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a b s t r a c t

In a pair of recent papers, Andrews, Fraenkel and Sellers provide a complete characteriza-
tion for the number of m-ary partitions modulo m, with and without gaps. In this paper
we extend these results to the case of coloured m-ary partitions, with and without gaps.
Our method of proof is different, giving explicit expansions for the generating functions
modulo m.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

An m-ary partition is an integer partition in which each part is a nonnegative integer power of a fixed integer m ≥ 2. An
m-ary partitionwithout gaps is anm-ary partition in whichmj must occur as a part whenevermj+1 occurs as a part, for every
nonnegative integer j.

Recently, Andrews, Fraenkel and Sellers [2] found an explicit expression that characterizes the number ofm-ary partitions
of a nonnegative integer n modulo m; remarkably, this expression depended only on the coefficients in the base m
representation of n. Subsequently Andrews, Fraenkel and Sellers [3] followed this up with a similar result for the number of
m-ary partitions without gaps, of a nonnegative integer n modulo m; again, they were able to obtain a (more complicated)
explicit expression, and again this expression depended only on the coefficients in the base m representation of n. See also
Edgar [6] and Ekhad and Zeilberger [7] for more on these results.

The study of congruences for integer partition numbers has a long history, starting with the work of Ramanujan (see,
e.g., [8]). For the special case of m-ary partitions, a number of authors have studied congruence properties, including
Churchhouse [5] for m = 2, Rødseth [9] for m a prime, and Andrews [1] for arbitrary positive integers m ≥ 2. The numbers
ofm-ary partitions without gaps had been previously considered by Bessenrodt, Olsson and Sellers [4] form = 2.

In this note, we considerm-ary partitions, with and without gaps, in which the parts are coloured. To specify the number
of colours for parts of each size, we let k = (k0, k1, . . .) for positive integers k0, k1, . . . , and say that an m-ary partition
is k-coloured when there are kj colours for the part mj, for j ≥ 0. This means that there are kj different kinds of parts of
the same size mj. Let b(k)m (n) denote the number of k-coloured m-ary partitions of n, and let c(k)m (n) denote the number of
k-coloured m-ary partitions of n without gaps. For the latter, some part mj of any colour must occur as a part whenever
some part mj+1 of any colour (not necessarily the same colour) occurs as a part, for every nonnegative integer j. (In the
special case that kj = k for all j ≥ 0, where k is a positive integer, we say that them-ary partitions are k-coloured.)

We extend the results of Andrews, Fraenkel and Sellers in [2] and [3] to the case ofk-colouredm-ary partitions, wherem is
relatively prime to (k0−1)! and to kj! for j ≥ 1. Ourmethod of proof is different, giving explicit expansions for the generating
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functions modulom. We then extract the coefficients in these generating functions to determine explicit expressions for the
corresponding numbers of partitions modulom, stated in the following pair of results.

Theorem 1.1. For n ≥ 0, suppose that the base m representation of n is given by

n = d0 + d1m + · · · + dtmt , 0 ≤ t.

If m is relatively prime to (k0 − 1)! and to kj! for j ≥ 1, then we have

b(k)m (n) ≡

(
k0 − 1 + d0

k0 − 1

) t∏
j=1

(
kj + dj

kj

)
(mod m).

Theorem 1.2. For n ≥ 1, suppose that n is divisible by m, with base m representation given by

n = dsms
+ · · · + dtmt , 1 ≤ s ≤ t,

where 1 ≤ ds ≤ m − 1, and 0 ≤ ds+1, . . . , dt ≤ m − 1. If m is relatively prime to (k0 − 1)! and to kj! for j ≥ 1, then for
0 ≤ d0 ≤ m − 1 we have

c(k)m (n − d0) ≡

(
k0 − 1 − d0

k0 − 1

)⎛⎝εs + (−1)s−1
{(

ks + ds − 1
ks

)
− 1

} t∑
i=s

i∏
j=s+1

{(
kj + dj

kj

)
− 1

}⎞⎠ (mod m),

where εs = 0 if s is even, and εs = 1 if s is odd.

Theorem 1.1 is proved in Section 2, and Theorem 1.2 is proved in Section 3.

2. Colouredm-ary partitions

In this section we consider the following generating function for the numbers b(k)m (n) of k-colouredm-ary partitions:

B(k)
m (q) =

∞∑
n=0

b(k)m (n)qn =

∞∏
j=0

(
1 − qm

j
)−kj

.

The following simple result will be key to the expansion of B(k)
m (q) modulo m.

Proposition 2.1. For positive integers m, a with m relatively prime to (a − 1)!, we have

(1 − q)−a
≡

(
1 − qm

)−1
m−1∑
ℓ=0

(
a − 1 + ℓ

a − 1

)
qℓ (mod m).

Proof. From the binomial theorem we have

(1 − q)−a
=

∞∑
ℓ=0

(
a − 1 + ℓ

a − 1

)
qℓ.

Now using the falling factorial notation (a − 1 + ℓ)a−1 = (a − 1 + ℓ)(a − 2 + ℓ) · · · (1 + ℓ) we have(
a − 1 + ℓ

a − 1

)
= ((a − 1)!)−1 (a − 1 + ℓ)a−1.

But

(a − 1 + ℓ + m)a−1 ≡ (a − 1 + ℓ)a−1 (mod m),

for any integer ℓ, and ((a − 1)!)−1 exists in Zm sincem is relatively prime to (a − 1)!, which gives(
a − 1 + ℓ + m

a − 1

)
≡

(
a − 1 + ℓ

a − 1

)
(mod m), (1)

and the result follows. □

We are now able to give an explicit expansion for B(k)
m (q) modulom.

Theorem 2.2. If m is relatively prime to (k0 − 1)! and to kj! for j ≥ 1, then we have

B(k)
m (q) ≡

⎛⎝m−1∑
ℓ0=0

(
k0 − 1 + ℓ0

k0 − 1

)
qℓ0

⎞⎠ ∞∏
j=1

⎛⎝m−1∑
ℓj=0

(
kj + ℓj

kj

)
qℓjmj

⎞⎠ (mod m).
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Proof. Consider the finite product

Pi =

i∏
j=0

(
1 − qm

j
)−kj

, i ≥ 0.

We prove that

Pi ≡

⎛⎝m−1∑
ℓ0=0

(
k0 − 1 + ℓ0

k0 − 1

)
qℓ0

⎞⎠(
1 − qm

i+1
)−1 i∏

j=1

⎛⎝m−1∑
ℓj=0

(
kj + ℓj

kj

)
qℓjmj

⎞⎠ (mod m), (2)

by induction on i. As a base case, the result for i = 0 follows immediately from Proposition 2.1 with a = k0. Now assume
that (2) holds for some choice of i ≥ 0, and we obtain

Pi+1 =

i+1∏
j=0

(
1 − qm

j
)−kj

=

(
1 − qm

i+1
)−ki+1

Pi

≡

⎛⎝m−1∑
ℓ0=0

(
k0 − 1 + ℓ0

k0 − 1

)
qℓ0

⎞⎠(
1 − qm

i+1
)−ki+1−1 i∏

j=1

⎛⎝m−1∑
ℓj=0

(
kj + ℓj

kj

)
qℓjmj

⎞⎠ (mod m)

≡

⎛⎝m−1∑
ℓ0=0

(
k0 − 1 + ℓ0

k0 − 1

)
qℓ0

⎞⎠(
1 − qm

i+2
)−1 i+1∏

j=1

⎛⎝m−1∑
ℓj=0

(
kj + ℓj

kj

)
qℓjmj

⎞⎠ (mod m),

where the second last equivalence follows from the induction hypothesis, and the last equivalence follows from
Proposition 2.1 with a = ki+1 + 1, q = qm

i+1
.

This completes the proof of (2) by induction on i, and the result follows immediately since

B(k)
m (q) = lim

i→∞

Pi. □

We are now able to prove Theorem 1.1, which gives an explicit expression for the coefficients modulo m that follows
from the above expansion of the generating function B(k)

m (q).

Proof of Theorem 1.1. In the expansion of the series B(k)
m (q) given in Theorem 2.2, the monomial qn arises uniquely with the

specializations ℓj = dj, j = 0, . . . , t and ℓj = 0, j > t . But for the case ℓj = 0 we have
(

kj+ℓj
kj

)
=

(
kj
kj

)
= 1, and the result

follows immediately. □

Example 2.3. As an example of Theorem 1.1, consider the case that kj = k, j ≥ 0, where k is a positive integer, and thatm is
relatively prime to k!. Then the number of k-colouredm-ary partitions of n is congruent to(

k − 1 + d0
k − 1

) t∏
j=1

(
k + dj

k

)
(3)

modulom.

Specializing the expression given in Theorem 1.1 to the case kj = 1 for j ≥ 0 (or, equivalently, specializing (3) to the
case k = 1), provides an alternative proof to Andrews, Fraenkel and Sellers’ characterization ofm−ary partitions modulom,
which was given as Theorem 1 of [2].

3. Colouredm-ary partitions without gaps

In this section we consider the following generating function for the numbers c(k)m (n) of k-coloured m-ary partitions
without gaps:

C (k)
m (q) = 1 +

∞∑
n=0

c(k)m (n)qn = 1 +

∞∑
i=0

i∏
j=0

((
1 − qm

j
)−kj

− 1
)

.

The following result gives an explicit expansion for C (k)
m (q) modulo m. The proof uses Proposition 2.1 in a similar way as for

the expansion of B(k)
m (q) modulom in Theorem 2.2 of the previous section.
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Theorem 3.1. If m is relatively prime to (k0 − 1)! and to kj! for j ≥ 1, then we have

C (k)
m (q) ≡ 1 +

⎛⎝ m∑
ℓ0=1

(
k0 − 1 + ℓ0

k0 − 1

)
qℓ0

⎞⎠ ∞∑
i=0

(
1 − qm

i+1
)−1 i∏

j=1

⎛⎝m−1∑
ℓj=0

{(
kj + ℓj

kj

)
− 1

}
qℓjmj

⎞⎠ (mod m).

Proof. Consider the finite product

Ri =

i∏
j=0

((
1 − qm

j
)−kj

− 1
)

, i ≥ 0.

We prove that

Ri ≡

⎛⎝ m∑
ℓ0=1

(
k0 − 1 + ℓ0

k0 − 1

)
qℓ0

⎞⎠(
1 − qm

i+1
)−1 i∏

j=1

⎛⎝m−1∑
ℓj=0

{(
kj + ℓj

kj

)
− 1

}
qℓjmj

⎞⎠ (mod m), (4)

by induction on i. As a base case, the result for i = 0 follows immediately from Proposition 2.1 with a = k0. Now assume
that (4) holds for some choice of i ≥ 0, and we obtain

Ri+1 =

i+1∏
j=0

((
1 − qm

j
)−kj

− 1
)

=

((
1 − qm

i+1
)−ki+1

− 1
)
Ri

≡

⎛⎝ m∑
ℓ0=1

(
k0 − 1 + ℓ0

k0 − 1

)
qℓ0

⎞⎠{(
1 − qm

i+1
)−ki+1−1

−

(
1 − qm

i+1
)−1

}

×

i∏
j=1

⎛⎝m−1∑
ℓj=0

{(
kj + ℓj

kj

)
− 1

}
qℓjmj

⎞⎠ (mod m)

≡

⎛⎝ m∑
ℓ0=1

(
k0 − 1 + ℓ0

k0 − 1

)
qℓ0

⎞⎠(
1 − qm

i+2
)−1 i+1∏

j=1

⎛⎝m−1∑
ℓj=0

{(
kj + ℓj

kj

)
− 1

}
qℓjmj

⎞⎠ (mod m),

where the second last equivalence follows from the induction hypothesis, and the last equivalence follows from
Proposition 2.1 with a = ki+1 + 1, q = qm

i+1
and a = 1, q = qm

i+1
.

This completes the proof of (4) by induction on i, and the result follows immediately since

C (k)
m (q) = 1 +

∞∑
i=0

Ri. □

We are now able to prove Theorem 1.2, which gives an explicit expression for the coefficients modulo m that follows
from the above expansion of the generating function C (k)

m (q).

Proof of Theorem 1.2. First note that we have

n − d0 = m − d0 + (m − 1)m1
+ · · · + (m − 1)ms−1

+ (ds − 1)ms
+ ds+1ms+1

+ · · · + dtmt .

Now consider the following specializations: ℓ0 = m− d0, ℓj = m− 1, j = 1, . . . , s− 1, ℓs = ds − 1, ℓj = dj, j = s+ 1, . . . , t ,
and ℓj = 0, j > t . Then, in the expansion of the series C (k)

m (q) given in Theorem 3.1, the monomial qn arises once for each
i ≥ 0, in particular with the above specializations truncated to ℓ0, . . . , ℓi. But with these specializations we have

• for j = 0:(
kj − 1 + ℓj

kj − 1

)
− 1 =

(
k0 − 1 + m − d0

k0 − 1

)
=

(
k0 − 1 − d0

k0 − 1

)
, from (1),

• for j = 1, . . . , s − 1:(
kj + ℓj

kj

)
− 1 =

(
kj − 1
kj

)
− 1 = 0 − 1 = −1,

and
s−1∑
i=0

i∏
j=1

{(
kj + ℓj

kj

)
− 1

}
=

s−1∑
i=0

(−1)i = εs,
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• for j = s:(
kj + ℓj

kj

)
− 1 =

(
ks + ds − 1

ks

)
− 1,

• for j = s + 1, . . . , t:(
kj + ℓj

kj

)
− 1 =

(
kj + dj

kj

)
− 1,

• for j > t:(
kj + ℓj

kj

)
− 1 =

(
kj
kj

)
− 1 = 1 − 1 = 0.

The result follows straightforwardly from Theorem 3.1. □

Example 3.2. As an example of Theorem 1.2, consider the case that kj = k, j ≥ 0, where k is a positive integer, and thatm is
relatively prime to k!. Then the number of k-colouredm-ary partitions of n − d0 without gaps is congruent to(

k − 1 − d0
k − 1

)⎛⎝εs + (−1)s−1
{(

k + ds − 1
k

)
− 1

} t∑
i=s

i∏
j=s+1

{(
k + dj

k

)
− 1

}⎞⎠ (5)

modulom.

Specializing the expression given in Theorem 1.2 to the case kj = 1 for j ≥ 0 (or, equivalently, specializing (5) to the
case k = 1), provides an alternative proof to Andrews, Fraenkel and Sellers’ characterization ofm−ary partitions modulom
without gaps, which was given as Theorem 2.1 of [3].
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