .) be a countable set of formal power series in the indetermi-
nates p = (p1, p2, . . .), defined implicitly by the relations

q j = p j (1 − γ )−2 j , j ≥ 1, (1.6)

where γ, η, η j , j ≥ 1 are formal power series defined by

γ =


k≥1


2k

k


qk, η =


k≥1

(2k + 1)


2k

k


qk, η j =


k≥1

(2k + 1)k j


2k

k


qk .

(i) The generating function for genus one monotone Hurwitz numbers is given by

H⃗1 =
1
24

log
1

1 − η
−

1
8

log
1

1 − γ
.

(ii) For g ≥ 2, the generating function for genus g monotone Hurwitz numbers is given by

H⃗g = −cg,(0) +

3g−3
d=0


α⊢d

cg,α ηα

(1 − η)ℓ(α)+2g−2
,

where the cg,α are rational constants.
(iii) For g ≥ 2, the rational constant cg,(0) is given by

cg,(0) =
−B2g

2g(2g − 2)
,

where B2g is a Bernoulli number.

Note that our proof of Theorem 1.4 is not just an existence proof; the computations to
determine the coefficients cg,α are quite feasible in practice if the coefficients for lower values of
g are known. For example, for genus g = 2, we obtain the expression

6! · H⃗2 =


−3 +

3

(1 − η)2


+

5η3 − 6η2 − 5η1

(1 − η)3
+

29η1η2 − 10η2
1

(1 − η)4
+

28η3
1

(1 − η)5
. (1.7)

For genus g = 3, the corresponding expression for H⃗3 is given in the Appendix.
A key consequence of Theorem 1.4 is that it implies the polynomiality of the monotone single

Hurwitz numbers themselves.

Theorem 1.5. For each pair (g, ℓ) with (g, ℓ) ∉ {(0, 1), (0, 2)}, there is a polynomial P⃗g,ℓ in ℓ
variables such that, for all partitions α ⊢ d, d ≥ 1, with ℓ parts,

H⃗g(α) =
d !

|Autα|
P⃗g,ℓ(α1, . . . , αℓ)

ℓ
j=1


2α j

α j


.

1.5. Comparison with the classical Hurwitz case

For genus one, the explicit formula for the monotone Hurwitz number given in Theorem 1.3
is strongly reminiscent of the known formula for the Hurwitz number, given by
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H1(α) =
1

24
d !

|Autα|
(d + ℓ(α))!

ℓ(α)
j=1

α
α j
j

α j !

×


dℓ(α) − dℓ(α)−1

−

ℓ(α)
k=2

(k − 2)!dℓ(α)−kek(α)


,

which was conjectured in [8] and proved by Vakil [21] (see also [5]).
The expressions for H⃗g given in Theorem 1.4 above should be compared with the analogous

explicit forms for the generating series

Hg(p) =


d≥1


α⊢d

Hg(α)

(2g − 2 + ℓ(α)+ d)!

pα
d !

for the classical Hurwitz numbers. Adapting notation from previous works [5,6,9] in order to
highlight this analogy, let r = (r1, r2, . . .) be a countable set of formal power series in the
indeterminates p = (p1, p2, . . .), defined implicitly by the relations

r j = p j e
jδ, j ≥ 1, (1.8)

and let δ, φ, φ j , j ≥ 1 be formal power series defined by

δ =


k≥1

kk

k!
rk, φ =


k≥1

kk+1

k!
rk, φ j =


k≥1

kk+ j+1

k!
rk .

Then, the genus g = 1 Hurwitz generating series is [5]

H1 =
1

24
log

1
1 − φ

−
1

24
δ,

and for g ≥ 2 we have [9]

Hg =

3g−3
d=2g−3


α⊢d

ag,αφα

(1 − φ)ℓ(α)+2g−2
, (1.9)

where the ag,α are rational constants. For example, when g = 2 we obtain [6]

23
· 6! H2 =

5φ3 − 12φ2 + 7φ1

(1 − φ)3
+

29φ1φ2 − 25φ2
1

(1 − φ)4
+

28φ3
1

(1 − φ)5
. (1.10)

For genus g = 3, the corresponding expression for H3 is given in the Appendix.
Theorem 1.5 is the exact analogue of polynomiality for the classical Hurwitz numbers,

originally conjectured in [8], which asserts the existence of polynomials Pg,ℓ such that, for all
partitions α ⊢ d with ℓ parts,

Hg(α) =
d !

|Autα|
(d + ℓ+ 2g − 2)!Pg,ℓ(α1, . . . , αℓ)

ℓ
j=1

α
α j
j

α j !
. (1.11)
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1.6. A possible geometric interpretation

The only known proof of Eq. (1.11) relies on the ELSV formula [1],

Pg,ℓ(α1, . . . , αℓ) =


Mg,ℓ

1 − λ1 + · · · + (−1)gλg

(1 − α1ψ1) · · · (1 − αℓψℓ)
. (1.12)

Here Mg,ℓ is the (compact) moduli space of stable ℓ-pointed genus g curves, ψ1, . . . , ψℓ are
(complex) codimension 1 classes corresponding to the ℓ marked points, and λk is the (complex
codimension k) kth Chern class of the Hodge bundle. Eq. (1.12) should be interpreted as
follows: formally invert the denominator as a geometric series; select the terms of codimension
dim Mg,ℓ = 3g − 3 + ℓ; and “intersect” these terms on Mg,ℓ.

In contrast to this, our proof of Theorem 1.5 is entirely algebraic and makes no use of
geometric methods. A geometric approach to the monotone Hurwitz numbers would be highly
desirable. The form of the rational expression given in part (ii) of Theorem 1.4, in particular
its high degree of similarity with the corresponding rational expression (1.9) for the generating
series of the classical Hurwitz numbers, seems to suggest the possibility of an ELSV-type formula
for the polynomials P⃗g,ℓ. Further evidence in favour of such a formula is obtained from the values
of the rational coefficients that appear in these expressions. First, the Bernoulli numbers have
known geometric significance. Second, comparing the expressions (1.7) and (1.10) for genus 2
and the expressions in the Appendix for genus 3 gives strong evidence for the conjecture (now a
theorem, see [10, Chapter 6]) that

cg,α = 23g−3ag,α, α ⊢ 3g − 3, (1.13)

where cg,α and ag,α are the rational coefficients that appear in Theorem 1.4(ii) and (1.9),
respectively. But the ELSV formula implies that the coefficients ag,α in the rational form (1.9) are
themselves Hodge integral evaluations, and for the top terms α ⊢ 3g − 3 these Hodge integrals
are free of λ-classes—the Witten case. Eq. (1.13), which deals precisely with the case α ⊢ 3g−3,
might be a good starting point for the formulation of an ELSV-type formula for the monotone
Hurwitz numbers.

1.7. Organization

The bulk of this paper is dedicated to proving parts (i) and (ii) of Theorem 1.4, which give an
explicit expression for the generating function H⃗1 and a rational form for H⃗g, g ≥ 2. Part (iii) of
Theorem 1.4, which specifies the lowest order term in the rational form for H⃗g, g ≥ 2, follows
directly from a result of Matsumoto and Novak [15]. For this reason, we present this proof first,
in Section 2.

The necessary definitions and results from our previous paper [3] dealing with the genus
zero case are given in Section 3, together with additional technical machinery and results. In
Section 4, we introduce a particular ring of polynomials, and establish the general form of a
transformed version of the generating function H⃗g, g ≥ 1. In Section 5, we invert this transform,
and thus prove parts (i) and (ii) of Theorem 1.4. In Section 6, we use Lagrange’s Implicit Function
Theorem to evaluate the coefficients in H⃗g , and thus prove Theorems 1.3 and 1.5. Finally, the
generating functions H⃗3 and H3 are given in the Appendix.
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2. Bernoulli numbers

The computation of the constant term cg,(0) for g ≥ 2 in Theorem 1.4 relies on a general
formula of Matsumoto and Novak (see [15]) for monotone single Hurwitz numbers for the special
case of permutations with a single cycle. We give the proof here, as it does not depend on the
machinery needed to prove the rest of Theorem 1.4.

Proof of Theorem 1.4(iii). To compute the monotone single Hurwitz number for a permutation
with a single cycle, we can expand the expression for H⃗g given in Theorem 1.4 as a power series
in η, η1, η2, . . . , and then further expand this as a power series in p = (p1, p2, . . .), throwing
away any terms of degree higher than 1 at each step. For the partition (d) consisting of a single
part, this yields the expression

H⃗g((d)) = d ![pd ]H⃗g = d ![pd ]


(2g − 2)cg,(0)η +

3g−3
k=1

cg,(k)ηk



=
(2d)!

d !


(2g − 2)cg,(0) (2d + 1)+

3g−3
k=1

cg,(k)(2d + 1)dk


.

For fixed g, this expression is (2d)!/d ! times a polynomial in d , and evaluating this polynomial
at d = 0 gives (2g − 2)cg,(0). In contrast, according to Matsumoto and Novak’s formula
[15, Eq. (48)], we have

H⃗g((d)) =
(2d)!

d !


2g − 2 + 2d

2g − 2


1

2g(2g − 1)


z2g

(2g)!


sinh(z/2)

z/2

2d−2

.

Again, for fixed g, this expression is (2d)!/d ! times a polynomial in d . Evaluating this
polynomial at d = 0 gives

(2g − 2)cg,(0) =
1

2g(2g − 1)


z2g

(2g)!


sinh(z/2)

z/2

−2

=
1

2g(2g − 1)


z2g

(2g)!


z
∂

∂z
− 1


−z

ez − 1
=

−B2g

2g
,

since z/(ez
− 1) is the exponential generating function for the Bernoulli numbers. �

3. Algebraic methodology and a change of variables

3.1. Algebraic methodology

In our previous paper [3] on monotone Hurwitz numbers in genus zero, we introduced three
(families of) operators: the lifting operators ∆i , the projection operators Πi , and the splitting
operators Split i→ j , which involve the indeterminates p = (p1, p2, . . .) and a collection of
auxiliary indeterminates x = (x1, x2, . . .). These operators were defined by

∆i =


k≥1

kxk
i
∂

∂pk
,

Πi = [x0
i ] +


k≥1

pk[x
k
i ],

Split
i→ j

F(xi ) =
x j F(xi )− xi F(x j )

xi − x j
+ F(0).
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In terms of these operators, the genus-specific generating functions H⃗g defined in Eq. (1.5) for
g ≥ 0 are characterized by the following result, which is essentially a reworking of the monotone
join–cut equation given in Theorem 1.1.

Theorem 3.1 ([3]).

(i) The generating function ∆1H⃗0 is the unique formal power series solution in the ring
Q[[p, x1]] of

∆1H⃗0 = Π2 Split
1→2

∆1H⃗0 + (∆1H⃗0)
2
+ x1

with the initial condition [p(0)x0
1 ]∆1H⃗0 = 0.

(ii) For g ≥ 1,∆1H⃗g is uniquely determined in terms of ∆1H⃗i , 0 ≤ i ≤ g − 1, by
1 − 2∆1H⃗0 − Π2 Split

1→2


∆1H⃗g = ∆2

1H⃗g−1 +

g−1
g′=1

∆1H⃗g′ ∆1H⃗g−g′ .

(iii) For g ≥ 0, the generating function H⃗g is uniquely determined by the generating function
∆1H⃗g and the fact that [p(0)]H⃗g = 0.

3.2. A change of variables

In [3], where we determined ∆1H⃗0 from Theorem 3.1(i), we found it convenient to change
variables from p = (p1, p2, . . .) and x = (x1, x2, . . .) to q = (q1, q2, . . .) and y = (y1, y2, . . .)

via the relations

q j = p j (1 − γ )−2 j , y j = x j (1 − γ )−2, j ≥ 1, (3.1)

and to define the formal power series γ, η, η j , j ≥ 1 by

γ =


k≥1


2k

k


qk, η =


k≥1

(2k + 1)


2k

k


qk, η j =


k≥1

(2k + 1)k j


2k

k


qk .

Expressing the operators ∆i ,Πi ,Split i→ j in terms of q and y, we obtained

∆i =


k≥1


kyk

i
∂

∂qk


+

4yi

(1 − 4yi )
3
2 (1 − η)


k≥1


kqk

∂

∂qk
+ yk

∂

∂yk


,

Πi = [y0
i ] +


k≥1

qk[yk
i ],

Split
i→ j

F(yi ) =
y j F(yi )− yi F(y j )

yi − y j
+ F(0).

We were also able to show that

E =
1 − η

1 − γ
D, (3.2)

where D =


k≥1 kpk
∂
∂pk

, and E =


k≥1 kqk
∂
∂qk

, and, for each k ≥ 1, that

qk
∂

∂qk
= pk

∂

∂pk
−

2qk

1 − γ


2k

k


D.
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Summing this over k ≥ 1 gives

E = D −
2γ

1 − γ
D, (3.3)

where D =


k≥1 pk
∂
∂pk

, and E =


k≥1 qk
∂
∂qk

.
In terms of these transformed variables, we were able to solve the monotone join–cut equation

for genus 0 given in Theorem 3.1(i), to obtain [3, Corollary 4.3]

∆1H⃗0 = Π2 A,

A = 1 − (1 − 4y1)
1
2 −

y1(1 − 4y1)
1
2

2(y1 − y2)


(1 − 4y1)

−
1
2 − (1 − 4y2)

−
1
2


. (3.4)

In this paper we will be solving the monotone join–cut equation for genus g given in
Theorem 3.1(ii). The following result will allow us to reexpress the left-hand side of this equation
in a more tractable form.

Proposition 3.2. For g ≥ 1, we have
1 − 2∆1H⃗0 − Π2 Split

1→2


∆1H⃗g = (1 − T)


(1 − η)(1 − 4y1)

1
2 ∆1H⃗g


,

where T is the Q[[q]]-linear operator defined by

T(F) = (1 − η)−1Π2(1 − 4y2)
−

3
2 Split

1→2
((1 − 4y1)F) .

Proof. From (3.4) and the expression for ∆1 given above (and using the fact that ∆1H⃗g has no
constant term as a power series in y1), we have

LHS = Π2


(1 − 2A)∆1H⃗g −

y2∆1H⃗g − y1∆2H⃗g

y1 − y2



= Π2


((y1 − y2)(1 − 2A)− y2)∆1H⃗g + y1∆2H⃗g

y1 − y2


.

But it is routine to check that

(y1 − y2)(1 − 2A)− y2 = (y1 − y2)


2 − (1 − 4y2)
−

3
2


(1 − 4y1)

1
2

− y2(1 − 4y2)
−

3
2 (1 − 4y1)

3
2 ,

so we have

LHS = Π2


2 − (1 − 4y2)

−
3
2


(1 − 4y1)

1
2 ∆1H⃗g

−
y2(1 − 4y2)

−
3
2 (1 − 4y1)

3
2 ∆1H⃗g − y1∆2H⃗g

y1 − y2


= (1 − η)(1 − 4y1)

1
2 ∆1H⃗g − Π2(1 − 4y2)

−
3
2 Split

1→2


(1 − 4y1)

3
2 ∆1H⃗g


,

giving the result. �
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3.3. Auxiliary power series

We also find it convenient to define auxiliary power series related to the power series γ, η and
η j , j ≥ 1 in Q[[q]] which appear in the statement of Theorem 1.4. These are the power series
γ (yi ), η(yi ), and η j (yi ), j ≥ 1 in Q[[y]], defined by

γ (yi ) = (1 − 4yi )
−

1
2 − 1 =


k≥1


2k

k


yk

i ,

η(yi ) = (1 − 4yi )
−

3
2 − 1 =


k≥1

(2k + 1)


2k

k


yk

i ,

η j (yi ) =


yi
∂

∂yi

 j

(1 − 4yi )
−

3
2 =


k≥1

(2k + 1)k j


2k

k


yk

i , j ≥ 1,

so that

Πiγ (yi ) = γ, Πiη(yi ) = η, Πiη j (yi ) = η j , j ≥ 1. (3.5)

3.4. Computational lemmas

The following computational lemmas are used extensively in the rest of the paper to apply the
lifting operator ∆1 to expressions involving the indeterminates y and the series γ, η, η1, η2, . . . .

Lemma 3.3. For F ∈ Q[[q, y]], we have the identity

∆1Π2 F = Π2∆1 F + y1
∂F

∂y2


y2=y1

.

Proof. We compute directly the commutator

∆1Π2 − Π2∆1 =


k≥1


kyk

1 [yk
2 ] +

4y1

(1 − 4y1)
3
2 (1 − η)


kqk[yk

2 ] − qk[yk
2 ]y2

∂

∂y2


=


k≥1

kyk
1 [yk

2 ],

and the result follows immediately. �

Lemma 3.4. We have

∆1 y j = 4y1 y j (1 − 4y1)
−

3
2 (1 − η)−1, j ≥ 1,

∆1η = η1(y1)+ 4y1(1 − 4y1)
−

3
2 η1(1 − η)−1,

∆1η j = η j+1(y1)+ 4y1(1 − 4y1)
−

3
2 η j+1(1 − η)−1, j ≥ 1.

Proof. The first equation follows directly from the expression for ∆1 given in Section 3.2. The
other two equations can be obtained by applying Lemma 3.3 to the expressions in (3.5) for η
and η j . �

Proposition 3.5.

∆2
1H⃗0 = y2

1(1 − 4y1)
−2.
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Proof. Using (3.4) and Lemma 3.3, we obtain

∆2
1H⃗0 = Π2∆1 A + y1

∂A

∂y2


y2=y1

. (3.6)

We will consider the two terms in (3.6) separately. For the first term, from ∆1
y1

y1−y2
= 0 (since

y1
y1−y2

=
x1

x1−x2
and ∆1(x1) = ∆1(x2) = 0) and of course ∆1(1) = 0, we have

∆1 A =


−1 +

y1

2(y1 − y2)
(1 − 4y2)

−
1
2


∆1(1 − 4y1)

1
2

+
y1

2(y1 − y2)
(1 − 4y1)

1
2 ∆1(1 − 4y2)

−
1
2 .

Applying Lemma 3.4, it is now routine to show that

∆1 A = 4y2
1(1 − 4y1)

−2(1 − η)−1


2 − (1 − 4y2)
−

3
2


,

and so we obtain

Π2∆1 A = 4y2
1(1 − 4y1)

−2.

For the second term, we have

A = 1 − (1 − 4y1)
1
2 −

1
2

y1(1 − 4y1)
1
2

k≥1


2k

k

 k−1
i=0

yk−1−i
1 yi

2,

which gives

y1
∂A

∂y2


y2=y1

= −
1
2

y2
1(1 − 4y1)

1
2

k≥2


2k

k


k

2


yk−2

1

= −
1
4

y2
1(1 − 4y1)

1
2
∂2

∂y2
1

(1 − 4y1)
−

1
2 = −3y2

1(1 − 4y1)
−2.

The result follows immediately from (3.6) by combining these two terms. �

4. A ring of polynomials and solving the join–cut equation

In this section we consider the monotone join–cut equation for ∆1H⃗g given in
Theorem 3.1(ii), with the differential operator on the left-hand side reexpressed in the form given
in Proposition 3.2, to give

(1 − T)

(1 − η)(1 − 4y1)

1
2 ∆1H⃗g


= ∆2

1H⃗g−1 +

g−1
g′=1

∆1H⃗g′ ∆1H⃗g−g′ . (4.1)

In order to determine the form of the solution ∆1H⃗g for g ≥ 1, we will find it convenient to
work in the ring R of polynomials in (1 − 4y1)

−1 and {ηk(1 − η)−1
}k≥1 over Q. For r ∈ R,

the weighted degree of r is its degree as a polynomial in these quantities, where (1 − 4y1)
−1

has degree 1, and ηk(1 − η)−1 has degree k, k ≥ 1. For d ≥ 0, we let Rd denote the set of
polynomials in R whose weighted degree is at most d.
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As an example of this notation, from (3.5) we immediately deduce that

(1 − η)−1Π2


yk

2 (1 − 4y2)
−

3
2 −k


∈ Rk, k ≥ 1. (4.2)

Proposition 4.1. The operator T sends the ring R to itself, is locally nilpotent and preserves
weighted degrees. The operator 1 − T preserves weighted degrees and is invertible on R.

Proof. Let Yi = yi (1 − 4yi )
−1, i = 1, 2. Since T(ηk(1 − η)−1r) = ηk(1 − η)−1T(r) for k ≥ 1

and r ∈ R, it is sufficient to prove the result for the basis {Y k
1 }k≥0, in which Y k

1 has weighted
degree k. For k = 0, we have T(1) = 0. For k ≥ 1, it is routine to check that

Split
1→2


(1 − 4y1)Y

k
1


=

Y k
1 Y2 − Y1Y k

2

Y1 − Y2

which equals 0 for k = 1. Thus T(Y1) = 0, and for k ≥ 2, we have

T


Y k
1


=

k−1
i=1

Y k−i
1 (1 − η)−1Π2


(1 − 4y2)

−
3
2 Y i

2


. (4.3)

But Y k−i
1 ∈ Rk−i , and k − i < k for all i = 1, . . . , k − 1. Also, from (4.2) we have

(1 − η)−1Π2


(1 − 4y2)

−
3
2 Y i

2


= (1 − η)−1Π2


yi

2(1 − 4y2)
−

3
2 −i


∈ Ri ,

which implies that T

Y k

1


∈ Rk . Furthermore, its degree in (1 − 4y1)

−1 is strictly less than k,
and, since T(1) = T(Y1) = 0, it follows that repeated application of T to any element of R is
eventually zero.

Of course, the operator 1−T also preserves weighted degrees, and it is invertible, with inverse
given for any r ∈ Rd by

(1 − T)−1r = (1 + T + T2
+ · · ·)r = (1 + T + · · · + Td−1)r,

since, from the proof above, Ti (r) = 0 for any i ≥ d . �

Proposition 4.2. For r ∈ Rd and m ∈ Z, we have

(i)

(1 − η)m+1(1 − 4y1)
1
2 ∆1


(1 − η)−mr


∈ Rd+2,

(ii)

(1 − η)m+1∆1


(1 − η)−m(1 − 4y1)

−
1
2 r


∈ Rd+3.

Proof. Since ∆1 is a linear differential operator, it is sufficient to prove these results for a generic
monomial µ = (1−4y1)

−kηb1 · · · ηb j (1−η)− j with k +b1 +· · ·+b j = d. Let ρ = (1−η)−mµ.
For part (i), apply the product rule to obtain

∆1ρ = 4k(1 − 4y1)
−1ρ∆1 y1 + ( j + m)(1 − η)−1ρ∆1η +

j
i=1

ρ

ηbi

∆1ηbi .

Multiplying this equation by (1 − η)m+1(1 − 4y1)
1
2 and applying Lemma 3.4 and (4.2), it is

straightforward to prove that each of the j + 2 terms is contained in Rd+2, giving the result.
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For part (ii), apply the product rule to determine ∆1


(1 − 4y1)

−
1
2 ρ


, and the result follows

from part (i) and Lemma 3.4. �

We are now able to give an explicit form for ∆1H⃗g , for any positive choice of genus g.

Theorem 4.3. For g ≥ 1,

(1 − η)2g−1(1 − 4y1)
1
2 ∆1H⃗g ∈ R3g−1.

Proof. We proceed by induction on g. For the base case g = 1, Eq. (4.1) and Proposition 3.5
give

(1 − T )(1 − η)(1 − 4y1)
1
2 ∆1H⃗1 = y2

1(1 − 4y1)
−2

= Y 2
1 ∈ R2, (4.4)

and the result for g = 1 follows immediately from Proposition 4.1.
Now consider an arbitrary g ≥ 2, with the induction hypothesis that the result holds for all

smaller positive values. Then if we multiply (4.1) by (1 − η)2g−2, we obtain the equation

(1 − T )(1 − η)2g−1(1 − 4y1)
1
2 ∆1H⃗g

= (1 − η)2g−2∆2
1H⃗g−1 +

g−1
g′=1

(1 − η)2g−2∆1H⃗g′ ∆1H⃗g−g′ . (4.5)

Now consider the terms on the right-hand side of (4.5). The term corresponding to the summand
g′ can be written as

(1 − 4y1)
−1

(1 − η)2g′

−1(1 − 4y1)
1
2 ∆1H⃗g′

 
(1 − η)2(g−g′)−1(1 − 4y1)

1
2 ∆1H⃗g−g′


and from the induction hypothesis, this has weighted degree at most 1+ (3g′

−1)+ (3(g − g′)−

1) = 3g − 1. For the remaining term, first apply the induction hypothesis to give

∆1H⃗g−1 = (1 − η)3−2g(1 − 4y1)
−

1
2 r, where r ∈ R3g−4.

Then from Proposition 4.2(ii), we have (1 − η)2g−2∆2
1H⃗g−1 ∈ R(3g−4)+3. Thus all terms on the

right-hand side of (4.5) have weighted degree at most 3g−1. The result for g follows immediately
from Proposition 4.1. �

5. Generating functions for monotone Hurwitz numbers

In the previous section, we obtained results for ∆1H⃗g, g ≥ 1. In this section, we consider how
to invert the operator ∆1, in order to obtain results for the generating function H⃗g itself, and thus
prove parts (i) and (ii) of Theorem 1.4. To accomplish this, we introduce the operator Θt , whose
action on elements of Q[[q]] is the substitution q j → q j t, j ≥ 1. For example, we immediately
have

Θtγ = γ t, Θtη = ηt, Θtη j = η j t, j ≥ 1, (5.1)

and for the operator E introduced in (3.3), we have

ΘtE = t
∂

∂t
Θt . (5.2)
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Since

D =


k≥1

kpk
∂

∂pk
= Π1∆1,

D =


k≥1

pk
∂

∂pk
= Π1

 x1

0

dx1∆1

x1
= Π1

 y1

0

dy1∆1

y1
,

we can apply Θt to Eq. (3.3) to obtain

ΘtE = ΘtΦ∆1,

where

Φ = Π1

 y1

0

dy1

y1
−

2γ
1 − γ


. (5.3)

Thus, applying (5.2) to H⃗g , we obtain

H⃗g =

 1

0

dt

t
ΘtΦ∆1H⃗g, g ≥ 1. (5.4)

For the operator Φ, using (3.5), it is straightforward to check that, for j ≥ 2,

Φ(η(y1)− γ (y1)) =
2γ (1 − η)

1 − γ
, Φη1(y1) = η −

2γ
1 − γ

η1,

Φη j (y1) = η j−1 −
2γ

1 − γ
η j .

(5.5)

We are now able to deduce the explicit expression for the genus one monotone Hurwitz
generating function stated in Theorem 1.4(i).

Theorem 5.1. The generating function for genus one monotone Hurwitz numbers is given by

H⃗1 =
1

24
log

1
1 − η

−
1
8

log
1

1 − γ
.

Proof. From Eq. (4.4) and Proposition 4.1, we have

∆1H⃗1 = (1 − η)−1(1 − 4y1)
−

1
2 (1 + T)Y 2

1 ,

and, simplifying this using (4.3) with k = 2, after noting that 4y1(1 − 4y1)
−

3
2 = η(y1)− γ (y1),

we obtain

ΘtΦ∆1H⃗1 = ΘtΦ


2η1(y1)− 3η(y1)+ 3γ (y1)

48(1 − η)
+
(η(y1)− γ (y1))η1

24(1 − η)2


=

ηt

24(1 − ηt)
−

γ t

8(1 − γ t)
,

where for the second equality we have used (5.5) and simplified, and then applied (5.1). The
result follows from (5.4), together with the fact that H⃗1 has constant term 0. �

For genus two or more, we are able to obtain a polynomiality result for the monotone Hurwitz
number generating function H⃗g .
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Theorem 5.2. For g ≥ 2, we have

H⃗g ∈ Q[{ηk(1 − η)−1
}k≥1, (1 − η)−1

].

Moreover, each monomial ηα(1−η)−ℓ(α)−n that appears in H⃗g has weighted degree |α| ≤ 3g−3
in {ηk(1 − η)−1

}k≥1, and degree n ≤ 2g − 2 in (1 − η)−1.

Proof. Note from Section 3.3 that the elements

1, (η(y1)− γ (y1))(1 − 4y1)
1
2 , η1(y1)(1 − 4y1)

1
2 , η2(y1)(1 − 4y1)

1
2 , . . .

are polynomials in (1−4y1)
−1 of degree 0, 1, 2, 3, . . . respectively, so by Theorem 4.3, we know

that we can write

(1 − η)2g−1∆1H⃗g = Fg,0(1 − 4y1)
−

1
2 + Fg,1


η(y1)− γ (y1)


+

3g−1
j=2

Fg, jη j−1(y1), (5.6)

where, for j = 0, 1, . . . , 3g − 1, Fg, j is an element of Q[ηk(1 − η)−1
]k≥1. Note also that Fg, j

has weighted degree at most 3g − 1 − j , for j = 0, . . . , 3g − 1. If we set y1 = 0 in (5.6), we get

Fg,0 = 0, (5.7)

since ∆1H⃗g has no constant term as a power series in y1.
Next, note that when we are dealing with polynomials in (1 − 4y1)

−1, we can evaluate them
at y1 = ∞, or equivalently, at (1 − 4y1)

−1
= 0, and denote this evaluation by the operator Ω .

Now suppose we apply the operator

Ω(1 − T)(1 − 4y1)
1
2

to (5.6). Taking into account (5.7), we obtain on the right-hand side

Fg,1Ω(1 − T)(1 − 4y1)
1
2 (η(y1)− γ (y1))

+

3g−1
j=2

Fg, jΩ(1 − T)(1 − 4y1)
1
2 η j−1(y1). (5.8)

By direct computation, we have

Ω(1 − T)(1 − 4y1)
1
2 (η(y1)− γ (y1)) = −1.

To evaluate the remaining terms in (5.8), note that for j ≥ 2, we have (1 − 4y1)
3
2 η j−1(y1) =

y1a j−1(y1), where from Section 3.3, we know that a j−1(y1) is a polynomial in (1 − 4y1)
−1 with

no constant term (in (1 − 4y1)
−1). It follows that

Ω(1 − 4y1)
1
2 η j−1(y1) = 0,

and it is routine to check that

Split
1→2


(1 − 4y1)

3
2 η j−1(y1)


=


1

1 − 4y1
− 1


y2

1 − 4y2

a j−1(y1)− a j−1(y2)

(1 − 4y1)−1 − (1 − 4y2)−1 ,

so that we have

ΩT(1 − 4y1)
1
2 η j−1(y1) = −(1 − η)−1Π2 y2(1 − 4y2)

−
3
2 a j−1(y2) = −

η j−1

1 − η
,
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from (3.5). Putting these together, (5.8) becomes

−Fg,1 +

3g−1
j=2

Fg, j
η j−1

1 − η
.

Now, when we apply Ω(1 − T)(1 − 4y1)
1
2 to the left-hand side of (5.6), and use (4.1), we get

(1 − η)2g−2Ω

∆2
1H⃗g−1 +

g−1
g′=1

∆1H⃗g′ ∆1H⃗g−g′

 .
But from the proof of Theorem 4.3, specifically the analysis of the right-hand side of (4.5), we
see that for g ≥ 2, every term in the summation over g′ is a polynomial in (1−4y1)

−1 multiplied
by an additional factor of (1 − 4y1)

−1, and so Ω sends the summation to 0. We can also deduce
from Lemma 3.4 that the remaining term is also sent to 0 by Ω . Putting both sides together and
multiplying by 2γ (1 − η)/(1 − γ ), we obtain the equation

− Fg,1
2γ (1 − η)

1 − γ
+

3g−1
j=2

Fg, j
2γ η j−1

1 − γ
= 0. (5.9)

Now, from (5.6), using (5.7) and (5.5), we have

(1 − η)2g−1Φ∆1H⃗g = Fg,1
2γ (1 − η)

1 − γ
+ Fg,2


η −

2γ η1

1 − γ


+

3g−1
j=3

Fg, j


η j−2 −

2γ η j−1

1 − γ



= Fg,2η +

3g−1
j=3

Fg, jη j−2,

where the second equality follows from (5.9). Thus, from (5.4), we have

H⃗g =

 1

0

dt

t
Θt


Fg,2η +

3g−1
j=3

Fg, jη j−2

(1 − η)2g−1

 .
But Fg, j has weighted degree at most 3g − 1 − j , and using (5.1) we obtain

H⃗g =

 1

0
dt


3g−3
d=0


α⊢d

bg,αηαη
tℓ(α)

(1 − ηt)ℓ(α)+2g−1

+

3g−3
d=1


α⊢d

eg,αηα
tℓ(α)−1

(1 − ηt)ℓ(α)+2g−2


, (5.10)

where bg,α and eg,α are rational numbers. Now, integrating, we obtain 1

0

tm

(1 − ηt)m+2g−1 dt =
1

ηm+1

 η
1−η

0
zm(1 + z)2g−3dz, where z =

ηt

1 − ηt
,
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=

2g−3
i=0


2g − 3

i


1

m + 1 + i

ηi

(1 − η)m+1+i
,

which is equal to (1 − η)m+1 times a polynomial over Q in (1 − η)−1 of degree at most 2g − 3.
The result follows by applying this to each term of (5.10), using η = 1 − (1 − η) for the isolated
η in the first summation. �

Finally, by refining the polynomiality result of Theorem 5.2, we are able to prove the
explicit form for the monotone Hurwitz number generating function with genus g ≥ 2 given
in Theorem 1.4(ii).

Theorem 5.3. For g ≥ 2, the generating function for genus g monotone single Hurwitz numbers
is given by

H⃗g = −cg,(0) +

3g−3
d=0


α⊢d

cg,α ηα

(1 − η)ℓ(α)+2g−2
,

where the cg,α are rational numbers.

Proof. From Theorem 5.2, we know that H⃗g is a linear combination of the monomials ρα,n =

ηα(1 − η)−ℓ(α)−n , where |α| = d ≤ 3g − 3 and n ≤ 2g − 2. Then ∆1ρ(0),0 = 0, and from
Proposition 4.2(i), we have

(1 − η)n+1(1 − 4y1)
1
2 ∆1ρα,n ∈ Rd+2.

Then, if (α, n) ≠ ((0), 0), Theorem 4.3 implies that n = 2g − 2, so we have

H⃗g = c +

3g−3
d=0


α⊢d

cg,α ηα

(1 − η)ℓ(α)+2g−2
,

where cg,α are rational numbers. But H⃗g has constant term 0, so c = −cg,(0), giving the
result. �

6. Explicit formulae for monotone Hurwitz numbers

In the previous section, we obtained explicit results for H⃗g, g ≥ 1. In this section, we consider
the coefficients in these generating functions. To begin, the coefficient extraction operators [pα]
and [qα], defined on Q[[p]] = Q[[q]], can be expressed in terms of each other using the
multivariate Lagrange Implicit Function Theorem [7, Theorem 1.2.9], as follows.

Lemma 6.1. If α ⊢ d is a partition and F is an element of Q[[p]], then

[pα]F = [qα]
(1 − η)F

(1 − γ )2d+1 ,

where

q j = p j (1 − γ )−2 j , j ≥ 1, γ =


k≥1


2k

k


qk, η =


k≥1

(2k + 1)


2k

k


qk .
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Proof. Let φ j = (1 − γ )−2 j , so that q j = p jφ j , j ≥ 1. Then, from the multivariate Lagrange
Implicit Function Theorem [7, Theorem 1.2.9], we have

[pα]F = [qα]F φα det

δi j − q j

∂

∂q j
logφi


i, j≥1

= [qα]F φα det

δi j −

2iq j

1 − γ


2 j

j


i, j≥1

,

where φα =


j≥1 φα j . We have φα = (1 − γ )−2d , and using the fact that det(I + M) =

1 + trace (M) for any matrix M of rank zero or one, we can evaluate the determinant as

det

δi j − q j

∂

∂q j
logφi


i, j≥1

= 1 −


k≥1

2kqk

1 − γ


2k

k


=

1 − η

1 − γ
.

Substituting, we obtain

[pα]F = [qα]
(1 − η)F

(1 − γ )2d+1 . �

Using Lemma 6.1, we are now able to obtain the explicit formula given in Theorem 1.3 for
the genus one monotone Hurwitz numbers H⃗1(α).

Theorem 6.2. The genus one monotone single Hurwitz numbers H⃗1(α), α ⊢ d are given by

H⃗1(α) =
1
24

d !

|Autα|

ℓ(α)
i=1


2αi

αi


(2d + 1)ℓ(α) − 3(2d + 1)ℓ(α)−1

−

ℓ(α)
k=2

(k − 2)!(2d + 1)ℓ(α)−kek(2α + 1)


.

Proof. From Theorem 5.1, we have

H⃗1 =


d≥1


α⊢d

H⃗1(α)
pα
d !

=
1

24
log

1
1 − η

−
1
8

log
1

1 − γ
. (6.1)

For the first term in H⃗1, applying Lemma 6.1, we obtain

[pα] log
1

1 − η
= [qα]

1 − η

(1 − γ )2d+1 log
1

1 − η

= [qα]


j≥0

(2d + 1) j γ
j

j !


η −


k≥2

(k − 2)!
ηk

k!



= [qα]


(2d + 1)ℓ−1 γ

ℓ−1η

(ℓ− 1)!
−

ℓ
k=2

(k − 2)!(2d + 1)ℓ−k γ ℓ−k

(ℓ− k)!

ηk

k!


.

For the remaining term in H⃗1, we apply Lemma 6.1 again, together with Eq. (3.2), to obtain

[pα] log
1

1 − γ
=

1
d

[pα]D log
1

1 − γ
=

1
d

[qα]E


1

2d(1 − γ )2d


= [qα]


1

2d(1 − γ )2d


= [qα](2d + 1)ℓ(α)−1 γ

ℓ(α)

ℓ(α)!
.
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But iterating the product rule gives

|Autα| [qα]
γ ℓ(α)−k

(ℓ(α)− k)!

ηk

k!
=
∂ℓ(α)

∂qα


ηk

k!

γ ℓ(α)−k

(ℓ(α)− k)!



=

ℓ(α)
i=1


2αi

αi

 
1≤i1<···<ik≤ℓ(α)

(2αi1 + 1)(2αi2 + 1) · · · (2αik + 1)

=

ℓ(α)
i=1


2αi

αi


ek(2α + 1).

The explicit expression for H⃗1(α) follows by combining the above results, and using the facts
that e0(α) = 1 and e1(α) = 2d + ℓ(α). �

Finally, we prove the polynomiality result for monotone Hurwitz numbers stated in
Theorem 1.5.

Theorem 6.3. For each pair (g, ℓ) with (g, ℓ) ∉ {(0, 1), (0, 2)}, there is a polynomial P⃗g,ℓ in ℓ
variables such that, for all partitions α ⊢ d with ℓ parts,

H⃗g(α) =
d !

|Autα|
P⃗g,ℓ(α1, . . . , αℓ)

ℓ
j=1


2α j

α j


.

Proof. For g = 0, this follows from the explicit formula for genus zero monotone Hurwitz
numbers given in [3], which has this form for ℓ ≥ 3. For g ≥ 1, by applying Lemma 6.1, we
obtain

H⃗g(α) = d ![pα]H⃗g = d ![qα]
(1 − η)H⃗g

(1 − γ )2d+1 .

Given the general form from Theorem 5.3, the power series on the right-hand side can be
expanded as an infinite sum of (rational multiples of) terms of the form

−2d − 1
m


γmηn0η

n1
1 η

n2
2 · · · η

nk
k ,

where m, n0, n1, . . . , nk ≥ 0 are integers. However, since the series γ, η, η1, η2, . . . are all linear
in the indeterminates q, only the finitely many terms with m+n0+n1+· · ·+nk = ℓ contribute to

the coefficient of qα . For m fixed, the binomial coefficient


−2d−1
m


is a polynomial in the parts

of α, and given the definition of the series γ, η, η1, η2, . . . , the contribution to the coefficient of
qα is a polynomial in the parts of α multiplied by the factor

1
|Autα|

ℓ
j=1


2α j

α j


.

It follows that H⃗g(α) has the stated form. �
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Appendix. Rational forms for genus three

The following equation gives the rational form for the genus three generating series for the
monotone single Hurwitz numbers, as described in Theorem 5.3:

2−2
· 9! H⃗3 =


90 +

−90

(1 − η)4


+

70η6 + 63η5 − 377η4 − 189η3 + 667η2 + 126η1

(1 − η)5

+
1078η1η5 + 2012η2η4 + 1214η2

3 + 1209η1η4

(1 − η)6

+
1998η2η3 − 3914η1η3 − 2627η2

2 − 2577η1η2 + 1967η2
1

(1 − η)6

+
8568η2

1η4 + 26904η1η2η3 + 5830η3
2 + 10092η2

1η3

(1 − η)7

+
13440η1η

2
2 − 20322η2

1η2 − 4352η3
1

(1 − η)7

+
44520η3

1η3 + 86100η2
1η

2
2 + 49980η3

1η2 − 15750η4
1

(1 − η)8

+
162120η4

1η2 + 31080η5
1

(1 − η)9
+

68600η6
1

(1 − η)10 .

This should be compared with the genus three generating series for the single Hurwitz
numbers that appeared in [9]:

24
· 9! H3 =

70φ6 − 294φ5 + 410φ4 − 186φ3

(1 − φ)5

+
1078φ1φ5 + 2012φ2φ4 + 1214φ2

3 + 2418φ1φ4

(1 − φ)6

+
−6156φ2φ3 + 4658φ1φ3 + 3002φ2

2 − 1860φ1φ2

(1 − φ)6

+
8568φ2

1φ4 + 26904φ1φ2φ3 + 5830φ3
2 − 25968φ2

1φ3

(1 − φ)7

+
−33642φ1φ

2
2 + 25770φ2

1φ2 − 2790φ3
1

(1 − φ)7

+
44520φ3

1φ3 + 86100φ2
1φ

2
2 − 110600φ3

1φ2 + 21420φ4
1

(1 − φ)8

+
162120φ4

1φ2 − 62440φ5
1

(1 − φ)9
+

68600φ6
1

(1 − φ)10 .
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