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AN EXPLICIT FORM 
FOR KEROV'S CHARACTER POLYNOMIALS 

I. P. GOULDEN AND A. RATTAN 

Abstract. Kerov considered the normalized characters of irreducible repre 
sentations of the symmetric group, evaluated on a cycle, as a polynomial in 

free cumulants. Biane has proved that this polynomial has integer coefficients, 
and made various conjectures. Recently, Sniady has proved Biane's conjec 
tured explicit form for the first family of nontrivial terms in this polynomial. 
In this paper, we give an explicit expression for all terms in Kerov's character 

polynomials. Our method is through Lagrange inversion. 

1. Introduction 

1.1. Background and notation. A partition is a weakly ordered list of positive 
integers A = ?1?2 ... Afc where Ai > A2 > > A^. The integers Ai,..., A& are 

called the parts of the partition A, and we denote the number of parts by l(X) 
= k. 

If Ai +-\- Xk = d, then A is a partition of d, and we write A h d. We denote by 
V the set of all partitions, including the single partition of 0 (which has no parts). 
For partitions lu, A h n let Xu,(A) be the character of the irreducible representation 
of the symmetric group &n indexed by u, and evaluated on the conjugacy class C\ 
of 6n, which consists of all permutations whose disjoint cycle lengths are specified 
by the parts of A. 

Various scalings of irreducible symmetric group characters have been considered 
in the recent literature. The central character is given by 

X?(A) = \CX\ XUX) 

where %u;(ln) is the degree of the irreducible representation indexed by u. For 
results about the central character, see, for example, [4, 5, 8]. Related to this 

scaling, for the conjugacy class C^in-k only, is the normalized character, given by 

X?{kln-k) 
= 

n(n 
- 

1) (n 
- k + 

l)*"^"""^ 
= 

kx.{kln~k). 

The subject of this paper is a particular polynomial expression for the normalized 
character. The statement of this expression requires some notation involving the 

partition uj of n. We adapt the following description from Biane [1, 2]: consider 
the Young diagram of a;, in the French convention (see [10, footnote page 2]), and 
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3670 I. P. goulden and a. rattan 

translate it, if necessary, so that the bottom left of the diagram is placed at the 

origin of an (x, y) plane. Finally, rotate the diagram counterclockwise by 45? (this 
is often referred to as "Russian notation" ). Note that u is uniquely determined by 

Figure 1. The partition (433 31) of 14, drawn in the French 

convention, and rotated by 45?. 

the curve r^x) (see Figure 1). The value of ru(x) is equal to |x| for large negative 
or positive values of x, and it is clear that t'u(x) 

= ?1, where differentiable. The 

points Xi and yi are the ^-coordinates of the local minima and maxima, respectively, 

of the curve r^x). We suitably scale the size of the boxes in our Young diagram 
so that the points Xi and yi are integers. Setting aUJ(x) 

= 
(tu(x) 

? 
\x\)/2, consider 

the function 

(l.i) 
1 f 1 

Goj(z) 
= - 

exp / -cr^(^) dx. 
z JR z 

- x 

Carrying out the above integration one obtains 

"[)~ 
nZAz-xi)' 

where m is the number of nonempty rows in the Young diagram of uj. Now let 

Ri(w), i > 1, be defined by 

?>1 

where (?1) denotes compositional inverse. Briefly, the origins of the series G?J(z), 
and in fact Kerov's polynomials, come from attempting to answer asymptotic ques 
tions about the characters of the symmetric group. The generating series GUJ(z) is 
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AN EXPLICIT FORM FOR KEROV'S CHARACTER POLYNOMIALS 3671 

known as the moment generating series and is the series 

1 

/ 
?(m?), 

where m^ is known as the transition measure of the diagram to. The measure is 

given by 

Icj = ^2 VkSxk 
fe=i 

where SXk is the usual delta function and 

KL~i\xk-yi) 
ili=l,i^k\Xk 

~ 
Xi) 

Thus, the coefficient of (l/z)h in Gtu(z) is the fcth moment of the measure m^. 
In this context, the A?(u;)'s are known as free cumulants of the measure mw in 

free probability theory (see Biane [1, Section 1.2 and Section 3]). Biane uses the 

theory of free probability to give asymptotic information about the characters of 

the symmetric group. More specifically, if an G 6n, n > 1, is a sequence of 

permutations (subject to a certain "balanced" restriction on the associated Young 

diagram) with ki cycles of length i for i > 2 and r = Y^i iki, then we have 

^ 
= 

Y[RkU(.)n-r + 0(n-^). 

For more information about the asymptotics of characters of the symmetric group 

(and free cumulants) see, for example, [1, 7, 9]. 

1.2. Kerov's character polynomials. The particular polynomials that are the 

subject of this paper involve the fi?(o;)'s. They first appeared in Biane [2], where 
the following result is stated (as Theorem 5.1). 

Theorem 1.1. For k>l, there exist universal polynomials ?&, with integer coef 

ficients, such that 

(1.2) Xu(kln-k) 
= 

Xk(R2(cu), R3(??), ..., ?fc+iM), 

for all uj \~ n with n> k. 

Biane attributes Theorem 1.1 to Kerov, who described this result in a talk at an 

IHP conference in 2000, but a proof first appeared in a later paper of Biane [3]. The 

polynomials H^ are known as Kerov's character polynomials. They are referred to 
as "universal polynomials" in Theorem 1.1 to emphasize that they are independent 
of uj and n, subject only to n > k. Thus we write them with R?(uj) replaced by 
an indeterminate i??, i > 2. In indeterminates ??, the first six of Kerov's character 

polynomials, as listed in [2], are given below: 

Si = R2, 

?3 = i?4 + R2, 

?4 = R5 + 5.R3, 

?5 = ne + 15?4 + 5?| + SR2, 
Y,6 = R7 + 35f?5 + 35fi3?2 + 84?3. 
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3672 I. P. GOULDEN AND A. RATTAN 

Note that all coefficients appearing in this list are positive. It is conjectured that 
this holds in general: that for any k > 1, all nonzero coefficients in Efe are positive. 

In Biane [2], this conjecture, which we shall refer to as the R-positivity conjecture, 
is attributed to Kerov. In fact, Biane [1, Section 7] has a conjectured combinatorial 

interpretation for the coefficients of the i?'s in Kerov's polynomials pertaining to 

Cayley graphs. The conjecture there is vague, however, and has been made more 

precise by Sniady [11] but is still far from being complete. Numerically, the R 

positivity conjecture has been verified for k up to 15 by Biane [3], who computed 
Efe for k < 15, using an implicit formula for Efe [1, Theorem 5.1] that he credits 
to Okounkov (private communication). Biane further comments that "It seems 

plausible that S. Kerov was aware of this (see especially the account of Kerov's 
central limit theorem in [7])." The following result gives an adaptation of Biane's 
formula that appears in Stanley [12]. 

Theorem 1.2. Let R(x) 
= 1 + J2i>2 Rix% and 

(1.3) F(x) = 
-?-, H(x) 

* 

R(xY 
v ' 

Fi-^ix-1)' 
Then, for k>\, 

1 
fe-i 

^k = 
--[x-1]00l[H(x-j). 

3=0 

Theorem 1.2 implicitly determines Efe as a polynomial in the R^s. For explicit 
formulas, it is convenient to consider separately the graded pieces of Efe, defined as 

follows: let the weight of the monomial Rj1 Rji be ji + + ji- For n > 0, we 

define 

(1.4) Sfe;2? 
= 

[uk+1-2n\Zk{R2u\..., Rk+1uk+1), 

the sum of all terms of weight k + 1 ? 2n in E^. (From elementary parity con 

siderations, all other coefficients in Efe are 0.) It is immediate that Efe5o 
= 

Rk+i 
An explicit formula is known for Efe?2, and for the statement of this formula, we 

introduce polynomials Cm in the R^s, where Co = 1, C\ ? 
0, and 

(1.5) Cm= ? (j2+J3 + ---)!lI((?~1iJ^ m^2 
J2.J3-->0 i>2 3%' 

The following explicit formula for Efe?2 was conjectured by Biane [3, Conjecture 6.4], 
and proved by Sniady [11, Theorem 22]. Sniady's proof was obtained by finding 
and then solving an equivalent combinatorial problem. 

Theorem 1.3. For k > 1, 

Sfc|2 
= 

^(fc-l)fc(fe + l)Cjb_i. 

Note that the R-positivity of Efe?2 follows immediately from Theorem 1.3, us 

ing (1.5). 
For n > 2, only one explicit result is known, given in the following result for the 

linear coefficient, due to Biane [3] and Stanley [12]. 

Theorem 1.4. For n > 1, k > 2n ? 1, the coefficient of Rk+i-2n in ̂ k,2n is equal 
to the number of k-cycles c in 6k such that (1... k)c has k ? 2n cycles. 
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AN EXPLICIT FORM FOR KEROV'S CHARACTER POLYNOMIALS 3673 

Finally, for higher order terms when n = 2, the following conjecture of Stanley 

(private communication) has been communicated to us by Biane. 

Conjecture 1.5. For i > 1, 

[^]E2<+3,4 
= 

5i?*(* + If (i + 2f(i + 3)(2i + 3). 

1.3. Outline of the paper. In this paper, we obtain an explicit formula for Efe?2n, 
where k and n are arbitrary. This is our main result, stated in Section 2 as The 
orem 2.1. Variants are also given as Theorems 2.2 and 2.3. These results are a 

natural generalization of Theorem 1.3, since they give Efe52n as a polynomial in 
the Cm's, with coefficients that are rational polynomials in k. We call such an 

expression a C-expansion for Efe^n- Based on significant amounts of data, we con 

jecture that Efe92n is C-positive (all nonzero coefficients are positive) for all n > 1 
as Conjecture 2.4. This C-positivity conjecture is stronger than the R-positivity 
conjecture, immediately from (1.5). 

In Section 3, we consider the special cases of our main result for n ? 1 and n = 2. 
For n = 1, this gives another proof of Theorem 1.3. For n = 2, the expression for 

Efe?4 that we obtain, in Theorem 3.3, is new. We are able to specialize this expression 
to prove Conjecture 1.5. Also, we are able to prove the C-positivity conjecture for 

Efe54 as Corollary 3.5. Finally, we consider the linear terms in the R^s, for arbitrary 
n, and obtain another proof of Theorem 1.4. 

In general, for n > 3, we are not able to prove the R-positivity conjecture or 
the C-positivity conjecture, perhaps because our methods are not combinatorial. 
Instead we apply the Lagrange inversion to "unwind" the compositional inverse in 
Theorem 1.2. This is carried out in Section 4, where we give the proof of the main 
result and variants. 

2. The main result 

For the partition A h n we denote the monomial symmetric function with expo 
nents given by the parts of A, in indeterminates xi, x2,..., by m\. In this paper, we 

consider the particular evaluation of the monomial symmetric function at xi = 
i, 

for i = 1,..., k ? 1, and Xi = 0, for i > k, and write this as rh\. Now let 

C(t) 
= 

J2m>o Gmt171, so from (1.5) we obtain 

?2-1* C{t) = i v )i una 
l-L.i>2Kl~l)Ritl 

Let D = 
t-???, I be the identity operator, and define 

(2.2) Pm(t) = -?}C(t) (D+(m- 2)1) C(t) (D + /) C(t)DC(t), m > 1. 

For example, we have 

P1(t) = -C(t), P2{t) = -l-C{t)DC{t), 

and 

P3(t) = ~lc(t)(D + I)C(t)DC(t) O 
= i (c(t)2DC(t) + C{t) (DC(t))2 + C(t)2D2C{t)) 

. 
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3674 1. P. GOULDEN AND A. RATTAN 

We remind the reader that the differential operator is not commutative; for example, 

(DC(t)f ? DC(t)DC(t). The latter is properly interpreted as D (C(t)DC(t)). 
Finally, for a partition A, we write P\(t) 

= 
]l/=i ̂ (0- We now state our main 

result. 

Theorem 2.1. Forn>l, k>2n- 1, 

lr.*+i-2m V-^ P^) 
Zk,2n 

= 
-^[tk+1-2n]J2 

m\ 

There is a slight modification of this result, given below, in which the term 

corresponding to the partition with one part is given a simpler (but equivalent) 
evaluation. This is used mainly for computational purposes, as it is easier to com 

pute Pi for smaller i. 

Theorem 2.2. Forn>l,k>2n- 1, 

\ \\-2n V ' 

\ i(A)>2 

The following result gives a generating function form of the main result. 

Theorem 2.3. Forn>l,k>2n- 1, 

Note that, for each n > 1, these results give Efe?2n as the coefficient of tk+1~2n 
in a polynomial in C(t) and 

D*C(t) = 
Y^ ntCmt , i > 1. 
m>2 

Thus Efe52n is written as a polynomial in the Cm's, with coefficients that are poly 
nomial in k with rational coefficients, so our results give C-expansions for Efe?2n> 
for n > 1 (the rh\ are divisible by k for each A and fixed n, as follows immediately 
from Propositions 3.1 and 3.2). 

Using the above results, with the help of Maple, we have determined the C 

expansions and the R-expansions of Efe?2n fc>r all k < 25 and n > 1. The R 

expansions are in complete agreement with those reported in Biane [3] for k < 11. 
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AN EXPLICIT FORM FOR KEROV'S CHARACTER POLYNOMIALS 3675 

The C-expansions are given below for k < 10: 

E1-?2 - 0, 

E2-i?3 = 0, 

E3 
? 

??4 = C2, 

E4 
? 

i?5 
= 

2^3> 

E5 
? 

Rq = 5C4 + 8C2, 

E? 
? 

??7 = 
-4- C5 + 42 Cs, 

E7-?8 = 14C6 + ̂ C4 + ̂C22 + 180C2, 

E8-i?9 = 21C7 + ̂C5 + ̂C3C2 + 1522C3, 

E9 - ?10 = 30 C8 + 1197 C6 + SSS C32 + 1122 C4C2 + 81C23 + ? C4 
+ iip C22 + 8064 C2, 

V P ? 165 r1 _i_ 5467 /nf | 4433 r> n _i_ H33 n n 2 , 11033 ^ ^ 
?-40 

? 
-ttll 

? 
-4- ^9 H-2~ ?7 

" 
-2~ ?4^3 H-2~ ?3^2 1-? ^5^2 

+ 38225 C5 + 52580 C3C2 + 96624 C3. 
Note the form of the data presented above. We have 

?fc 
? 

^fc,0 
? 

2_^ ^k,2n, 
fc>l 

where Efe?o 
= 

Rk+i remains on the left hand side, and we can recover the individual 

Efe52n on the right hand side: if the weight of the monomial Cmi ... Crrii is mi + 

-Vrui, then, from (1.5) and (1.4), Efe^n is the sum of all terms of weight k-\-l ? 2n. 
In the above C-expansions for k < 10, all nonzero coefficients are positive ra 

tional, with apparently small denominators. In fact, this is true for all the data 
we have computed, up to k ? 25. We do not have a precise conjecture about the 

denominators, but conjecture that the positivity holds for all k. 

Conjecture 2.4. For n>l,k>2n 
? 

l, Efe52n is C-positive. 

This C-positivity conjecture implies the R-positivity conjecture, from (1.5) (so, 
our data also check the R-positivity conjecture for k < 

25). Theorem 1.3 gives an 

immediate proof that Conjecture 2.4 holds for n = 1 and all k. In Corollary 3.5, 
we are able to prove that Conjecture 2.4 holds for n ? 2 and all k. We are not able 
to prove the conjecture for any larger value of n, though of course Theorem 1.4, 
together with (2.1), proves that the linear terms are C-positive for all n. 

The conjecture does not hold for n = 0, as described below. We have Efe5o 
= 

Rk+i, and it is straightforward to determine the C-expansion for the itVs: from (2.1) 
we obtain 

1 1 - X> 
- !W 

i>2 

so we conclude that 

C(t) 

(-Cmtm)j" 
E>2+?3 + "-)!lI 

j2,j3,->0 ra>2 

R? = jzT E (-i)1+h+j3+-(j2 +h + )! II^' 
^2 

J2>J3>"->o m>2 3 ' 

2j2+3J3 + ---=i 
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3676 I. P. GOULDEN AND A. RATTAN 

Thus, terms of negative sign appear in the C-expansion of Ri, for i > 4. This is 
the reason that we have presented the data for k up to 10 with Rk+i subtracted 
on the left hand side. This is also the reason that the R-positivity conjecture 
does not imply the C-positivity conjecture, so R-positivity and C-positivity are not 

equivalent. 

3. Special cases of the main result 

3.1. Monomial symmetric functions. To make the expression for Efe?2n that 

arises from Theorem 2.1 (or Theorem 2.2) explicit, we need to evaluate the rh\, 
which are monomial symmetric functions in 1,2,..., fc ? 1. For general results about 

symmetric functions, see Macdonald [10]. 

Proposition 3.1. For indeterminates ai, i > 1, let A(x) 
= 1 + ]C?>i aix%> and 

a\ = n/=i aAJ; where X = Xi... X^x) is a partition. Then 

]T mxax = exp^rhj ]T ^?r-W](A(x) 
- 

1)\ 
\<EV j>l i>l 

Proof. We have 

^2 mA^A = JJ A(xn) 
xev n>l 

= 
exp]Tlog(,4(:rn)) 

n>\ 

n>li>l 

and the result follows. D 

Proposition 3.1 gives an expression for rh\ as a polynomial in m?, i > 1, by 

equating coefficients of a\. To evaluate the m?, i > 1, we apply the following result 

(see, e.g., [10, I 2, Exercise 11] for a proof). 

Proposition 3.2. For j > 1, 

3=l^S(Jii)il[i + l)i 
where S(j, i), the Stirling numbers of the second kind, are given by 

??S(j,?K^=expW(e*-l). 

As special cases of this result, we have the following, well-known sums of integer 
powers: 

(3.1) mi = 
\(k 

- 
l)k, m2 = 

l(k 
- 

l)k(2k 
- 

1), m3 = 
\(k 

- 
l)2k2, 

m4 = i 
(jfc 

- 
i)jfc(2Jfe 

- 
l)(3/c2 

- 3k - 1). 
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3.2. The cases n = 1,2. We first consider the case n ? 1 of Theorem 2.2. This 

immediately gives Biane and Sniady's C-expansion for Efe52, and hence another 

proof of Theorem 1.3, as shown below. 

Proof of Theorem 1.3. From Theorem 2.2, with n = 1, we obtain 

Sfc,2 = -Ifi*-1] (-!(*;-l)m2C(?) + muC(?)) 

= 
^i?fe-lK-mujl?*-1]^). 

But from Proposition 3.1, we obtain 

mn = 
\(rh\-m2), 

and the result follows from (3.1), by routine manipulation. D 

Next we consider the case n ? 2 of Theorem 2.2, to obtain an explicit C 

expansion for Efe^. 

Theorem 3.3. For fc > 3, 

EM = a(fc) Y GiCjCrn^?(k) Y i2ciCJCm, 
i+j-\-m=k 

? 3 i-\-j+m=k?3 

where 

a(k) = 
-?728?(fc 

- 
3)(fc 

- 
X)2k(k + X)(fc2 

- 4fc - 6)> 

?W = 
2??(A;-l)A;(A; + l)(2fc2-3). 

Proof. From Theorem 2.2, with n ? 2, letting 6 
= 

^(m3i 
? 

^(/c 
? 

1)7714), we obtain 

?m = -^fe~3](& (C(?)2DC(?) 
+ C(?) (?>C(?))2 + 

C{t)2D2C{t)) 
+ \m22C{t) (DC(t))2 

- 
?m2UC(t)2DC(t) + mnnC(t)3) 

= 
-i[ifc-3] (mimC(i)3 

+ (b 
- 

imju) C7(?)2DC(?) 

+ bC(t)2D2C(t) + (b+ \rh22) C(t) (DC(t))2 ) 
= 

-l[tk-3)(mnnC(t)3 
+ {b- |m211) ?ZX7(i)3 

+ 6C(?)2I>2C(?) + (6 + ?m22) (|?>2C(i)3 
- 

?C(?)2?>2C(?)) ) 
= 

-\ (mim + f (? 
- 

3) (6 
- 

?m2n) + ?(fc 
- 

3)2 (6 + |m22)) [ife"3]C(t)3 

-i(|?)-|m22)[?fc-3]C(?)2D2C7(?). 
But from Proposition 3.1, we obtain 

m3i 
= 

rhsrhi 
? 

m^, 

fii22 = 
\(rri22-rhA), 

^211 = 
\(m2m\ 

- 
2ra3rai 

- 
rh\ + 2ra4), 

mim = 
?(m^ 

? 
6m2mi+8m3mi + 3m2 

? 
6m4), 
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so from (3.1), by routine manipulation, we obtain 

(3.2) Efe,4 = a(k)[tk-3]C(t)3 + ?(k)[tk-3]C(t)2D2C(t), 

where a(k) and ?(k) are given above. The result follows. D 

For monomials in R2, i?3,... that are pure powers of a single Rm, we have the 

following form of the above result. 

Corollary 3.4. Form>2,i>l, 

[?Jj?mt+3,4 
= 

3i^?(m 
- 

iymi(i + 1)(? + 2)(mi + 2)(mi + 3)(mi + 4) 
x (m3i3 + 2m2(m + 4)z2 + 4m(3ra + 5)i + 15m + 18) . 

Proof Prom Theorem 3.3, we obtain 

[?C]?m?+3,4 = a(mi + 3)[iC*m<]C(?)3 + ?(mi + Z)[Rimtmi]C{t)2D2C{t). 

Now, setting Rj 
= 0 for j ^ m, we obtain C(t) 

= 
(1 

? 
(m 

? 
l)i?m?m)_ , so 

[^nc(i)3 = 
(m-ir^+2). 

Also, we have 

?2C(?) 
= 

Dm(m-l)Am?m(l-(m-l)?m?m)-2 
= ?>m ((1 

- 
(m 

- 
l)f?m?m)-2 

- 
(1 

- 
(m 

- 
l^r)"1) 

= 
m2(m 

- 
1) (2?mim(l 

- 
(m 

- 
l).Rm?m)-3 

-Rmtm(l 
- 

(m 
- 

l)?m?m)-2), 

so 

[Rancit)2D2C(t) = (m- lym2 
(2(? 

+ 
3) 

- 
(? 
+ 

2)) 
. 

The result follows by routine manipulation. D 

We now consider the case m = 2 of Corollary 3.4, to obtain an immediate proof 
of Stanley's Conjecture 1.5. 

Proof of Conjecture 1.5. We set m ? 2 in Corollary 3.4. Then the factor that is 

cubic in i becomes 

8i3 + 48i2 + 88i + 48 = S(i + l)(i + 2)(i + 3), 

and the result follows. D 

As the final result of this section, we are able to use the explicit C-expansion 

given in Theorem 3.3, to prove the C-positivity of Efe,4. 

Corollary 3.5. Efe?4 is C-positive for all k > 3. 
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Proof Consider 0 < i < j < m, with i+j + m = k ? 3, and let 7 = |Aut(i, j, m)\. 
Thus when k = 12, for example, 7 = 1 for (i,j,m) 

= 
(2,3,4) or (0,2,7), 7 = 2 

for (i,j,m) 
= 

(2,2,5) or (1,4,4), and 7 = 6 for (i,j,m) 
= 

(3,3,3). Then, from 
Theorem 3.3, we obtain 

[CiCjCm]j:kA = -a(fc) + 
- 

(i2 + j2 + m2) ?(k). 

Now, the minimum value of x2 + y2 + z2 over the reals, subject to x + y + z = c, 
for any fixed real c, is achieved at x = y = z = c/3, so in the above expression we 
have i2 + j2 + m2>l(k- 3)2. But ?(k) > 0 for k > 3, so we obtain 

[dCjCjPkt > 
- 

(3a(A) + ?(k 
- 

3)2?(k)) 
= 

8?k(fc 
- 

3)(fc 
- 

1)*(* + 1) (-3(fc 
- 

!)(fc2 
- 4fe - 6) + 2(fc 

- 
3)(2fc2 

- 
3)) 

= 
86k(fc-3)(fc-l)fc3(fc + l)(A: + 3)>0, 

for k > 3, giving the result. D 

3.3. The linear terms. We now apply Theorem 2.3 to evaluate the linear terms 
in Efe, and thus obtain another proof of Theorem 1.4. 

Proof of Theorem 1.4. For i > 1, let A^(t) consist of the terms in Pi(t) that are 
linear in the Cm's. Also, let Ln,k 

= 
[i?fe+i-2n]?fc,2n- We apply Theorem 2.3 to 

determine Ln?. From (2.1), we have 

Ln,k 
? Cfc+l 2n 

k-2n Sfe,2n 
= Cfe+l-2n 

k-2n 

k-l 

Tr^H^n h-i' + E^W*4 

Ck+l-2ntk+l 
k-2n 

Cfc+l-2n^fe+i 
k-2n 

3 = 1 

'k-l 

i>l 

k-l 

m^E^frn^ Kj=i i>i 

k-l 

a=l 

k-l 

i-cw+Ez^^inc-) j=l ?>1 it a=l 

But 

AV(t) = -hD + (i-2)r):.(D + I)DC(t) = -Y,( 
(m 

1)N)(-1)?-^-^ 

for ? > 1. Now let ^j 
= 

xm_1, m > 2, which gives 

^jM^(t)^ 
= 

-]r ((i-j^r^^-i)* 
"1* 

?>i m>2 

+ 
1_3?_ 

' 
1 _ T+ 1 

^^ 
1 Xi, 

and 

i - c(t) = - 
y (m 

- 
i)^m-1^ + 

m>2 (1-Xt)2 1-Xt 
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Thus we obtain 

Ln,k = hxk-2ntk+1^ 
' 

kl ?\(l-xt)2 1-?* 
k-i / i \ \ fc-i 

+g(r=uT?)*-(i-i*)(i-?t)Jjn(1-^ 
We now finish the proof using the method of Biane [3, Theorem 6.1]: Replace t by 
?_1, and multiply by tk, to obtain 

Ln,k = 
^[^-^[t-'looW^ (t 

- 
xf t-x 

k-1 

+E(i_j_a; (t-m-x)))' 
where (t)k 

= 
t(t 

? 
1) (t 

? k + 1) is the falling factorial. Now use the fact that 
the residue is unchanged if we substitute t + c for t, where c is independent of t. 

Thus, substituting t + j + x for t in the first term of the summation over j, and 

substituting t 4- # for tin all other terms, we obtain 

??,* = 
J[*fc-2n]^^ 

ff(x)fc 

x-j 

= 
?[*fc-2n]?(*+?)k 

= 
^fc-2n]?(z-;)*, j=o i=0 

where, for the last equality, we have replaced x by ?x, and multiplied by (?l)k. 
The result now follows, as shown in Biane [3]. D 

4. LAGRANGE INVERSION AND THE PROOF OF THE MAIN RESULT 

As a first step, we translate Theorem 1.2 into the language of formal power series, 
using the notation 

(4.1) (j)(x) = xH (x'1) , ?(x, u) = Y Qif?u* = (1 
- 

ux)(?) (x(l 
- 

ux)-1) , 
i>0 

where H(x) is defined in (1.3). 

Proposition 4.1. The following two equations hold: 

1) For k>l, 

1 
k-i 

(4.2) Sfc = --[xfc+1]II*(^j). 
3=0 

2) Fork,n> 1, 

1 
k-i 

(4.3) Sfc,2n 
= 

--[u2nxk+1] J] <!>(*, ?u). 
j=o 
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Proof For (4.2), we first replace x by x~l in Theorem 1.2, to obtain 

1 
k-i 

Xk = 
-?[xk+1]1[[xH(x-1(l-Jx)), 

j=0 

and the result follows immediately. 

For (4.3), we let t? be the substitution operator Ri i-> ulRi, i > 2. Then, 
from (1.4), we have 

(4.4) ?Mn 
= 

[ufc+1-2n]0Et. 

Now, from (1.3), we have 

#F(x) 
= 

-tt^t 
= 

-r^-r 
= 

-F(UX). v ; 
#R(x) R(ux) u v ; 

Applying i? to both sides of the equation x = F(F^~^(x)) we obtain 

x = 
i?F(i?F<-1>(x)) 

= 
-F^tfF?-1^)), 

implying 

u 

Thus, combining this with (1.3) and (4.1), we obtain 

#(*) = 
xM(x-i) = 

^?^ 
= 

J^J^ 
= *(?*), 

and then 

i?$(x, j) = (1 
? 

jx)(f)(ux(l 
? 

jx)~ ) = $ (ux, jt?-1). 
Combining this with (4.4) and (4.2) gives 

1 
k-i 

Xk,2n 
= 

-i[ufc+1-2na:fc+1] J] ?(ux.jti-1), 
j=o 

and (4.3) now follows, by substituting first x = xvT1, and then u ? u~l. D 

Next, we give an expression for the coefficients <I>?, i > 0, defined in (4.1). 

Proposition 4.2. For i > 0, 

?A r\ x. / \ X ( 2 d Y <P(X) 
(4.5) $i(x) = 

- U2 ? 

Afo?e that for i = 0, this specializes to $o(x) 
= 

<j)(x). 

Proof. From (1.3) and (4.1), we have 

(?)(x) = l + Y<t>3xJi 
3>2 
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where 0?, j > 2, are polynomials in the i??'s. For i = 0, we have $o(x) 
= 

$(x, 0) 
= 

<t>(x). For i > 1, we have 

$?(x) = M$(x, m) = [u1] \l-ux + Y fa^i1 
- 

uxf~j 

3>2 

and the result follows. D 

We make use of the following two, closely related, versions of Lagrange's Theorem 

(see, e.g., [6, Section 1.2], for a proof). 

Theorem 4.3. Suppose (j) is a formal power series with invertible constant term. 
Then the functional equation w = t(?(w) has a unique formal power series solution 
w = w(t). Moreover, 

1) For a formal Laurent series f and n ^ 0, we have 

bxn~1] (icf{x))0(:E)n 
= r]/H n 

2) For a formal power series f, and n>0, we have 

[/]/(^(xr = 
n/(w)^. w at 

Here, we shall consider the functional equation 

(4.6) w = t(j)(w), 

where cf> is the particular series given by (4.1). Then from (1.3) and (4.1), we have 

so F(~^(w) 
= t, and from (1.3) we deduce that 

(4.7) t = wR(t). 

We now relate the series C(t) and differential operator D of Section 2 to the 
variable w. 

Proposition 4.4. 

(4.8) 
DW l 

w R{t)c{ty 

(4.9) w2-^ 
= tC(t)D. aw 

This content downloaded from 129.97.140.60 on Wed, 10 Jul 2013 08:30:39 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


AN EXPLICIT FORM FOR KEROV'S CHARACTER POLYNOMIALS 3683 

Proof From (2.1) and (1.3), we obtain 

C(t) = 
1 

But 

tD?t 

^ = -WDl- = 
-?-,D*?, w w R(t) t 

from (4.7), and result (4.8) follows. 

Now, (4.8) gives the operator identity 

w4- 
= R(t)C(t)D, dw 

and multiplying by w and using (4.7), we obtain result (4.9). D 

Proof of Theorem 2.1. For a partition A, let $A(a;) 
= 

n^=i $A, (x). Then from (4.3) 
and (4.5), we have 

Sfc>a? = 4[*fc+1] E mx*x(x)<K*)k-lW 
\\-2n 

= 
>liE*?^)w 

fcL J?n A?(t)c(t)^H'w+1' 
where the last equality follows from 2) of Theorem 4.3 and (4.8). But, from (4.5), 

(4.6) and (4.9), for i > 1 we have 

$i{w) _ 1 w ( 2 d \% <p(w) 
4>{w) i\ <f>(w) \ dw J w 

= 
^(tCMDr'tCMDj 

= 
-^(tc^Dy-'cit). 

Finally, we prove by induction on i > 1 that 

--Atc(t)D)i-1c(t) 
= 

ti-1pi(t), l\ 

where Pi(t) is defined in Section 2. The result is clearly true for i = 1. For the 
induction step, we have 

-j~?y{tc{t)Dyc{t) 
= 

J-^tc^Dt^m 
= 

~TT {?C(t)D + (i~ l)??C(?)J) Pi(t) 1 + 1 

as required. Together, these results give 

(?)(w) 
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SO 

?AM =t2nPx(t) 
?(wym+i cf)(w) 

' 

since ? h 2n, and the result follows from (4.6) and (4.7). D 

Proof of Theorem 2.2. In the proof of Theorem 2.1, the term in Efe52n corresponding 
to the partition with the single part 2n can be treated in the following modified 

way. We obtain 

-j[lfc+K$2n(#)fc_1 
= 

-^[xk-2]m2nX-3^2n(x)(l)(x)k-1 

_ k-l k_x 1 ( 2 d V71'1 (?(w) 

^'v^m (-'s) W 
from 1) of Theorem 4.3, and the result follows as in the above proof of Theorem 2.1. 

D 
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