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Abstract 

Goulden, I.P. and S. Pepper, Labelled trees and factorizations of a cycle into transpositions, 
Discrete Mathematics 113 (1993) 263-268. 

Moszkowski has previously given a direct bijection between labelled trees on II vertices and 
factorizations of the cycle (12 - - - n) in S,, into n - 1 transpositions. By considering a quadratic 
recurrence equation and its combinatorial interpretation for trees and for transposition 
factorizations, we derive another such bijection in a straightforward manner. 

Let A,, be the set of labelled trees on n vertices and B,, be the set of 
(n - 1)-tuples of transpositions in S,* whose ordered product is the cycle 

(12 - - - n). Cayley [l] proved that IA,,) = nn-*, and D&es [2] proved that 

1 B,,I = IA, I, by giving a bijection between sets of cardinality (n - l)! lA,ll and 
(n - l)! IBnI. D&es posed the problem of finding a direct bijection between A,, 
and B,; the first such bijection was given by Moszkowski [4]. 

Jackson [3] was able to enumerate factorizations in S,, in several more general 
situations. The method was based on Bymmetric group characters, and yielded 
simple binomial summations as solutions. For example, the number of k-tuples of 
transpositions in S,, whose ordered product is the cycle (12 - - - n) was shown to be 

The form of this summation suggests that a direct combinatorial exp’lanation 
should exist, though none is known. Since t(n, n - 1) = 1 B,,l, in looking for this 
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direct explanation, it is of interest to know as much about the combinatorics of B, 
as possible. Accordingly, in this paper we give a second bijection between A,, and 
B,, one which is easy to implement and has a very simple proof. 

Our method is to give direct combinatorial proofs that IAIl and )&,I satisfy the 
recurrence equation 

(*I 

A comparison of these proofs yields the required bijection. 
To prove that lAnl satisfies the recurrence relation, it is convenient to define a 

particular edge-deletion operation. Let c be a labelled tree on m vertices, with 

vertex labels {/3,, . . . , rsnl}, where /3, < - - - < /3,,, and m 2 2. Consider the path in 

t from vertex 13,, to &_+ Suppose that vertex j is the vertex adjacent to vertex fi,,, 

in this path. Now remove edge (fi,, i) from t to obtain two trees. One of these 
trees, call it t’, contains vertex &, and the other tree, call it t”, contains vertex 
/3m_,. Define 

F(t) = (t’, c”, j). 

Proposition 1. IAnI, n 2 1 sati.@es (*). 

Prooi. Consider an arbitrary a E A,. If F(a) = (a’, a”, j) then a’ has vertex labels 
au{(n) forsome crr{l,2,. . . ,n - 2}, and a” has vertex labels & U (n - 1). 

Clearlylcvl=k-lforsomek=l,..., n - 1. There are then (g 1:) choices for 

a, lAkl choices for a’, IA,_kl choices for a” and n - k choices for i. This is 
reversible and the result follows. Cl 

Proposition 2. l&l, n 2 1 satisfies (*). 

Proof. Consider an arbitrary (6,, bZ, . . . , !I,__,) E B,, so blb2 - - - b,_l = 

(12 - - - n). Now b,_, =(i,i+k)forsomek=l,..., n-!andi=l,..., n-k. 
Thus, multiplying from left to right, 

M_ - --b&=(12-*a n)(i, i + k) = cIc2 

where cl is the k-cycle (i, i + 1, . . . , i + k - 1) and c2 is the (n - k)-cycle 
(i+k,i+k+l,..., n,l,..., i- 1). Since cl and c2 consist of disjoint ele- 
ments. we have 

n bi=c,, n bl= c2 
jEa IELi 

forsome cucz{l,2,...,n - 2). lcvl= k - 1, where bj and bl commute for i E CY, 
1E &. 

Thus there are (z-f) choices for a, l&l choices for (b,,, . . . , II,_,), IB,J 

choices for (bd,, . . . , 6, L ,) and n - k choices for i, where k = 1, . . . , n - 1. 

This is reversible and the result follows. Cl 



Labelled trees 265 

After comparing these combinatorial proofs, we are in a position to describe a 
recursive algorithm that provides the bijection. 

Algorithm 3. The inputs are a labelled tree t on m vertices, with vertex labels 

(p,, * l ’ 3 I-L:? PC=* l *an, m 2 1, and an m-tuple of integers (I,, . . . , In,)_ If 
m = 1 then STOP. Otherwise let F(t) = (t’, t”, j), let k be the number of vertices 

in t’, and suppose that j is the rth smallest label in t”. Then output the 
transposition b,_, = (f,, lr+k), perform Algorithm 3 with tree t’ and k-tuple 

(L lr+l, * * * 9 Z.+k-l) as inputs, and perform Algorithm 3 with tree t” and 

(m - k)-tuple (lr+k, . . . , lm, II, . . . , lr_-l) as inputs. 

Theorem 4. For arbitrary a E A,, if we pecform Algorithm 3 with tree a and 
n-iuple (1, 2,. . . ,n) as inputs, we obtain (b,, . . . , b,_,) E B,, and this is 
reversible, providing the required bijection. 

Proof. Everyi=l,...,n - 1 will appear as the second largest label in one of 

the sub-trees on which the algorithm is performed, so bl, . . . , l~,_~ are all 
defined. 

Comparison of Proposition 1 and 2 shows that in the bijection, removal of an 
edge from a tree and the two resulting sub-trees correspond to factoring out the 
last transposition and the two resulting cycles. In applying Algorithm 3, we 
output this last transposition and recursively consider the sub-trees and the list of 
elements on the corresponding cycle. 0 

We now give an examp!e of the biject’on, in which the operation of Algorithm 

3 is represented by a binary tree. Each node represents one application of the 
algorithm, giving the input tree t and list, and output transposition. The edge to 
be deleted from t is doubled. The left of ‘spring treats the sub-tree t’ and the right 
offspring treats the sub-tree t”. Nodes r zpresenting applications of the algorithm 

which STOP have been deleted. 

Example 5. See Fig. 1. 

This tells us that corresponding to 

L&+< 
2 

EA, there is ((6,7), (4,2), (6, l), (3,4), (2,5), (2,6)) E B7, and indeed, to check, 
multiplying these transpositions in this order yields the cycle (12 - - - 7), as 
required. 

It is straightforward to reverse this bijection, as follows. Given an (n - 1)-tuple 
of transpositions (b, , . . . , b,_ ,) such that t?, - - - b,,_, = (12 - . - n), we can re- 
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(6. 7. 1) 

= (6. I) 

:4.21 

en2 = (4.2) 

Fig. i. 

construct the binary tree created by Algorithm 3 in two passes, one down, and a 
second up. 

On the first pass, for each vertex of the binary tree we identify the list of 
vertices in the cycle, the transposition, and the value of r. The list is passed from 
above, and the transposition is that of maximum subscript containing two 
elements in the list. We begin with the list (1, 2, . . . , n) (and thus the 
transposition i~,,_r) at the root vertex. The value of I- is straightforward at each 
vertex. 

Simultaneously, we assign the labels 1,2, . . . ,12 to the STOP’ vertices of the 
binary tree as follows. We pass each vpr* = w.r~~ a label from above, which is assigned 
to the vertex if it :- 13 a STOP vertex. Otherwise, the label is passed to the left 
offspring of the vertex, and the subscript of the transposition corresponding to the 
vertex is passed to the right offspring of the vertex. We begin by passing the label 
‘n’ to the root vertex. 

The second pass up the tree is now used to join the labelled STOF vertices as 
specified iteratively by the values of r at each internal vertex. 

Finaily. this reversal of thz bijection is illustrated by an example. 
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Fig. 2. 

Example 6. Given ((3,4), (2,6), (3,6), (2,7), (1,2), (5,6)) E B,, we complete 
the first pass down to give the binary tree in Fig. 2, in which the labels on the 
edges give the passed labels, and the circled vertices are the labelled STOP 
vertices. 

The second pass up this binary tree immediately yields the corresponding tree 
in A,: 
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