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Maintaining the spirit of the reflection principle
when the boundary has arbitrary integer slope
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Abstract

We provide a direct geometric bijection for the number of lattice paths that never go below

the line y ¼ kx for a positive integer k: This solution to the Generalized Ballot Problem is in
the spirit of the reflection principle for the Ballot Problem (the case k ¼ 1), but it uses rotation
instead of reflection. It also gives bijective proofs of the refinements of the Generalized Ballot

Problem which consider a fixed number of right-up or up-right corners.

r 2003 Elsevier Inc. All rights reserved.
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1. The classical Ballot Problem

A lattice path is a path in the plane consisting of unit up-steps and right-steps,
whose ends are points with integer coordinates. The classical Ballot Problem was
given in [3]:

Theorem 1. For nXmX0; the number of lattice paths from ð0; 0Þ to ðm; nÞ that never

go below the diagonal y ¼ x is

n � m þ 1
n þ 1

m þ n

m

� �
:
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The solution to the Ballot Problem in the special case m ¼ n is the well-known

Catalan number 1
nþ1

2n
n

� �
:

Perhaps, the best-known solution to the classical Ballot Problem was given by
André [1]. André counted the paths that go below the diagonal somewhere (called
bad paths in this context), motivated by the facts that the solution to the Ballot
Problem can be reexpressed in the form

n � m þ 1
n þ 1

m þ n

m

� �
¼

m þ n

m

� �
�

m þ n

m � 1

� �
; ð1Þ

and that mþn
m

� �
is the number of all paths from ð0; 0Þ to ðm; nÞ: André gave a direct

geometric bijection between the subset of bad paths and the set A of all paths from

ð1;�1Þ to ðm; nÞ; and the result then follows immediately, since 7A7 ¼ mþn
m�1
� �

: In the

bijection, the initial portion of the path up to the first point that lies on the line
y ¼ x � 1 is reflected about the line y ¼ x � 1; and so André’s beautiful method of
proof is called the reflection principle.

2. The Generalized Ballot Problem

Barbier [2] generalized the classical Ballot Problem by introducing a positive
integer parameter k of slope:

Theorem 2. For kX1; and nXkmX0; the number of lattice paths from ð0; 0Þ to ðm; nÞ
that never go below the line y ¼ kx is

n � km þ 1
n þ 1

m þ n

m

� �
:

In some sources, a closely related problem is considered:

Theorem 3. For kX1; and n4kmX0; the number of lattice paths from ð0; 0Þ to ðm; nÞ
that never touch the line y ¼ kx after the point ð0; 0Þ is

n � km

n

m þ n � 1
m

� �
:

Theorems 3 and 2 are equivalent, as follows: The paths in Theorem 3 from ð0; 0Þ to
ðm; nÞ must clearly start with an up-step. If this initial up-step is removed, and the
remaining portion of the path is translated vertically down by 1; then we obtain a
path in Theorem 2 from ð0; 0Þ to ðm; n � 1Þ: This is reversible (by adding an initial
up-step to the paths in Theorem 2), excluding the trivial case that ðm; nÞ ¼ ð0; 0Þ:We
conclude that the number of paths in these two cases are equal, and indeed Theorems

2 and 3 above both give this number as n�km
n

mþn�1
m

� �
: Henceforth, we will consider

only Theorem 2, and we will call this the Generalized Ballot Problem.
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Note that the solution to the Generalized Ballot Problem can be reexpressed in the
form

n � km þ 1
n þ 1

m þ n

m

� �
¼

m þ n

m

� �
� k

m þ n

m � 1

� �
; ð2Þ

which is a straightforward generalization of (1). Now, for kX1; and nXkmX0;
define B to be the set of paths from ð0; 0Þ to ðm; nÞ that go below the line y ¼ kx

somewhere (called bad paths in this context). Then, in the spirit of the reflection
principle for the classical Ballot Problem, one method of solution to the Generalized
Ballot Problem would be to find a direct geometric bijection between B and k

disjoint copies of A; defined in Section 1.
There are various published solutions for the Generalized Ballot Problem (see,

e.g., [4], [7, p. 8]; [8], [9, p. 10]; and [10, p. 2]). However, there appears to be no
solution which is in the spirit of the reflection principle; in Section 3 of this paper, we
describe a direct geometric bijection for bad paths that gives such a solution for the
Generalized Ballot Problem. It replaces reflection of a portion of the path by
rotation, the rigid geometric transformation that would seem most natural when the
boundary has slope k; not necessarily equal to 1. (Rotation has of course been
featured in other lattice path bijections, see e.g., [6].) In Section 4, we demonstrate
that restricting this bijection to paths with a given number of right-up or up-right
corners also gives a proof for the corresponding refinements of the Generalized
Ballot Problem.

3. A bijection for bad paths

First, we decompose the set B of bad paths into k disjoint subsets B1;y;Bk: For
a path in B; find the first right-step whose right end lies below the line y ¼ kx (this
clearly happens by the definition of B). Consider the portion of this right-step

which is below the diagonal. Its length must be one of the values 1
k
; 2

k
;y; k

k
: For

i ¼ 1; 2;y; k define Bi to be the set of paths in B which have i
k
as this length.

Clearly, the Bi are disjoint, and their union is B; so

7B7 ¼ 7B17þ?þ 7Bk7: ð3Þ

Next, we will describe a mapping fi onBi for each i ¼ 1;y; k: For a path p in Bi;
find the first right-step whose right end ða; bÞ lies below the line y ¼ kx: Then the left
end of this right-step is ða � 1; bÞ: Let p be the portion of the path from ð0; 0Þ to
ða � 1; bÞ: Now rotate p by 180� to interchange the endpoints ð0; 0Þ and ða � 1; bÞ;
and translate the resulting path vertically down by 1, and horizontally right by 1, to
obtain a path p0 from ð1;�1Þ to ða; b � 1Þ: (Equivalently, the steps of p0 are the steps
of p in reverse left-to-right order.) Then fiðpÞ ¼ p0; where p0 is obtained by using the
path p0 from ð1;�1Þ to ða; b � 1Þ; followed by an up-step to ða; bÞ; and then using the
portion of p from ða; bÞ to ðm; nÞ: An example of this mapping is illustrated in Fig. 1.
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Clearly, in general p0 is contained in A: In the next result we show that fi is

in fact a bijection between Bi and A: This gives immediately that 7Bi7 ¼ mþn
m�1
� �

;

independently of i; and from (3) we have our geometric bijection for the Generalized
Ballot Problem.

Theorem 4. For each i ¼ 1;y; k;

fi :Bi-A : p/p0

is a bijection.

Proof. From the description of fi given above, the path p0 begins at the point
ð1;�1Þ; which lies on the line y ¼ kx � k � 1; and ends at the point ðm; nÞ; which lies
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Fig. 1. An example of the mapping fi:
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on or above the line y ¼ kx: The point ða; bÞ lies on the line y ¼ kx � i; since

ða � i
k
; bÞ lies on the line y ¼ kx; so the point ða; b � 1Þ lies on the line y ¼ kx � i � 1:

Also, under the rotation and translation that sends p to p0; the initial point ð0; 0Þ of p

is sent to the terminal point ða; b � 1Þ of p0: Therefore the line y ¼ kx of slope k

through ð0; 0Þ is mapped to the line y ¼ kx � i � 1 of slope k through ða; b � 1Þ: But
p never goes below the line y ¼ kx; so p0 never goes above the line y ¼ kx � i � 1;
and we conclude that ða; bÞ is the first point of p0 on the line y ¼ kx � i:
Now, every path inA must pass through at least one point on the line y ¼ kx � j;

and the first such point must be immediately preceded by an up-step, for each
j ¼ k;y; 0; so we conclude that the mapping fi is uniquely reversible, since the
point ða; bÞ is uniquely determined, given i: &

Note that Theorem 4 does not specialize to the reflection principle in the case
k ¼ 1; although it is close. For the reflection principle, in the notation above, we
would obtain p0 from p by reflection about the line y ¼ x; before translating the
resulting path vertically down by 1, and horizontally right by 1. (So a further
reflection about a line with slope �1 is needed to agree with our rotation.) Of course,
reflecting a lattice path about a line with slope ka1 will not give a lattice path, so it is
perhaps natural to expect that a geometric bijection for the Generalized Ballot
Problem should involve rotation rather than reflection.

4. Restricting the bijection by number of corners

There are a number of refinements of results on counting lattice paths, by
considering the number of right-up or up-right corners (see [5] for a comprehensive
survey).

4.1. Right-up corners

For right-up corners, the following result is given as Theorem 3.4.2 in [5]:

Theorem 5. For kX1; and nXkmX0; the number of lattice paths from ð0; 0Þ to ðm; nÞ
with c right-up corners, that never go below the line y ¼ kx is

m

c

� �
n

c

� �
� k

m þ 1
c þ 1

� �
n � 1
c � 1

� �
:

Note that this is a refinement of the Generalized Ballot Problem, whose solution
can be obtained by summing the above result over c: The bijection that we have
given in Theorem 4 also gives a bijective proof of Theorem 5, as described below.
Let Cc be the set of paths from ð0; 0Þ to ðm; nÞ with c right-up corners, for

c ¼ 0; 1;y : (A right-up corner is a point where a right-step meets an immediately

subsequent up-step.) Clearly, the number of paths in Cc is
m
c

� �
n
c

� �
; since the right-up
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corners in such a path occur precisely at the points ðX1;Y1Þ;y; ðXc;YcÞ; where
1pX1o?oXcpm; and 0pY1o?oYcpn � 1: The number of bad paths with c

right-up corners is obtained bijectively in the following result. In the proof, we apply
Theorem 4, and use the same notation.

Corollary 6. For each i ¼ 1;y; k; we have

jBi-Ccj ¼
m þ 1
c þ 1

� �
n � 1
c � 1

� �
:

Proof. For each i ¼ 1;y; k; we describe a bijection between Bi-Cc and the set of
X ’s and Y ’s satisfying 1pX1o?oXcþ1pm þ 1 and 0pY1o?oYc�1pn � 2: For
pABi-Cc; let p0 ¼ fiðpÞ: Given such a set of X ’s and Y ’s, let j be the minimum
positive integer such that kXj � ipYj (we use the convention that Yc ¼ n � 1; so
kXc � ipkm � ipkm � 1pn � 1 ¼ Yc; and it is thus always possible to find such
a j; at most c). Then it is routine to verify that there is a unique p0 for which
ða; bÞ ¼ ðXj ; kXj � iÞ; with the images of right-up corners of p given by

ðX1;Y1Þ;y; ðXj�1;Yj�1Þ and ðXjþ1 � 1; kXj � iÞ; ðXjþ2 � 1;Yj þ 1Þ;y; ðXcþ1 � 1;
Yc�1 þ 1Þ: (The first j � 1 of these points are up-right corners in the portion of p0
(strictly) before ða; bÞ; and the last c � j of these points are right-up corners in the
portion of p0 (strictly) after ða; bÞ; the remaining point, ðXjþ1 � 1; kXj � iÞ; is a
right-up corner in p0 only if Xjþ1 � 14Xj; otherwise, it is internal to the vertical

segment.) Moreover, p has precisely c right-up corners, given by ðXj � Xj�1; kXj �
i � Yj�1 � 1Þ;y; ðXj � X1; kXj � i � Y1 � 1Þ and ðXjþ1 � 1; kXj � iÞ; ðXjþ2 � 1;
Yj þ 1Þ;y; ðXcþ1 � 1;Yc�1 þ 1Þ:
The result follows, since the number of such X ’s and Y ’s is mþ1

cþ1

� �
n�1
c�1
� �

: &

The bijective proof of Theorem 5 is now completed, in which the bad paths have
been shown to be equally distributed as subsets of the k sets B1;y;Bk: Note the
simple role that the parameter k plays in this proof—the factor k in the subtracted
quantity uniquely identifies for which i ¼ 1;y; k the bad path first goes below the
line y ¼ kx on the line y ¼ kx � i: This ‘‘purely’’ bijective proof answers a question
raised by Krattenthaler [5, Remark 3.4.2].

4.2. Up-right corners

For up-right corners, the following result is given as Theorem 3.4.3 in [5]:

Theorem 7. For kX1; and nXkmX0; the number of lattice paths from ð0; 0Þ to ðm; nÞ
with c up-right corners, that never go below the line y ¼ kx is

m � 1
c � 1

� �
n þ 1

c

� �
� k

m

c

� �
n

c � 1

� �
:
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This result is also a refinement of the Generalized Ballot Problem, and the
bijection that we have given in Theorem 4 again gives a bijective proof. However,
there is a small technical difference from the case of right-up corners, and so we
include the details below.

Let CðcÞ be the set of paths from ð0; 0Þ to ðm; nÞ with c up-right corners, for
c ¼ 0; 1;y : An up-right corner is a point where an up-step meets an immediately
subsequent right-step, but in addition, we shall also include a ‘‘virtual’’ up-right
corner—the left-most point on an initial right-step. The inclusion of these virtual
corners makes no difference in the context of Theorem 7, since any path with an
initial right-step must necessarily go below the line y ¼ kx; and so will be subtracted
as a bad path. In particular, these paths will touch the line y ¼ kx � k after the first

right-step, and so will be subtracted as part of the set Bk-CðcÞ: Clearly, the number

of paths in CðcÞ is m�1
c�1

� �
nþ1

c

� �
; since the up-right corners in such a path occur precisely

at the points ð0;Y1Þ; ðX1;Y2Þ;y; ðXc�1;YcÞ; where 1pX1o?oXc�1pm � 1; and
0pY1o?oYcpn: (If Y1 ¼ 0; then ð0;Y1Þ is a virtual up-right corner.) The number
of bad paths with c up-right corners is obtained bijectively in the following result, in
which we again apply Theorem 4, and use the same notation.

Corollary 8. For each i ¼ 1;y; k; we have

jBi-CðcÞj ¼
m

c

� �
n

c � 1

� �
:

Proof. For each i ¼ 1;y; k; we describe a bijection between Bi-CðcÞ and the set of
X ’s and Y ’s satisfying 1pX1o?oXcpm and 0pY1o?oYc�1pn � 1: For
pABi-CðcÞ; let p0 ¼ fiðpÞ: Given such a set of X ’s and Y ’s, let j be the minimum
positive integer such that kXj � ipYj (we use the convention that Yc ¼ n � 1; so
kXc � ipkm � ipkm � 1pn � 1 ¼ Yc; and it is thus always possible to find such
a j; at most c). Then it is routine to verify that there is a unique p0 for which
ða; bÞ ¼ ðXj ; kXj � iÞ; with the images of up-right corners of p given by

ðX1;�1Þ; ðX2;Y1Þ;y; ðXj;Yj�1Þ; and ðXjþ1 � 1;Yj þ 1Þ;y; ðXc � 1;Yc�1 þ 1Þ: (Of
the first j of these points, the latter j � 1 are right-up corners in the portion of p0
(strictly) before ða; bÞ; the first point, ðX1;�1Þ; is a right-up corner of p0 only if
X141: The last c � j of these points are up-right corners in the portion of p0 after
ða; bÞ:) Moreover, p has precisely c up-right corners, given by ð0; kXj � i � Yj�1 �
1Þ;y; ðXj � X2; kXj � i � Y1 � 1Þ; ðXj � X1; kXj � iÞ; ðXjþ1 � 1;Yj þ 1Þ;y; ðXc � 1;
Yc�1 þ 1Þ:
The result follows, since the number of such X ’s and Y ’s is m

c

� �
n

c�1
� �

: &

The bijective proof of Theorem 7 is now completed. Again, the bad paths have
been shown to be equally distributed as subsets of the k sets B1;y;Bk: Note that in
this case we need the additional ‘‘virtual’’ corners to achieve this equidistribution,
since otherwise there would be fewer bad paths in Bk than in the others.
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5. Another decomposition of bad paths

There is a second decomposition of the set B of bad paths into k disjoint subsets,
that is induced naturally by the Generalized Ballot Problem and its refinements, as

follows. For i ¼ 1;y; k; let BðiÞ be the set of lattice paths from ð0; 0Þ to ðm; nÞ that
never go below the line y ¼ ði � 1Þx but that do go below the line y ¼ ix somewhere

(as before, we have nXkmX0). Clearly, the BðiÞ are disjoint, and their union is B; so

7B7 ¼ 7Bð1Þ7þ?þ 7BðkÞ7:

Now note that BðiÞ is precisely the symmetric difference of the two sets of paths
counted by Theorem 2 when k ¼ i and i � 1; respectively, so Theorem 2 gives

7BðiÞ7 ¼ n � ði � 1Þm þ 1
n þ 1

m þ n

m

� �
� n � im þ 1

n þ 1
m þ n

m

� �
¼

m þ n

m � 1

� �
;

for each i ¼ 1;y; k: (Expression (2) makes the above calculation even more
transparent.) This means that we would have another proof of Theorem 2 in the
spirit of the reflection principle if we could find a direct geometric bijection between

BðiÞ and A; for each i ¼ 1;y; k; but we have been unable to find such a bijection
for kX2:
Moreover, in a similar way Theorems 5 and 7 give

jBðiÞ-Ccj ¼
m þ 1
c þ 1

� �
n � 1
c � 1

� �
; jBðiÞ-CðcÞj ¼

m

c

� �
n

c � 1

� �
;

for each i ¼ 1;y; k; so such a bijection should also allow one to fix the number of
right-up or up-right corners.

6. An extension of the Generalized Ballot Problem

Suppose we rescale the x-axis in the Generalized Ballot Problem by a factor of k;
thus replacing the unit right-steps ð1; 0Þ by k-right-steps ðk; 0Þ: Then the paths are
from ð0; 0Þ to ðkm; nÞ; and are never below the transformed boundary line y ¼ x:
This rescaling of the problem has a natural extension for the horizontal steps, by
allowing j-right-steps for all nonnegative integers j: Now the total number of paths
from ð0; 0Þ to ðM; nÞ with aj j-right-steps for jX0 is given by the multinomial

coefficient

Pðn; a0; a1;yÞ ¼ ðn þ mÞ!
n!
Q

jX0 aj!
;

where M ¼
P

jX0jaj and m ¼
P

jX0aj: Then, for nXMX0; by the cycle lemma

(called the method of ‘‘penetrating analysis’’ in [7]), the number of these paths that
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are never below the line y ¼ x is given by

n � M þ 1
n þ 1 Pðn; a0; a1;yÞ;

which can be reexpressed as the difference

Pðn; a0; a1;yÞ �
X
jX1

jPðn þ 1; a0;y; aj�1; aj � 1; ajþ1;yÞ;

so here the bad paths (those that go below the line y ¼ x) are enumerated by the
subtracted summation.
The bijection in Section 3 immediately extends to this case, by decomposing the set

of bad paths into disjoint subsets Bj;i; with jX1; and i ¼ 1;y; j: The set Bj;i consists

of the bad paths in which the first right-step whose right end ða; bÞ lies below the line
y ¼ x is a j-right-step, and the portion of this j-right-step below the diagonal has
length i: For a path p in Bj;i; let p be the portion from ð0; 0Þ to ða � j; bÞ: Now rotate
p by 180� to interchange ð0; 0Þ and ða � j; bÞ; and translate by ðj;�1Þ; to obtain a
path p0 from ðj;�1Þ to ða; b � 1Þ: Then p0; followed by a vertical step from ða; b � 1Þ
to ða; bÞ; together with the portion of p starting at ða; bÞ; gives the image p0 of p: This
is uniquely reversible since j is identified by the starting point ðj;�1Þ; and i is
identified as before. In conclusion, this gives a bijection betweenBj;i and the set of all

paths from ðj;�1Þ to ðM; nÞ with n þ 1 unit up-steps, at t-right-steps for tX0; taj;
and aj � 1 j-right-steps. The result follows, since there are exactly Pðn þ 1;
a0;y; aj�1; aj � 1; ajþ1;yÞ such paths for each i ¼ 1;y; j:
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