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1. INTRODUCTION

For partitions A and u with p C A, the supersymmetric skew Schur

function s, ,, in variables X, = (x, x,,...,x,)and Y, = (y,, y,5,...,¥,)
may be defined by the formula
S/\/y.(Xm/Y;l) = Z Sn'/;;(Xm)sA'/u'()/n)’ (I)
HCVCTA

where s, , (X,,) denotes the ordinary (symmetric) skew Schur function in
variables X,, and X' denotes the partition conjugate to A. When u = &
these define the characters of certain irreducible representations of the
Lie superalgebras g/(m /n) introduced in [13, 14] and studied by several
other authors, e.g, [1, 3, 4, 10, 18, 19, 22-24]. The explicit formula (1)
appears first in [4], where 5, (X, /Y,) is called a “hook Schur function.”
Several other equivalent combinatorial expressions for s, , (X,,/Y,) may
be found in [8] and [23].

In general, a function ¢(X,,,Y,) in variables X,, and Y, is supersym-
metric if it is symmetric in X, and Y, separately, and satisfies an
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additional cancellation property (described in Section 4, Theorem 4.1).
These functions were introduced in [17], where they are calied “bisymmet-
ric.” Another characterization was conjectured in [20] and proved in [22],
where the name ‘“supersymmetric”’ seems to have been used for the first
time. It follows from results in [22] that the supersymmetric Schur func-
tions s,(X,,/Y,) form an integral basis for the algebra of all supersymmet-
ric polynomials in X, and Y,. ‘

Supersymmetric functions ¢( X, Y ) in countably infinite sets of variables
X and Y have the following simple characterization: let f(X U Y) be a
function jointly symmetric in variables X = (..., x_,, x4, x,,...) and
Y=0(...,¥_y, Yo» ¥,... ). Here we use Z instead of Z* as the index set
for reasons which will become apparent later. Let w, be the involutory
automorphism on A(Y), the ring of symmetric functions in Y (for a
definition of ® and basic notation for partitions and symmetric functions,
see, for example, [15]). Then w, f is symmetric in X and Y separately, and
satisfies the cancellation hypothesis of [17] and [22]. Hence o, f is super-
symmetric, and every supersymmetric function arises in this way. From this
point of view supersymmetric Schur functions arise from ordinary Schur
functions, and may be compactly represented by the formula

S/\/#( X/Y) = w)’SA/p(X uY) (2)

” and },Il
replaced by X and Y respectively). This was noted in [23), and follows
easily from (1), using the well-known expansion

s/\/p.(XU Y)= Z Sl//y(X)sA/t'(Y) (3)

LEVCA

(where 5, ,(X/Y) is defined by the right hand side of (1) with X,

and the fact that @ acts on skew Schur functions by conjugating the shape.

In this paper we give a simple combinatorial representation of the
functions s, ,,(X/Y) which yiclds immediate and transparent proofs of
many of their important properties. To describe this requires some more
notation.

For A c 7, let .7, , (A) be the set of skew tableaux of shape A /p with
entries in 4. Thus these consist of elements of A placed in the cells of
skew shape A/u, weakly increasing along rows and strictly increasing
down columns. It is important in what follows that we consider the
possibility of tableaux with positive and negative integers: A may be an
arbitrary subset of Z. For T € 7, , (A4) and a a cell in A/u, let T(a) be
the entry of T in cell a, and let C(a) denote the content of a; that is,
Cla) = ¢ — r if « lies in row r and column ¢. Let T¢ denote the array
obtained from T by replacing each T(a) by T(a) + C(a). Clearly the
entries in T¢ arc weakly increasing in columns and strictly increasing in
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rows, so the transpose of TC is a tableau of shape X' /u. In fact, the map
T — (TY defines a bijection between 7, , (Z) and 7, ,,(Z), though not
between 7,  (Z7) and 7, ,,(Z") unless u is empty. Now consider the
combinatorial function

G/\/p(X'Y) = Z I_I (xT(a) +yT(a]+(‘(u))' (4)

Tes, (2 asA/u

This is analogous to the familiar combinatorial representation of skew
Schur functions given by

s/\/p(X) = Z H X7 (a) (5)

Tes, (&) esh/u
Indeed it follows immediately that
G, (X,0) =5, (X) (6)
and using the content-modifying bijection described above,

GA/;;.(O’Y) =SA'/H'(Y) (7)
Gy u(X,Y) =Gy, (Y, X). (8)

Properties (6), (7), and (8) of G, /. are all also true for supersymmetric
skew Schur functions, as can be easily seen from (1) and (2). In fact our
principal result is the following:

Theorem 1.1.  For any partitions A and p,

G,\/M(va) =5, X/Y)

Among other consequences, it follows that GA/M(X, Y) is symmetric in
X and Y separately, though this is not at all obvious from (4). We give a
direct proof of this fact in Section 3.

Much of our present work arose from attempts to understand the
symmetry of a closely related family of non-homogeneous polynomials
introduced by Biedenharn and Louck [5, 6], and studied further in [9]
(where they are called “factorial (skew) Schur functions™), and also [12,
16]. These have the tableau representation

ol Xn) = X IT (¥r@ — T(a) =Cla) + 1) (9)

Ted,, (m) aSA/u

where [m] = {1,2,...,m}. It is shown in [5, 6, 9, 12, 16] that these
functions have many properties analogous to the Schur functions, and are
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themselves symmetric in X, although the latter is not an obvious conse-
quence of (9). Unlike Schur functions, it is essential that factorial Schur
functions involve a finite number of variables because otherwise un-
bounded sums arise in (9). Macdonald observed (see [9, 16]) that

det((x"))\l*’m*)')mxm
det((x,')mAj)mxm ,

’A( Xm) =

where (x), denotes the falling factorial x(x —1)...(x — k& + 1) and
A =(A,, Ay, ..., A,,) This is analogous to the classical bi-alternant defini-
tion of the Schur functions, and makes the symmetry of ¢, ,(X,,) obvious
when p = &.

Note that GA/H(X, Y ) as defined in (4) does not specialize directly to
the factorial symmetric functions. In order to permit this, we extend the
definition slightly, as follows: for a subset 4 C Z, define

Gf/u(X’ Y) = Z n (XT((!) + Y'r(u)+(‘(a))- (10)

res, fAyaEA/u
Then clearly
o X)) = GVL(X, YY), (11)

where here Y* denotes the result of replacing each y, by —k + 1. Thus
one may view the polynomials
GImL(X.Y)

as two-variable generalizations of factorial Schur functions.! These poly-
nomials are symmetric in X,, but not in Y, for finite m, even when
1 = J; the range of y indices is determined by “flag conditions” on the
rows of A/pu.

For similar reasons, the restriction of Theorem 1.1 to sets of variables
indexed by positive integers alone must be handled with care, since

[+
GA/#(X,Y) (12)
and
GA/,;(X)erJr) (13)
'As this work developed, we learned that polynomials equivalent to G,[\"}L( X, Y) have been

introduced and studied independently by Macdonald ({16, formula (6.16)]), though his point
of view is quite different from ours.
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are not the same. Here X" =(...,0,x,,x,,...) and Y=
(....0, ¥y, ...). For example when A/u = (3,3)/(2,0) the tableau

-1

[1]2]4

contributes nothing to (12) since it is not in 7, , (Z"), but it contributes

yix(xy +y2)(xg +ys)

to (13). To obtain a specialization of Theorem 1.1 to countably infinite sets
of variables indexed by positive integers one must use (13) rather than
(12), and the correct specialization to finite sets of variables (giving the
functions defined in (1)) is

GA/;L( XV;’ Yn+)’

where X, =(...,0,x,,...,x,,.,0,..0and Y,)= (..., 0,¥,,...,5,,0,...).
Clearly the polynomials G, , (X, Y,") are symmetric in both X, and Y,.

For ordinary skew Schur functions s, ,,(X) in a single set of variables,
the distinction between (12) and (13) is unnecessary. Also, with two sets of
variables X and Y, expressions (12) and (13) coincide if u = &, i.e., A/u
is a standard (non-skew) shape. This follows from the fact that cell (1, 1)
contains the smallest entry in 7 and has content zero.

This paper is organized as follows: in Section 2 we obtain a Jacobi—Trudi
determinant expansion for G, , (X,Y), which leads via (2) to a proof of
Theorem 1.1. In Section 3 we prove that the symmetry of supersymmetric
skew Schur functions in X and Y separately follows directly from our
tableau representation (4), by a switching argument analogous to the
Bender-Knuth proof of symmetry for Schur functions [2]. This symmetry
argument is then extended to give a direct bijective proof that (1) follows
from (4), thus providing a second proof of Theorem 1.1.

In Section 4 we consider the special case u = &, and explore some
implications of the ‘“cancellation property” ({17, 22], and see also [18, 19])
which follows immediately from the tableau representation. Finally, we
give a simple proof of a theorem due to Berele and Regev [4], which states
that

n

S Xn/Y,) = {H 11(x +yj)}5,,(X,,,)SBr(Y’,,) (14)

i=1j =1
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where A =(n + n,n+n,,....,0n + n,n,Bl,Bz,...,Bk),n >B,,andn =
Mmoo, B = (B, By, ..., B,) are partitions.

2. A Jacosi-Trupr DeTerMINanT FOR G,

Let A =(A,...,A,,) and g = (u,,...u,) be partitions with m parts
(possibly some are zero). The Jacobi-Trudi formula for ordinary Schur
functions states that

SA/,L(X) = det(hAquHj(X)) (15)

mxm’
where £,(X) is the complete homogenous symmetric function and, by
definition, A, (X) = 0 if k < (. In this section we will prove an analogous
formula for GA/M( X,Y). The argument is a straightforward extension of
the method used by Gessel and Viennot [11] to prove (15), and we will
merely sketch the details.

Let P=(u,~i+1l,—x)and Q, =X, — i+ 1,+®),i=1,...,m. A
tableau T in 7, ,(Z) can be uniquely represented as an m-tuple of
nonintersecting lattice paths with horizontal (increase abscissa by 1) and
vertical (increase ordinate by 1) steps where the ith path is from P, to Q,
and has horizontal steps at ordinates specified by the entries in the ith row
of T. This is bijective, and if the weight of a horizontal step from (i, j) to
(i + 1,)) is given by X; +¥;,; and the weight of a vertical step is 1, then
the generating function for all such m-tuples is precisely G, ,(X,Y).

The Gessel-Viennot analysis easily shows that

Gy (X Y) = det(2(PQ))) (16)
where g(P;, Q,) is the generating function for paths from P, to Q, with the
given weight. It remains to determine g(P;, Q,), or equivalently, to com-
pute G,(X,Y) when A consists of a single row. Now clearly

§(P0,) = S H, L, L (X.Y), (17)

where

HII(X’Y) = Z n(xd,+yd,+i—l) (18)

dy< - =d, i=1

and S is a shift operator acting on functions f(X,Y) by replacing each y,
by y;, ).
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LemMma 2.1.

H(X.Y) = X h(X)e, (Y) (19)

O=<k<n

where h, (X ) and e, _,(Y) denote the complete homogeneous and elemen-
tary symmetric functions, respectively.

Proof. Terms in the expansion of (18) are monomials of the form

XaXay © 7 Xa Ve Yo, "7 Y, o
where a4, <a,< -+ <a, and b, <bh, < -+ <b,_,. To prove (19) it
suffices to show that each such monomial appears exactly once, i.e. given
such {a,...,a,} and {b,,....b,_,} there exists a unique sequence d, <
d, < -+ <d, and subset of indices / C[n] of size n — k such that

{dliel ={a,,...,a and{d, +i—1liel}=1{b,...,b,_,). This may
be proved by a “merging” algorithm which constructs both {d,} and [ as
follows. Initially let / = & and i = j = = 1. Repeat the following steps
until / = n.

slfag, <b —-i+ 1l setd, =a,i=i+1l,and!l=1+1

sIf gy=b —i+1,setd, =b—i+1, I=1U{i}, i=i+1, and
j=Jj+ L
It is easy to see that this terminates with a sequence {d,} and subset [/
having the desired properties. |

Another way to visualize the merging process in the above argument is
as follows: make a list of length n consisting of the b’s followed by the a’s,
with the b’s “circled.” First replace each b; by b; — j + 1. Then, as long as
there exists a b followed immediately by a smaller a, that is, an adjacent
pair (@), a) with b > a, exchange a and b, and subtract one from b. For
example, the list

DB®|-1]0(2]2]4

leads first to

481/170,2-23
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and eventually to

— 1@ 0|22 4

It is clear that this results in the same sequence {d,} produced by the
merging algorithm, and that the set I consists of the positions containing
the circled elements. Uniqueness follows from the fact that all of the steps
are reversible. A two-dimensional version of this procedure (related to
Schiitzenberger’s jeu de Taquin) plays an important role in Section 3 of
this paper.

Lemma 2.1 shows that H,(X,Y) is symmetric in ¥ and hence invariant
under the shift operator §. Thus we may write

g(P.Q) = H, . 1 (X.Y) (20)

and Lemma 2.1 combined with (16) yield the desired Jacobi-Trudi deter-
minant expansion for G, ,:
COROLLARY 2.2.
Gy, X.Y) =det(H, . _,.,(X,Y))

mxm

Now
h(XUY)= 3} h(X)h, (Y)

O<ks<n
and since w, exchanges elementary and complete symmetric functions,
Lemma 2.1 gives
H(X,Y)=w,h {(XUY)

Thus comparison of the two Jacobi-Trudi determinants gives GA/“(X, Y)
= wyS, (X UY), and we have proved Theorem 1.1.

A straightforward extension of this argument gives a Jacobi-Trudi form
for the factorial Schur functions (see also [9, 12, 16]). To see this, first note
that the proof of Lemma 2.1 also yields the identity

n

Y I—[(xd,+yd,+,~_1)= Y i X)e, (Vi)

l<sdy< - <d,<mi=] O<k<n
(21)
Then a modification of the Gessel-Viennot argument for (16) gives

CoroLLARY 2.3.

GITh(X.Y) = det($* 7 H, (X0 Yo 0))

mxXnm
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Specializing as in (11) gives the required determinantal expression for
factorial Schur functions.

3. SyMmETRY OF G, (X,Y) via CiRcLED TABLEAUX

In this section (as well as the next) we consider G, ,(X,Y) in light of
Theorem 1.1, and show that several important properties of supersymmet-
ric Schur functions can be obtained directly from our tableau definition.
First we will be concerned with symmetry. It is convenient to represent the
right hand side of formula (4) as a weighted sum over a new class of
objects, called circled tableaux.” These are just ordinary column strict
tableaux with some subset of the entries circled. The weight of a circled
tableau T is defined to be

w(T) =wy(T)wy(T),
where

WX(T) = I_I x’l‘(u)

« uncircled
wy(T) = T1 Y1+
B circled

Thus if .’/‘,{\/’M(Z) denotes the set of all circled tableaux of shape A /u, with
entries in Z, we can rewrite (4) as

Gy, (X Y)y= ) w(T). (22)
Tes, A

We now use this representation of GA/#(X, Y) to show directly that it is
symmetric in X and Y.

Tueorem 3.1. G, , (X,Y) is symmetric in X and Y.

Proof. By (8) it suffices to show that G, (X,Y) is invariant under
transposition of x; and x,,.,, for all i. We prove this by defining an
involution on tableaux T € .Z?M(Z) which exchanges x; and x,_, in
wy(T) and leaves w,(T) invariant.

In such a T the entries i and i + 1 appear in a skew subtableau with at
most two cells in each column. If entries / and i + 1 are in the same
column (whether circled or not) we say that they are paired; all other

One could also imagine calling these objects ““supertableaux’; however, the term seems
already to appear in the literature (e.g., [10]), with a different meaning.
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occurrences of i and i + | are unpaired. The involution on 7;‘/#@) is
defined as follows:

e If i and i + 1 are paired, and exactly one of them is circled, transfer
the circle to the other, leaving i and / + 1 fixed.

e If ; and i + 1 are paired, and both are circled or both uncircled, do
nothing.

¢ In each row of T perform the following operations on the remain-
ing unpaired occurrences of ¢/ and i + 1.

(i) Replace each uncircled i by i + 1 and each uncircled i + 1
by i.

(i) Sort those (uncircled) entries into increasing order, in place,
leaving the other entries fixed.

(iii) If any adjacent pairs i + 1 > i remain (circled or not), trans-
pose those pairs, increasing a circled entry by one if it moves to the left
and decreasing it by one if it moves to the right. Repeat until no such pairs
remain.

For example, suppose that { = 2 and the entries 2 and 3 appear in a
subtableau as shown:

21@12®]3]3(3)]3
©©,

(9]
(%]

@2 @212
©)

o

§°]
©

o

Lz@zz.%@

Then the resulting subtableau is:

©O

Ol@l2]2]2]3!3
®

2123131313

Clearly each step is reversible, and the operations define an involution
with the stated properties. The symmetry of GA/M(X, Y) follows immedi-
ately. 1
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It is worth noting that when T contains no circled elements, the
involution given in the above proof coincides exactly with the one used by
Bender and Knuth [2] to prove symmetry of the ordinary Schur functions.

Next we show how to obtain formula (1) for supersymmetric Schur
functions directly from the tableau definition, as an immediate conse-
quence of the symmetry proof. One may regard this as an alternate proof
of Theorem 1.1.

THEOREM 3.2.  For any partitions X and u with u C A,

G, (X,Y) = Z Sy (X )sy 0 (Y)

HCVCA

Proof. From (6), (7), and (22) it suffices to construct a bijection
between

» circled tableaux T € 7,5, (Z), and
* pairs of circled tableaux T, € 7, (Z), T, € 7, (Z) for some
partition v, such that every entry of 7, is uncircled and every entry of T,

is circled, such that

wx(T) = wy(T))
wy(T) = wy(T,).

The bijection is constructed as follows. Start with T, € Zh/ #(Z), with every
entry uncircled, and 7, € B’SV(Z), with every entry circled. Replace each
ke T by k=k— N where N is defined as

max{i € T\} — min{j € T{} + max{C(a)la € A/u} + 1

(Any canonically chosen N’ > N would also suffice.) Let the resulting
tableau be denoted by 7}*. Now every entry of T} is less than every entry
of T,, and hence combining T* and T, gives a tableau 7* € ZF/“(Z).

Now we invoke symmetry and the explicit bijection used in the proof of
Theorem 3.1 to successively exchange each k € T* with &, beginning with
the largest, i.e., to restore the original uncircled values. Let the resulting
tableau in 9)8“(2) be denoted by T**. The circled entries change in the
process, but their content-modified weight does not; hence the map
(T,,T,) - T* — T** is weight-preserving, and it is clear that every step
can be reversed. This completes the proof. ||
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As an example of the bijection given above, suppose that 7, and 7, are
such that T* has the form

111)2|0/®
Ole)

3/3
O]
Then successively exchanging 3 — 3,2 — 2, 1 — 1, gives the sequence of

circled tableaux
2] [0E[]

iii@@] 111D 1
@33 QB3] QB33
3 3@ 3@

S

©)
@

The final tableau is 7%*. Note that in the last step no rearrangement of
the unbarred entries is necessary.

The biyjection described above can be reformulated so that its steps are
similar to those of Schiitzenberger’s jeu de Taquin (see [21]). The algo-
rithm as presented above transforms all occurrences of k’s to k’s “in
parallel,” using modified Bender—Knuth operations. Instead one can per-
form individual transformations & — k sequentially, applying the follow-
ing procedure to the rightmost occurrence of the largest k until no barred
elements remain.

Modified jeu de Taquin

1. Let the rightmost occurrence of the largest k be denoted by x
(the “active” element).

2. Repeat the following until x = k:
(a) Set x « x + 1.

(b) If the resulting tableau is row-weak and column-strict, do
nothing further.

(c) Otherwise exchange x with one of its circled neighbors y to the
right or z below, chosen so that the 3-cell subtableau involving {x, y, z} is
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row-weak and column-strict after the following modification:

e if a circled element moves to the left, its value is increased by one;

 if a circled element moves up, its value is decreased by one. Repeat
the last operation until the tableau is row-weak and column-strict.

It is not difficult to see that exactly one choice is possible in the applica-
tion of rule (c), and each successive iteration results in a tableau which is
row-weak and column-strict. The following diagrams illustrate valid moves
of this type.

1@ - |@1] 30 - @)
© S ©) 3

L e

It can be shown easily that sequential application of modified jeu de
Taquin moves has the same effect as parallel application of modified
Bender-Knuth moves, and hence the same T** results by either process.
Note that unlike the standard jeu de Taquin, our modified procedure is
deterministic; indeed there are examples showing that different tableaux
may result if the individual steps are not applied exactly as stated above.

4. STANDARD SHAPES

In Sections 2 and 3 we have considered infinite sets of variables X and
Y indexed by the integers, and proved that G, ,(X,Y) is the supersym-
metric Schur function in X and Y. In this section we consider standard
shapes A. As noted in the introduction, cell (1,1) must contain the
smallest entry in any circled tableau 7. As a consequence, if T is a circled
tableau appearing in the expansion of (22), then negative indices appear
on x and y in w(T) if and only if negative entries appear in 7.

These considerations make the theory somewhat simpler for standard
shapes. In this section, we consider two results which hold when u = &.
The first is the “cancellation property” of [17] and [22], already discussed
in Section 1.

THeOREM 4.1.  For A any partition,

G(X*,Y")] = G,(X*,Y")

x) =0 (23)

y =0

Xy= =y
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Proof. let T € 7, (Z) be a tableau contributing a non-zero term to
expansion (4) of G(X*,Y*). Then T(1,1) > 0, by the above remarks.
Furthermore, if x, or y, appears in [T, (X7, * Y7(a)s cay) then T(1, 1)
= 1. Hence all monomials in G,(X™,Y") involving x, or y, occur in the
expansion of

Z n (XT(H) + yT(u)#—(‘(a))' (24)
Te7(7) «€4A
(1, D=1

This expression is divisible by (x, + y,} and hence equals zero when
x; = —y,. The theorem follows immediately. |

Remarks.

1. Richard Stanley has observed that for standard shapes A, Theo-
rem 1.1 can be deduced directly from Theorems 3.1 (symmetry) and
Theorem 4.1 (cancellation), and from the fact that G,( X, Y') specializes to
s{X) and 5,(Y) when Y =0 and X = 0, as in (6), (7). This is a conse-
quence of Stembridge’s characterization of supersymmetric functions [22]
(see also [23]). Thus we have a third proof of Theorem 1.1, for standard
shapes.

2. We have not been able to find a simple direct proof of the more
general cancellation property

GUX" Y|, L, =G(X", Y ) s (25)

)')~>l]

which of course can be deduced from (23) when u = & by symmetry.

Finally we prove Berele and Regev’s factorization theorem {4] for
supersymmetric Schur functions in finite sets of variables.

THEOREM 4.2. Let A= +7n,....,n+n,.B,--..8 n=B,
where 1 = (n,,75,...,m,,L B =(B,,B,....,B,) are partitions. Then

G X5 Y) = {H [T(x, + Y,)}S,,(Xm)sgf(Yn) (26)

i=1j=1

Proof. The diagram of X consists of an m X n rectangle y, with the
diagram of partition m to the right and the diagram of partition 8 below,
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as illustrated:

[ [
B
LI

Consider a tableau 7 of shape A contributing a nonzero term to
expansion (4). As in the previous argument, if 7(1,1) < 1 then T(1,1) <
1, and if T(m, n) > m then T (m, n) > n, so for T to provide a non-zero
contribution to G(X,.,Y"), we must have T(1,1) > 1 and T(m, n} < n.
This forces T to consist entirely of i’s in the ith row of y, and T¢ to
consist entirely of j’s in the jth column of y. Hence for each such 7 the
contribution of cells in y t0 TT, c (X7 + Yiays cia)) 18

n

I:Il I_](x.-+yf)

i=1j=1

Now the content-modified elements of T in 7 all exceed n, so there is
no y contribution from the elements of 7 in 5. In fact the portion of 7 in
7 is an arbitrary column-strict tableau of shape n with elements 1,...,m
(larger elements would give a zero contribution). Summing over all such T
contributes a factor s5,(X,,) to (26).

The elements of 7 in B all exceed m, so there is no x contribution from
the elements of T in B. In fact the portion of T¢ in B8 is an arbitrary
row-strict tableau of shape B with elements 1,...,n (larger elements
would give a zero contribution), contributing s (Y,) to (26). Combining
the contributions from n, 8 and y proves the theorem. |
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