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In the symmetric group on a set of size 2n, let P2n denote the
conjugacy class of involutions with no fixed points (equivalently,
we refer to these as “pairings”, since each disjoint cycle has
length 2). Harer and Zagier explicitly determined the distribution
of the number of disjoint cycles in the product of a fixed cycle
of length 2n and the elements of P2n . Their famous result has
been reproved many times, primarily because it can be interpreted
as the genus distribution for 2-cell embeddings in an orientable
surface, of a graph with a single vertex attached to n loops. In
this paper we give a new formula for the cycle distribution when
a fixed permutation with two cycles (say the lengths are p,q,
where p + q = 2n) is multiplied by the elements of P2n . It can be
interpreted as the genus distribution for 2-cell embeddings in an
orientable surface, of a graph with two vertices, of degrees p and q.
In terms of these graphs, the formula involves a parameter that
allows us to specify, separately, the number of edges between the
two vertices and the number of loops at each of the vertices. The
proof is combinatorial, and uses a new algorithm that we introduce
to create all rooted forests containing a given rooted forest.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let [p] = {1, . . . , p}, and S p be the set of permutations of [p], for p � 0. When p � 0 is even, let
P p be the set of pairings on [p], which are partitions of the set [p] into disjoint pairs (subsets of
size 2). We refer to the single element of P0 as the empty pairing. Where the context is appropriate,
we shall also regard P p as the conjugacy class of involutions with no fixed points in S p . In this latter
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context, each pair becomes a disjoint cycle consisting of that pair of elements. Of course, the number

of pairings in P p is (p − 1)!! = ∏ 1
2 p
j=1(2 j − 1), with the empty product convention that (−1)!! = 1.

Now, for p > 0 and even, let γp = (1 2 . . . p), in disjoint cycle notation, and let A p = {μγ −1
p : μ ∈

P p}. Let ap,k be the number of permutations in A p with k cycles in the disjoint cycle representa-
tion, for k � 1. The generating series for these numbers is given by A p(x) = ∑

k�1 ap,kxk . Harer and
Zagier [4] obtained the following result.

Theorem 1.1. (See Harer and Zagier [4].) For a positive, even integer p, with n = 1
2 p,

Ap(x) = (2n − 1)!!
∑
k�1

2k−1
(

n

k − 1

)(
x

k

)
.

Other proofs of Theorem 1.1 have been given by Itzykson and Zuber [5], Jackson [6], Kerov [7],
Kontsevich [8], Lass [10], Penner [12] and Zagier [15] (see also the survey by Zvonkin [16], Sec-
tion 3.2.7 of Lando and Zvonkin [9] and the discussion in Section 4 of the paper by Haagerup and
Thorbjornsen [2]). Recently, Goulden and Nica [3] gave a direct bijective proof of Theorem 1.1. In the
present paper, we consider a similar bijective approach to extend this important result of Harer and
Zagier to the case in which the permutation γp is replaced by a fixed permutation with two cycles in
its disjoint cycle representation. Some additional notation is required.

Let [q]′ = {1′, . . . ,q′}, and let S p,q be the set of permutations of [p] ∪ [q]′ , for p,q � 0. Let P p,q

be the set of pairings on [p] ∪ [q]′ , for p,q � 0, where p + q is even (we refer to the single element
of P0,0 as the empty pairing). A pair in a pairing is called mixed if it consists of one element from
[p] and one element from [q]′ . Where the context is appropriate, we shall also regard P p,q as the
conjugacy class of involutions with no fixed points in S p,q . For p,q � 1, we consider the permutation

γp,q = (1 2 . . . p)(1′ 2′ . . .q′), and let A(s)
p,q = {μγ −1

p,q : μ ∈ P p,q has s mixed pairs}, and a(s)
p,q,k be the

number of permutations in A(s)
p,q with k cycles in the disjoint cycle representation, for k � 1. Consider

the generating series

A(s)
p,q(x) =

∑
k�1

a(s)
p,q,kxk.

The main result of this paper is the following expression for A(s)
p,q(x).

Theorem 1.2. For p,q, s � 1, with p,q, s of the same odd–even parity and n = 1
2 (p + q), we have

A(s)
p,q(x) = p!q!

n+1∑
k=1

� 1
2 p�∑

i=0

� 1
2 q�∑

j=0

1

2i+ j i! j!(n − i − j)!
(

x

k

)(
n − i − j

k − 1

)
�

(s)
k,p,q,

where

�
(s)
k,p,q =

(
k − 1

1
2 (p − s) − i

)(
k − 1

1
2 (q − s) − j

)
−

(
k − 1

1
2 (p + s) − i

)(
k − 1

1
2 (q + s) − j

)
.

Note that Theorem 1.2 gives a summation of nonnegative terms, since for all choices of summation
indices k, i, j with k − 1 � n − i − j (so that

(n−i− j
k−1

)
is nonzero), the difference �

(s)
k,p,q is nonnegative.

Before we discuss the proof of Theorem 1.2, we shall consider its significance. A major reason that
Harer and Zagier’s result (Theorem 1.1) is important (as evidenced by so many published proofs) is
that it can be restated as an equivalent geometric problem in terms of maps. A map is an embedding
of a connected graph (with loops and multiple edges allowed) in an orientable surface, partitioning
the surface into disjoint regions (called the faces of the map) that are homeomorphic to discs (this is
called a two-cell embedding). A rooted map is a map with a distinguished edge and incident vertex
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(so, the map is “rooted” at that end of the distinguished edge). The well-known embedding theo-
rem allows us to consider this as equivalent to a pair of permutations and their product (see, e.g.,
Tutte [14], where the terminology “rotation system” is used to describe this triple of permutations).
From this point of view, the kth coefficient ap,k in the generating series A p(x) evaluated in Theo-
rem 1.1 is equal to the number of rooted maps with 1 vertex, n edges and k faces (where n = 1

2 p, as
in Theorem 1.1). Denoting the genus of the surface in which such a map is embedded by g , then the
Euler–Poincaré Theorem implies that 1 − n + k = 2 − 2g , or that k = n − 2g + 1.

Similarly, Theorem 1.2 has a geometric interpretation. Let Cp,q be the conjugacy class of S p+q in

which there are two disjoint cycles, of lengths p and q. Then the coefficient a(s)
p,q,k in the generating

series A(s)
p,q(x) is equal to (2n−1)!/|Cp,q| times the number of rooted maps with 2 vertices (of degrees

p and q), n edges (exactly s of which join the two vertices together, plus 1
2 (p − s) that are loops at

the vertex of degree p, plus 1
2 (q − s) that are loops at the vertex of degree q), and k faces (where

n = 1
2 (p + q), as in Theorem 1.2). In this case, if we denote the genus of the surface in which such a

map is embedded by g , then we obtain k = n − 2g .
Of course, since genus is a nonnegative integer, we must have a(s)

p,q,n+1 = 0, and indeed the co-

efficient of xn+1 in the summation for A(s)
p,q(x) given in Theorem 1.2 is zero, since the summand

corresponding to k = n + 1, i = j = 0 (which has
( x

n+1

)
as a factor) is itself equal to zero. For the pla-

nar case, which corresponds to g = 0, the only nonzero summand that contributes to the coefficient
of xn in the summation of Theorem 1.2 corresponds to k = n, i = j = 0, and this gives immediately
that

a(s)
p,q,n = s

(
p

1
2 (p − s)

)(
q

1
2 (q − s)

)
.

This checks with the straightforward computation that one can make to determine this value by
elementary means – there are s edges between the two vertices; between the ends of these edges
at each vertex is an even number of vertices, joined by loops without crossings (and there is Catalan
number of such arrangements for each such even interval).

This explains the term “genus” in the title; the term “annular” is adapted from its usage in Mingo
and Nica [11]. It refers to an equivalent embedding for a map with two vertices, in an annulus. The
ends of the edges incident with one of the vertices (say the one of degree p) are identified with p
points arranged around the disc on the exterior of the annulus, and the ends incident with the other
vertex are identified with q points arranged around the disc on the interior of the annulus. The points
corresponding to the two ends of an edge are joined by an arc in the interior of the annulus.

We have been able to find one relevant enumerative result (Jackson [6]) in the literature about
such maps, in which the total number of edges is specified, but not the exact number joining the
two vertices together. To compare this result to our main result, we must sum over s � 1 (since the
underlying graph must be connected, then s, the number of edges joining the two vertices together,
must be positive), and thus define

Ap,q(x) =
∑
s�1

A(s)
p,q(x).

Then Jackson [6] has considered the case p = q = n, and obtained the following result, restated in
terms of our notation (by applying the proportionality constant (2n − 1)!/|Cn,n| = n).

Theorem 1.3. (See Jackson [6].) For n � 1,

An,n(x) = n!
� 1

2 (n−1)�∑
j=0

n−2 j−1∑
i=0

� 1
2 (n−2 j−1)�∑

k=0

4−k
(

2k

k

)(
n

2k

)(
2 j

j

)(
n − 2 j − 1

i

)(
x + j + i

n

)
.

By slightly modifying Jackson’s [6] integration argument we are able to obtain the following ex-
pression for A p,q(x), with arbitrary p,q of the same parity.
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Theorem 1.4. For 1 � p � q, with p + q even, and n = 1
2 (p + q),

Ap,q(x) = p!q!
� 1

2 (p−1)�∑
j=0

n−2 j−1∑
i=0

� 1
2 (p−2 j−1)�∑

k=0

1

2n−p+2kk!(p − 2k)!(n − p + k)!

×
(

2 j

j

)(
n − 2 j − 1

i

)(
x + j + i

n

)
.

We have been unable to adapt the integration method to determine A(s)
p,q(x) itself.

The proof of Theorem 1.2 is based on a combinatorial model that is developed in Section 3. As a
consequence, it is sufficient to enumerate a particular graphical object that we call a canonical paired
array. In Section 4, we give two combinatorial bijections that, together, reduce the enumeration of
canonical paired arrays to a simpler class of objects called vertical paired arrays. The latter are ex-
plicitly enumerated in Section 5, thus completing the proof of Theorem 1.2. One of the combinatorial
conditions on paired arrays is that two graphs associated with them must be acyclic. Because of this,
a key component of Sections 4 and 5 is the enumeration of rooted forests which contain a given for-
est as a subgraph. Thus, as a preliminary, in Section 2 we give a new bijection for this fundamental
combinatorial problem.

2. A bijection for rooted forests

In this section, we consider the basic combinatorial question of how many rooted forests with a
given set of root vertices contain a given rooted forest. We give a bijection for this that differs from
the standard ones in the literature, like the Cycle Lemma (see, e.g., [13, p. 67]) or the Prüfer Code
(see, e.g., [13, p. 25]), because it is more convenient for our constructions involving paired arrays.

Suppose we have a rooted forest F (all edges directed towards a root vertex in each component)
on vertex-set [k], whose components are the rooted trees T1, . . . , Tm+n , m,n � 1. Suppose the root
vertex of T j is r j , j = 1, . . . ,m, and the root vertex of Tm+ j is s j , j = 1, . . . ,n. For convenience, we
order the trees so that r1 < · · · < rm , s1 < · · · < sn , and we let S denote the union of the sets of
vertices in the trees Tm+1, . . . , Tm+n .

Theorem 2.1 (Forest Completion Theorem). There is a bijection between [k]m−1 × S and the set of rooted
forests on vertex-set [k] with root vertices s1, . . . , sn that contain F as a subforest.

Proof. We describe such a mapping, which we call the “Forest Completion Algorithm” (FCA). Consider
the m-tuple a = (a1, . . . ,am) ∈ [k]m−1 × S . We construct the forest corresponding to a iteratively, in
m +1 stages 0,1, . . . ,m. At every stage, we have a forest G containing F as a subforest, a permutation
π of [m], and a sequence b = (b1, . . . ,bm) in [k]m . Initially, at stage 0, we have G = F , π is the identity
permutation and b = a. Then, for i = 1, . . . ,m:

• if bi is in a different component of G from ri , then add an arc directed from ri to bi in G , and
leave π and b unchanged;

• otherwise (so bi is in the same component of G as ri ), add an arc directed from ri to bm in G (to
obtain the new G), switch π(i) and π(m) in π , and switch bi and bm in b.

The forest corresponding to the m-tuple a is the terminating forest G . We call the terminating per-
mutation π the “Forest Completion Permutation” (FCP). The significance of the FCP is that it identifies
precisely the arcs that are added to F – they are (ri,aπ(i)), i = 1, . . . ,m. In our examples throughout
the paper, we shall specify the second line in the two line representation of π – the list of images
(π(1), . . . ,π(m)).

In Fig. 1 we give an example of the FCA with k = 9, m = 3, n = 2. The trees T1, T2, T3, with r1 = 2,
r2 = 4, r3 = 7, are given in the box at the top left; the trees T4, T5, with s1 = 6, s2 = 8, are given in
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Fig. 1. A rooted forest and subforest.

the box at the top right. Then, corresponding to the triple a = (9,2,3), we construct the forest at the
bottom of Fig. 1. The corresponding FCP is (3,2,1).

In analyzing this mapping, it is convenient to use the term “safe” to describe a vertex in a compo-
nent of a forest rooted at one of the vertices s1, . . . , sn . Thus, initially, bm is safe. It is trivial to prove by
induction that, after stage i, for i = 1, . . . ,m −1, G is a forest with root vertices ri+1, . . . , rm, s1, . . . , sn ,
and that bm is safe for G (which implies that ri+1, . . . , rm are in different components of G from bm).
Thus, at stage m, bm is indeed in a different component of G from rm , so we successfully add the
final arc from rm to bm , to obtain a terminating forest G rooted at s1, . . . , sn (this explains our use
of “safe” – for extending our forest, it is always safe to add the new arc directed to bm). This proves
that the FCA does indeed produce a rooted forest on vertex-set [k] with root vertices s1, . . . , sn that
contains F as a subforest.

To prove that the FCA is a bijection, we describe its inverse. Suppose that we are given a rooted
forest H on vertex-set [k], with root vertices s1, . . . , sn , and that we wish to remove the arcs directed
from ri to ci , i = 1, . . . ,m, where r1, . . . , rm are distinct non-root vertices, with the convention that
r1 < · · · < rm . We proceed iteratively, through stages m, . . . ,1,0. At every stage we have a subforest G
of H , a permutation σ of [m], and a sequence b = (b1, . . . ,bm) in [k]m . Initially, at stage m, we have
G = H , σ is the identity permutation, and b = c. Then, for i = m − 1, . . . ,0, remove the arc from ri+1
to bi+1 in G (to get the new G), and:

• if bm is safe for (the new) G , leave σ and b unchanged;
• otherwise (so bm is not safe for G), switch σi+1 and σm in σ , and switch bi+1 and bm in b.

We claim that the m-tuple corresponding to the forest H is the terminating m-tuple b, so that this
mapping uniquely reverses the FCA. In fact, it is easy to establish that this mapping uniquely reverses
the FCA stage by stage, since it is trivial to prove by induction that the values of b and G after stage
i of the above mapping are exactly the same as b and G after stage i of the FCA. It is also easy to
prove that the FCP is given by σ−1 for the terminating σ .

The result follows, since the FCA is a bijection between the required sets. �
Of course, it is an immediate enumerative consequence of Theorem 2.1 that there are km−1|S|

rooted forests on vertex-set [k] with root vertices s1, . . . , sn that contain F as a subforest. In the
special case m + n = k (so that F has no edges) this gives the classical result that there are kk−n−1n
rooted forests on vertex-set [k], with a prescribed set of n root vertices (see, e.g., [13, p. 25]).
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3. The combinatorial model

3.1. Paired surjections

The combinatorial model for our proof of Theorem 1.2 is based on a paired surjection, which has
the following definition.

Definition 3.1. For p,q, s,k � 1, with p,q, s of the same odd–even parity, let B(s)
p,q,k be the set of

ordered pairs (μ,φ), where μ ∈ P p,q has s mixed pairs, and φ is a surjection from [p] ∪ [q]′ onto [k],
satisfying the condition

φ
(
μ(i)

) = φ
(
γp,q(i)

)
for all i ∈ [p] ∪ [q]′. (1)

Such an ordered pair (μ,φ) is called a paired surjection. Let b(s)
p,q,k = |B(s)

p,q,k|.

In the following result, the generating series A(s)
p,q(x) evaluated in Theorem 1.2 is expressed in

terms of the numbers b(s)
p,q,k of paired surjections. Paired surjections are closely related to shift-

symmetric partitions, that arose in Goulden and Nica [3]. Indeed, the proof of the following result
is identical to the proof of Proposition 1.3 in Goulden and Nica [3], and is hence omitted.

Proposition 3.2. For p,q, s � 1, with p,q, s of the same odd–even parity, we have

A(s)
p,q(x) =

∑
k�1

b(s)
p,q,k

(
x

k

)
.

We consider (μ,φ) ∈ B(s)
p,q,k , and construct various objects associated with (μ,φ). First let Ci =

φ−1(i) ∩ [p] and C ′
i = φ−1(i) ∩ [q]′ , for i ∈ [k]. Let D = {i: |Ci | � 1}, and D ′ = {i: |C ′

i | � 1}, and let
mi = max Ci , i ∈ D , and m′

i = max C ′
i , i ∈ D ′ . Suppose that 1 is contained in Ca , and that 1′ is contained

in C ′
b . Define ψ : D \{a} → D by ψ(i) = j when φ(μ(mi)) = j, and ψ ′ : D ′ \{b} → D ′ by ψ ′(i) = j when

φ(μ(m′
i)) = j.

Now, if ψ(i) = j, then (interpreting 1 as p + 1) condition (1) means that mi + 1 ∈ C j , so we have
mi < m j . This implies that the functional digraph of ψ (the directed graph on vertex-set D with an arc
directed from i to ψ(i) for each i ∈ D \ {a}) is actually a tree, in which all arcs are directed towards
vertex a (which we consider as the root of this tree). We denote this rooted tree by T . Similarly,
the functional digraph of ψ ′ , on vertex-set D ′ , is also a tree, with all arcs directed towards vertex b
(which we consider as the root of this tree). We denote this rooted tree by T ′ .

One condition that the paired surjection (μ,φ) satisfies is that the number of mixed pairs con-
taining an element of Ci is equal to the number of mixed pairs containing an element of C ′

i for all
i ∈ [k]. (For the reason that this necessary condition arises, see the discussion of “unique label recov-
ery” in the next section.) We call this the balance condition for (μ,φ). The fact that φ is a surjection
is equivalent to |Ci | + |C ′

i | � 1, for i ∈ [k], and we call this the nonempty condition for (μ,φ). The fact,
established above, that the graphs of ψ and ψ ′ are trees is called the tree condition for (μ,φ).

3.2. A graphical model

Now we consider a graphical representation for the paired surjection (μ,φ), called its labelled
paired array. This is an array of cells, arranged in k columns, indexed 1, . . . ,k from left to right, and
two rows. In column i of row 1, place an ordered list of |Ci | vertices, labelled by the elements of Ci
from left to right; in column i of row 2, place an ordered list of |C ′

i | vertices, labelled by the elements
of C ′

i from left to right. For each pair of μ draw an edge between the vertices whose labels are given
by the pair.
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Fig. 2. A labelled paired array.

Fig. 3. Two rooted trees.

Fig. 4. A paired array.

For example, when p = 13,q = 9, s = 3,k = 5, consider (μ,φ) ∈ B(s)
p,q,k , given by μ = {{1,5′}, {2,7′},

{3,12}, {4,11}, {5,8}, {6,7}, {9,10}, {13,9′}, {1′,6′}, {2′,8′}, {3′,4′}}, and φ−1(1) = {2,7,10,3′,5′,8′},
φ−1(2) = {5,9,11}, φ−1(3) = {1,2′,6′,9′}, φ−1(4) = {3,4,12,13,1′,7′}, φ−1(5) = {6,8,4′}. The corre-
sponding labelled paired array is given in Fig. 2, and the trees T and T ′ are given in Fig. 3.

Now suppose that we mark the cells in column a of row 1 and in column b of row 2 (by placing
a small box in the top right-hand corner of the marked cell in row 1, and in the bottom right-hand
corner of the marked cell in row 2), and remove the labels from all vertices – call the resulting object
the paired array of (μ,φ). The ordered list of vertices in each cell is now to be interpreted as a generic
totally ordered set, with the given left to right order, and the pairing μ now acts on these ordered
sets in the obvious way. For example, the paired array determined from the labelled paired array
displayed in Fig. 2 is given in Fig. 4.

What information have we lost when the labels are removed? The answer, perhaps surprisingly, is
that no information is lost, since we have unique label recovery by applying condition (1) iteratively,
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as follows: for the first row, place label 1 on the leftmost vertex in the marked cell of row 1; for
each i from 2 to p, place label i on the leftmost unlabelled vertex in column φ(μ(i − 1)) of row 1.
The same process applied to the second row will place labels 1′ to q′ on the vertices in row 2. (The
reader can apply this to the paired array in Fig. 4, to check that indeed the labelled paired array in
Fig. 2 is recovered in this way.) The proof that this process always works for a paired array satisfying
the balance, nonempty and tree conditions (and the proof that these conditions are necessary for this
process to work) requires only a slight modification of the results in Section 3 of [3], and is not given
here (note that neither the functions ψ and ψ ′ , nor the trees T and T ′ , depend on the labels of the
vertices, and the number of mixed pairs incident with the vertices in each cell of the paired array
also does not depend on the labels, so the balance, nonempty and tree conditions can be checked on
the paired array alone).

3.3. Paired arrays

This motivates us to define a paired array in the abstract (and not as obtained by removing the
labels from a labelled paired array), and in fact to extend it to a more general class of objects, in the
following definition.

Definition 3.3. For p,q, s,k � 1, with p,q, s of the same odd–even parity, we define P A(s)
p,q,k to be

the set of arrays of cells, arranged in k columns and 2 rows, subject to the following conditions:

• Each cell contains an ordered list of vertices, so that there is a total of p vertices in the first row,
and q vertices in the second row. The vertices are paired (in the language of graph theory, there
is a perfect matching on the vertices), so that s pairs join a vertex in the first row to a vertex
in the second row (these are the mixed pairs). The number of mixed pairs containing a vertex
in column i of row 1 is equal to the number of mixed pairs containing a vertex in column i of
row 2, for all i = 1, . . . ,k (this is called the balance condition).

• There is at least one marked (with a small box) cell in row 1, and we denote the set of such
columns by R . There is at least one marked (with a small box) cell in row 2, and we denote the
set of such columns by R ′ . There is at least one vertex in every column that is not contained in
R ∪ R ′ (this is called the nonempty condition).

• Denote the set of columns in which there is at least one vertex in row 1 by D , and the set of
columns in which there is at least one vertex in row 2 by D ′ . Define the function ψ : D \ R → D
as follows: if the rightmost vertex in column i of row 1 is paired with a vertex in column j,
then ψ(i) = j. Similarly, define ψ ′ : D ′ \ R ′ → D ′ as follows: if the rightmost vertex in column
i of row 2 is paired with a vertex in column j, then ψ ′(i) = j. The functional digraph of ψ is
a forest with |R| components (called the rightmost forest for row 1); each component is a tree in
which all edges are directed towards an element of R (and this is called the root of that tree). The
functional digraph of ψ ′ is a forest with |R ′| components (called the rightmost forest for row 2);
each component is a tree in which all edges are directed towards an element of R ′ (and this is
called the root of that tree). Together, these specify the forest condition.

The elements of P A(s)
p,q,k are called paired arrays. A paired array is defined to be canonical if |R| =

|R ′| = 1. Define C(s)
p,q,k to be the set of canonical paired arrays in P A(s)

p,q,k , and c(s)
p,q,k = |C(s)

p,q,k|.

The uniqueness of label recovery described in the previous section proves that there is a bijection
(via labelled paired arrays) between the set B(s)

p,q,k of paired surjections and the set C(s)
p,q,k of canonical

paired arrays, so we have

b(s)
p,q,k = c(s)

p,q,k. (2)

(It is straightforward to verify that the conditions for canonical paired arrays imply that every column
is nonempty.) In this paper we shall determine b(s)

p,q,k , and hence the generating series A(s)
p,q(x) via
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Fig. 5. A minimal paired array.

Proposition 3.2, by giving a combinatorial reduction for canonical paired arrays, thus directly deter-
mining c(s)

p,q,k .

4. Removing non-mixed pairs and vertical paired arrays

A redundant pair in a paired array is a vertex pair that is not mixed, and does not contain a vertex
that is rightmost in an unmarked cell. A minimal paired array is a paired array without redundant
pairs. We define M(s)

p,q,k to be the set of minimal, canonical paired arrays in P A(s)
p,q,k , and m(s)

p,q,k =
|M(s)

p,q,k|. A vertical paired array is a paired array in which all pairs are mixed. We define V (s)
k,i, j to be

the set of vertical paired arrays in P A(s)
s,s,k , in which there are i + 1 marked cells in row 1 and j + 1

marked cells in row 2, for i, j � 0, and let v(s)
k,i, j = |V (s)

k,i, j|.
In this section, we remove non-mixed pairs from a canonical paired array in two stages, thus

reducing the enumeration of canonical paired arrays to the enumeration of vertical paired arrays. The
next result gives the first stage of this reduction, in which the problem is reduced to the enumeration
of minimal, canonical paired arrays.

Theorem 4.1. For p,q, s,k � 1, with p,q, s of the same odd–even parity, we have

c(s)
p,q,k =

∑
i, j�0

(
p

2i

)
(2i − 1)!!

(
q

2 j

)
(2 j − 1)!!m(s)

p−2i,q−2 j,k.

Proof. For the proof, it is convenient to introduce some notation. A partial pairing on [p] is a pairing
on a set α ⊆ [p] of even cardinality. If |α| = 2i, then we also call it an i-partial pairing. For each of
these partial pairings μ, we call α the support, and denote this by supp(μ) = α. Let R p,i be the set
of i-partial pairings on [p]. Similarly, let R′

q,i be the set of i-partial pairings on [q]′ .
Consider an arbitrary α ∈ C(s)

p,q,k . We now describe a construction for three objects, μ1, μ2 and β ,
obtained from α. We begin by attaching the numbers 1, . . . , p + 1 to the vertices and the small box
in row 1 of α, from left to right (under the interpretation that all vertices in column i are to the left
of all vertices in column j for i < j, and that the small box representing a marking is rightmost in its
cell). Let μ1 be the partial pairing consisting of pairs of numbers attached to the redundant pairs in
row 1 of α. We follow the analogous procedure for row 2: we attach primed numbers 1′, . . . , (q + 1)′
to the vertices and small box in row 2, and let μ2 be the partial pairing consisting of the pairs of
(primed) numbers attached to the redundant pairs in row 2 of α. Third, we remove all redundant
pairs (both vertices and edges) from α, to get the paired array β , with the same marked cells as α.
The vertices in each cell of β have the same relative order as they did in α. For example, if α is the
paired array in Fig. 4, then we have μ1 = {{2,13}, {9,11}}, μ2 = {{5′,7′}}, and β is given in Fig. 5.



I.P. Goulden, W. Slofstra / Journal of Combinatorial Theory, Series A 117 (2010) 272–288 281
Now, the only vertex that can be numbered p +1 in row 1 is the rightmost vertex of the rightmost
nonempty cell in row 1 (if this cell is not marked), but this vertex cannot appear in a redundant pair
since it is rightmost in an unmarked cell. This implies that the numbers on redundant pairs in row 1
all fall in the range 1, . . . , p, and so μ1 is a partial pairing on [p]. Similarly, μ2 is a partial pairing
on [q]′ . Also, since the redundant pairs that were removed in the construction do not involve the
rightmost vertex in any nonempty cell, β has the same rightmost functions ψ and ψ ′ as α, and the
same mixed pairs as α, so it must satisfy the balance, nonempty and forest conditions, which implies
that β is a minimal paired array. Thus we have a mapping

ξ : C(s)
p,q,k →

⋃
i, j�0

R p,i × R′
q, j × M(s)

p−2i,q−2 j,k : α 
→ (μ1,μ2, β).

We now prove that ξ is a bijection. It is sufficient to describe the inverse mapping, so that we can
uniquely recover α from an arbitrary triple (μ1,μ2, β) ∈ ⋃

i, j�0 R p,i × R′
q, j × M(s)

p−2i,q−2 j,k . Given
(μ1,μ2, β), let σi = supp(μi), i = 1,2, and ρ1 = [p + 1] \ σ1, ρ2 = [q + 1]′ \ σ2. Number the vertices
and small box in row 1 of β with the elements of ρ1. Then insert vertices numbered with the ele-
ments of σ1, so that the numbers on all vertices and the small box in row 1 increase from left to
right, and so that the vertex numbered with l ∈ σ1 is placed in the same cell as either the vertex or
small box numbered with min{i ∈ ρ1: i > l}. Inserting vertices numbered from σ2 in row 2 using an
analogous process, pairing the inserted vertices with μ1 and μ2, and removing the numbers, we ar-
rive at a paired array α. It is straightforward to check that α satisfies the balance, nonempty, and tree
conditions, and that the process described above reverses the numbering scheme used in the map-
ping ξ . Thus, we have described the mapping ξ−1, and our proof that ξ is a bijection is complete. The
result follows from the easily established facts that |R p,i| =

( p
2i

)
(2i − 1)!!, |R′

q, j | =
( q

2 j

)
(2 j − 1)!!. �

The next result gives the second stage of our reduction. We remove non-mixed pairs from a mini-
mal, canonical paired array, and thus show that the enumeration of minimal, canonical paired arrays
can be reduced to the enumeration of vertical paired arrays. We use the following notation. For a fi-
nite set X , let L X,i denote the set of i-tuples consisting of i distinct elements of X . Thus |L X,i| = (x)i ,
where x = |X | and (x)i is the falling factorial: for positive integers i, (x)i = x(x − 1) · · · (x − i + 1); for
i = 0, (x)i = 1; otherwise (x)i = 0. In the proof, we use the Forest Completion Algorithm (FCA) and
the Forest Completion Permutation (FCP), which were described in Section 2.

Theorem 4.2. For p,q, s,k � 1, with p,q, s of the same odd–even parity, we have

m(s)
p,q,k = (p) 1

2 (p−s)(q) 1
2 (q−s)v(s)

k, 1
2 (p−s), 1

2 (q−s)
.

Proof. In the proof, we use the notation i = 1
2 (p − s) and j = 1

2 (q − s). Note that every element

of M(s)
p,q,k has exactly i and j non-mixed pairs in the top and bottom rows, respectively. Taking an

arbitrary α ∈ M(s)
p,q,k , we now describe a mapping that is initially identical to that used in the proof

of Theorem 4.1. We attach the numbers 1, . . . , p + 1 to the vertices and the small box in row 1, using
the same left to right convention as in the proof of Theorem 4.1. Let the pairs of numbers attached
to the non-mixed pairs in row 1 be denoted by (u1, v1), . . . , (ui, vi), where u1, . . . , ui are attached
to the rightmost vertices in these pairs (with u1 < · · · < ui ), and v1, . . . , vi are attached to the other
(not rightmost in their cell) vertices in these pairs.

Suppose that the marked cell in row 1 is in column m, and that the rightmost tree for row 1 of α
is T , so T is rooted at vertex m. Now run the inverse of the FCA on T , to remove the arcs directed
from c(u�) to c(v�), � = 1, . . . , i (here, c(�) denotes the column in which the number � appears), and
let ρ be the corresponding FCP. Let κ1 = (vρ−1(1), . . . , vρ−1(i)).

We follow the analogous procedure for row 2: we attach primed numbers 1′, . . . , (q + 1)′ to the
vertices and small box in row 2. Let the pairs of numbers attached to the non-mixed pairs in row 2 be
denoted by (x′

1, y′
1), . . . , (x′

j, y′
j), where x′

1, . . . , x′
j are attached to the rightmost vertices in these pairs
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Fig. 6. The rightmost trees for Fig. 5.

Fig. 7. The vertical paired array for Fig. 5.

(with x1 < · · · < x j ), and y′
1, . . . , y′

j are attached to the other (not rightmost in their cell) vertices in
these pairs.

Suppose that the marked cell in row 2 is in column n, and that the rightmost tree for row 2 of α
is T ′ , so T ′ is rooted at vertex n. Now run the inverse of the FCA on T ′ , to remove the arcs directed
from c(x′

�) to c(y′
�), � = 1, . . . , j, and let τ be the corresponding FCP. Let κ2 = (y′

τ−1(1)
, . . . , y′

τ−1( j)
).

Finally, we mark the cells in row 1 containing u1, . . . , ui (in addition to the existing marked cell
in column m), and the cells in row 2 containing x′

1, . . . , x′
j (in addition to the existing marked cell in

column n), and then remove all non-mixed pairs (both vertices and edges) from α, to get the vertical
paired array β . The vertices in each cell of β have the same relative order as they did in α.

For example, suppose that α is the paired array in Fig. 5. Then we have i = 3, with u1 = 2, u2 = 5,
u3 = 10, v1 = 4, v2 = 8, v3 = 3, and j = 2, with x′

1 = 3′ , x2 = 8′ , y′
1 = 4′ , y′

2 = 1′ . We have m = 3,
n = 4, and the trees T and T ′ from Fig. 3 are repeated in Fig. 6. When we run the inverse of the FCA
on T to remove the arcs (1,2), (2,4) and (5,2) (for which we use dashed lines in Fig. 6), we obtain
(1,3,2) as the FCP, which gives κ1 = (4,3,8). When we run the inverse of the FCA on T ′ to remove
the arcs (1,3) and (5,1) (for which we use dashed lines in Fig. 6), we obtain (2,1) as the FCP, which
gives κ2 = (1′,4′). The vertical paired array β in this example is given in Fig. 7.

Now, for the same reasons as in the proof of Theorem 4.1, we have 1 � v� � p for � = 1, . . . , i, so
κ1 ∈ L[p],i , and similarly, κ2 ∈ L[q]′, j . Thus we have a mapping

ζ : M(s)
p,q,k → L[p],i × L[q]′, j × V (s)

k,i, j : α 
→ (κ1, κ2, β).

In fact, ζ is a bijection. Before proving this, for ζ(α) = (κ1, κ2, β), we first note the key dependen-
cies between α and (κ1, κ2, β) that follow from the FCA: let F and F ′ denote the rightmost forests of
β for rows 1 and 2, respectively. Then, in α with numbers attached as in the construction above, the
column containing the vertex whose number is the last entry of κ1 is contained in the component of
F rooted at m. Similarly, the column containing the vertex whose number is the last entry of κ2 is
contained in the component of F ′ rooted at n. For example, for α,κ1, κ2, β given in Figs. 5–7, the last
entries of κ1 and κ2 are 8 and 4′ , respectively, corresponding to vertices of α in columns 4 and 3,



I.P. Goulden, W. Slofstra / Journal of Combinatorial Theory, Series A 117 (2010) 272–288 283
respectively. Now, the forests F and F ′ in this case are obtained from the trees T and T ′ , respectively,
by removing the dashed edges in Fig. 6. Then, indeed, vertex 4 is contained in the component of F
rooted at m = 3, and vertex 3 is contained in the component of F ′ rooted at n = 4.

We now prove that ζ is a bijection by describing the inverse mapping, so that we can uniquely
recover α from an arbitrary triple (κ1, κ2, β) ∈ L[p],i × L[q]′, j × V (s)

k,i, j . Let F denote the rightmost
forest of β for row 1. Let {κ1} denote the set consisting of the entries in κ1, and let p = s + 2i,
δ1 = [p + 1] \ {κ1}. Next (as a generalization of the procedure for the inverse of ξ described in the
proof of Theorem 4.1), we number the vertices and small boxes in row 1 of β with the elements
of δ1. Then insert vertices numbered with the elements of {κ1}, so that the numbers on all vertices
and small boxes increase from left to right (with any small box regarded as the rightmost object
in its cell) and so that the vertex numbered with l ∈ {κ1} is placed in the same cell as the object
numbered with min{t ∈ δ1: t > l}. Now suppose that κ1 = (w1, . . . , wi), and use the key dependency
noted above: let the column containing the vertex numbered wi be contained in the component of F
rooted at vertex m. Let u1 < · · · < ui denote the numbers attached to the small boxes that are not in
column m (the columns containing u1, . . . , ui are the root vertices for the components of F not rooted
at m). Now, apply the FCA on i-tuple (c(w1), . . . , c(wi)), to give the tree T rooted at m = c(wi), that
contains the forest F as a subforest. Let ρ be the FCP. Finally, replace the small boxes numbered
u1, . . . , ui by rightmost vertices (in the same cells) numbered u1, . . . , ui , pair the vertex numbered
u� with the vertex numbered wρ(�) , � = 1, . . . , i, and remove the numbers from row 1. Repeat the
analogous process for row 2, and we arrive at a minimal paired array α. It is straightforward to check
that the process described above reverses ζ . Thus, we have described ζ−1, and our proof that ζ is a
bijection is complete. The result follows immediately. �

At this stage, we have now reduced the enumeration of canonical paired arrays (and thus the
evaluation of A(s)

p,q(x)) to the enumeration of vertical paired arrays. In the next result, we summarize
the results to this stage.

Corollary 4.3. For p,q, s,k � 1, with p,q, s of the same odd–even parity, we have

A(s)
p,q(x) =

∑
k�1

i, j�0

(
x

k

)
p!q!

2i+ j i! j!( 1
2 (p + s) − i)!( 1

2 (q + s) − j)! v(s)

k, 1
2 (p−s−2i), 1

2 (q−s−2 j)
.

Proof. From Proposition 3.2, (2) and Theorems 4.1, 4.2, we obtain

A(s)
p,q(x) =

∑
k�1

i, j�0

(
x

k

)(
p

2i

)
(2i − 1)!!

(
q

2 j

)
(2 j − 1)!!m(s)

p−2i,q−2 j

=
∑
k�1

i, j�0

(
x

k

)(
p

2i

)
(2i − 1)!!

(
q

2 j

)
(2 j − 1)!!(p − 2i) 1

2 (p−s−2i)

× (q − 2 j) 1
2 (q−s−2 j)v(s)

k, 1
2 (p−s−2i), 1

2 (q−s−2 j)
,

and the result follows by routine simplification. �
5. Enumeration of vertical paired arrays

In this section, we enumerate vertical paired arrays, in Theorem 5.2. First, we enumerate a full,
vertical paired array, that arises as follows: Note that for every column of a vertical paired array, the
cells in rows 1 and 2 have the same number of vertices, because of the balance condition. A full,
vertical paired array is a vertical paired array with a positive number of vertices in every column. Let
F (s)

k,i, j be the set of full, vertical paired arrays in V (s)
k,i, j , and f (s)

k,i, j = |F (s)
k,i, j|. In Theorem 5.1 we shall
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give an explicit construction for the elements of F (s)
k,i, j , and thus obtain an explicit formula for f (s)

k,i, j .
To help in the proof of this result, we first introduce some terminology and notation associated with
an arbitrary α ∈ F (s)

k,i, j . A vertex is said to be dependent if it is paired with the rightmost vertex of an
unmarked cell (in the other row). If the rightmost vertex of an unmarked cell in row 1, column u is
paired with the rightmost vertex of an unmarked cell in row 2, column v , then we call this a shared
pair of α. In this case, the rightmost forest F for row 1 of α contains arc (u, v) and the rightmost
forest F ′ for row 2 of α contains arc (v, u), and we call each of these a shared arc.

Now, canonically number the vertices in row 1 of α 1, . . . , s, from left to right, and number the
vertices in row 2 of α 1′, . . . , s′ , from left to right. Let E be the subforest of F with only the shared
arcs of F . Suppose that F has n � 1 non-shared arcs, corresponding to pairs (x1, y′

1), . . . , (xn, y′
n),

where x1 < · · · < xn , and x1, . . . , xn are rightmost vertices in their (unmarked) cells. Run the inverse
of the FCA on the forest F , to obtain the subforest E by removing the non-shared arcs directed from
c(x�) to c(y′

�), � = 1, . . . ,n, and let τ be the corresponding FCP. Define a′ = y′
τ−1(n)

. If all arcs of F are

shared, then let a′ be the vertex in row 2 that is paired with the rightmost non-dependent vertex in
row 1 (we call this the non-FCA option). In both cases, define A = c(a′), and let ρ0 = A,ρ1, . . . , ρl be
the vertices on the unique directed path in E from vertex A to the root vertex (ρl) of the component
of E containing A. Thus l � 0, and the cell in row 1, column ρl is marked, and the cell in row 2,
column ρ� is not marked, � = 1, . . . , l. Also, the cell in row 1, column ρ� is not marked, � = 0, . . . , l−1.
Now define E ′ to be the subforest of F ′ containing the arcs (ρ�,ρ�+1), � = 0, . . . , l − 1. Suppose that
F ′ has m arcs that are not in E ′ , corresponding to pairs (w ′

1, z1), . . . , (w ′
m, zm), where w1 < · · · < wm ,

and w ′
1, . . . , w ′

m are rightmost vertices in their (unmarked) cells. Run the inverse of the FCA on the
forest F ′ , to obtain the subforest E ′ by removing the arcs directed from c(w ′

�) to c(z�), � = 1, . . . ,m,
and let κ be the corresponding FCP. Define b = zκ−1(m) . If F ′ = E ′ , let b be the vertex in row 1 that
is paired with the rightmost non-dependent vertex in row 2 (again, we call this the non-FCA option).
Let ρ = (ρ0,ρ1, . . . , ρl), which we call the tail of α. The tail length is l. We say that b is in the tail
when the column containing vertex b is one of ρ0,ρ1, . . . , ρl . The type of α is given by (l,ρ,a′,b).
If the cells in rows 1 and 2 of column � in α have λ� vertices, � = 1, . . . ,k, then we say that α has
shape λ = (λ1, . . . , λk). Note that λ1 + · · · + λk = s, and that λ� is positive for all � = 1, . . . ,k, so λ is a
composition of s with k parts.

For example, suppose that α is the full, vertical paired array given at the top of Fig. 8, with s = 10,
k = 7, i = 1, j = 0, shape (1,2,1,1,2,2,1), and rightmost forests F and F ′ given at the bottom of
Fig. 8. The lines joining the pairs in α are of various types (and the same type of line is used in the
rightmost forests when the pair corresponds to an edge in one or other of these forests): a thick solid
line indicates a shared pair in the tail, a thick dashed line a shared pair not in the tail, a thick dashed
and dotted line a pair contributing to F only, a thin solid line a pair contributing to F ′ only, and a
thin dashed line a pair that contributes to neither of F , F ′ . When we run the inverse of the FCA to
remove the arcs (6,2) and (7,6) from F , we obtain the ordered pair (6,2), and hence obtain a′ = 2′
as indicated in Fig. 8, contained in column 2. Thus the tail is ρ = (2,1), of length l = 1. When we run
the inverse of the FCA to remove the arcs (2,3), (3,4), (4,5), (5,6) and (7,5) from F ′ , we obtain the
5-tuple (3,4,5,5,6), and hence obtain b = 8 as indicated in Fig. 8, contained in column 6. Thus we
conclude that α has type (1, (2,1),2′,8).

We are now ready to enumerate full, vertical paired arrays. Once again, in the proof we use the
FCA and FCP from Section 2.

Theorem 5.1. For i, j � 0, k, s � 1, we have

f (s)
k,i, j = s!

k−1∑
l=0

(
s − 1 − l

k − 1 − l

)(
k − 1 − l

i

)(
k − 1 − l

j

)
.

Proof. Each paired array in F (s)
k,i, j has a unique type and shape, and we can uniquely construct those

of given type and shape as follows. For the given shape, we begin with a 2 by k array, with each cell
containing an ordered set of vertices of prescribed size. Then we pair these vertices (all are mixed
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Fig. 8. A vertical paired array with rightmost forests.

pairs) in all possible ways for the given type in four stages. First, we pair the rightmost vertices as
prescribed by the tail. Second, we use the FCA to pair the rightmost vertices in row 2 (note that
b is safe, by construction). Third, we use the FCA to pair the unpaired rightmost vertices in row 1
(note that a′ is safe, by construction). Fourth, we pair the remaining vertices arbitrarily. (In addition,
along the way, we have to choose the marked cells in a consistent fashion.) In this way, for each
composition λ of s with k parts and l � 0, we enumerate elements of F (s)

k,i, j with shape λ and tail of
length l. There are three cases:

Case 1 (Vertex a′ is not rightmost in its cell). There are s −k choices for a′ , which then fixes ρ0. There are
then (k − 1)l choices for ρ1, . . . , ρl , and then l of the pairs are determined. This leaves s − l choices
for b (any vertex not yet paired in row 1). Now mark the cell in row 1, column ρl . Also, if b is in
the tail, mark the cell in row 2, column ρ0, or if b is not in the tail, mark the cell in row 2 of the
column that contains b (b is in row 1). Choose, from the k − l − 1 cells not in the tail or already
marked, i cells to mark in the top row, and j cells to mark in the bottom row. Now pair the unpaired
rightmost vertices of unmarked cells in row 2 with vertices in row 1 to satisfy the forest condition,
using vertex b as the safe position. There are (s − l − 1)k− j−l−2 possible choices for this, from the FCA.
Suppose that there are n unmarked cells in row 1 whose rightmost vertices are not yet paired. Then
pair these with vertices in row 2 to satisfy the forest condition, using vertex a′ as the safe position.
There are (s − k + j)n−1 possible choices for this, from the FCA. Finally, there are (s − k + j − n + 1)!
ways to pair the remaining vertices, arbitrarily. But (s − k + j)n−1 · (s − k + j − n + 1)! = (s − k + j)!,
and we conclude that the number of elements in F (s)

k,i, j with shape λ and tail of length l in this case
is

(s − k)(k − 1)l(s − l)(s − l − 1)k− j−l−2(s − k + j)!
(

k − l − 1

i

)(
k − l − 1

j

)
. (3)
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(It is straightforward to check that these cardinalities are correct when we use the non-FCA options
also.)

Case 2 (Vertex a′ is rightmost in its cell, and b is in the tail). The number of choices for b and ρ is
s
(k−1

l

)
(l + 1)! − l(k)l+1. Then a′ , and l of the pairs, are uniquely determined. The cell in row 1, column

ρl is marked. The cell in row 2, column ρ0 is marked for two reasons – because b is in the tail,
and because the cell contains a′ , rightmost, so that a′ will be paired with a non-dependent vertex
in row 1. The rest of the enumeration proceeds as in Case 1, and we conclude that the number of
elements in F (s)

k,i, j with shape λ and tail of length l in this case is

(
s

(
k − 1

l

)
(l + 1)! − l(k)l+1

)
(s − l − 1)k− j−l−2(s − k + j)!

(
k − l − 1

i

)(
k − l − 1

j

)
. (4)

Case 3 (Vertex a′ is rightmost in its cell, and b is not in the tail). The number of choices for b and ρ
is s(k − 1)l+1, and then a′ together with l of the pairs are uniquely determined. In this case three
different cells must now be marked: in row 1, column ρl; in row 2, column ρ0; in row 2, the column
that contains b. There are then

(k−l−1
i

)(k−l−2
j−1

)
ways to choose which other cells are marked, and the

rest of the enumeration proceeds as in Cases 1 and 2. We conclude that the number of elements in
F (s)

k,i, j with shape λ and tail of length l in this case is

s(k − 1)l+1(s − l − 1)k− j−l−2(s − k + j)!
(

k − l − 1

i

)(
k − l − 2

j − 1

)
. (5)

Adding (3), (4), and (5), and simplifying, we obtain that the total number of elements in F (s)
k,i, j

with shape λ and tail of length l is

s(k − 1)l(s − l − 1)!
(

k − l − 1

i

)(
k − l − 1

j

)
,

and the result follows, by summing over l � 0 and multiplying by
(s−1

k−1

)
, the number of choices

for λ. �
In the next result, we give an explicit enumeration for vertical paired arrays, by applying Theo-

rem 5.1. The proof is quite technical, involving generating functions and a hypergeometric summation.

Theorem 5.2. For i, j � 0, k, s � 1, we have

v(s)
k,i, j = (s + i)!(s + j)!

(s + i + j)!
(

s + i + j

k − 1

)[(
k − 1

i

)(
k − 1

j

)
−

(
k − 1

s + i

)(
k − 1

s + j

)]
.

Proof. If a column in a vertical paired array has no vertices, then at least one of the cells in rows 1
and 2 of that column must be marked, from the nonempty condition. Thus, suppose that a vertical
paired array with s mixed pairs and k columns, has k − m columns with no vertices and m with a
positive number of vertices (the same number in both rows of such columns). Of the k − m columns
with no vertices, suppose that a are marked in row 1 only, b are marked in row 2 only, and that
c − m are marked in both row 1 and 2 (we use this parameterization for convenience in determining
the summations below). Then we have

v(s)
k,i, j =

∑
a,b,c�0

k!
a!b! c! Sa,b,c, (6)
a+b+c=k
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where

Sa,b,c =
s∑

m=0

(
c

m

)
f (s)
m,i−a−c+m, j−b−c+m.

But, from Theorem 5.1, we have

Sa,b,c = s
∑

s−1�m−1�l�0

(
c

m

)(
s − 1 − l

m − 1 − l

)(
m − 1 − l

a + c − i − 1 − l

)(
m − 1 − l

b + c − j − 1 − l

)

= s![ya+c−i−1zb+c− j−1] ∑
s−1�m−1�l�0

(
c

m

)(
s − 1 − l

m − 1 − l

)
(yz)l((1 + y)(1 + z)

)m−1−l
,

where we use the notation [A]B to denote the coefficient of A in the expansion of B . Now(
c

m

)
=

(−m − 1

c − m

)
(−1)c−m = [

xc]xm(1 − x)−m−1,

which gives

Sa,b,c = s![xc ya+c zb+c]G(x, y, z), (7)

where, summing over m by the binomial theorem, we have

G(x, y, z) = xyi+1z j+1

(1 − x)2

s−1∑
l=0

(
xyz

1 − x

)l(
1 + x(1 + y)(1 + z)

1 − x

)s−l−1

= xyi+1z j+1

(1 − x)2

(1 + x(1+y)(1+z)
1−x )s − (

xyz
1−x )s

1 + x(1+y)(1+z)
1−x − xyz

1−x

= xyi+1z j+1

(1 − x)s+1

(1 + x(y + z + yz))s − (xyz)s

1 + x(y + z)
.

But, changing variables in (7), we have

Sa,b,c = s![x0 ya+c zb+c]xkG

(
x,

y

x
,

z

x

)
,

so from (6) we obtain

v(s)
k,i, j = s![x0 ykzk]xk(1 + y + z)kG

(
x,

y

x
,

z

x

)

= s![x0 ykzk]xk−i− j−s−1 yi+1z j+1 (1 + y + z)k−1

(1 − x)s+1

((
x(1 + y + z) + yz

)s − (yz)s)
= R1 − R2,

where

R2 = s![xi+ j+s−k+1 yk−i−1zk− j−1] (1 + y + z)k−1

(1 − x)s+1
(yz)s

= s!
(

2s + i + j − k + 1

s

)
(k − 1)!

(k − s − i − 1)!(k − s − j − 1)!(2s + i + j − k + 1)!
= (s + i)!(s + j)!

(s + i + j)!
(

s + i + j

k − 1

)(
k − 1

s + i

)(
k − 1

s + j

)
,
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R1 = s![xi+ j+s−k+1 yk−i−1zk− j−1] (1 + y + z)k−1

(1 − x)s+1

(
x(1 + y + z) + yz

)s

= s![xi+ j+s−k+1 yk−i−1zk− j−1] ∑
m�0

(
s

m

)
xs−m(1 + y + z)k+s−m−1(yz)m(1 − x)−s−1

= s!
∑
m�0

(
s

m

)(
s + i + j + m − k + 1

s

)

× (s − m + k − 1)!
(k − m − i − 1)!(k − m − j − 1)!(s + i + j + m − k + 1)! .

Now, for this latter sum over m � 0, we observe that the ratio of the (m + 1)st term to the mth term
is a rational function of m, which implies that it is a hypergeometric sum. In particular, using the
standard notation for hypergeometric series, we have

R1 = (s + k − 1)!
(k − i − 1)!(k − j − 1)!(i + j − k + 1)! 3 F2

(
i + 1 − k, j + 1 − k, −s
i + j − k + 2, 1 − s − k

;1

)

= (s + k − 1)!
(k − i − 1)!(k − j − 1)!(i + j − k + 1)!

(s+i
s

)(s+ j
s

)
(s+k−1

s

)(s+i+ j−k+1
s

)

= (s + i)!(s + j)!
(s + i + j)!

(
s + i + j

k − 1

)(
k − 1

i

)(
k − 1

j

)
,

where the second last equality follows from the Pfaff–Saalschütz Theorem for 3 F2 hypergeometric
summations (see, e.g., Theorem 2.2.6 on page 69 of [1]). The result follows immediately. �

The proof of Theorem 1.2 follows immediately from Corollary 4.3 and Theorem 5.2.
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