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TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 344, Number 1, July 1994 

A DIFFERENTIAL OPERATOR FOR SYMMETRIC FUNCTIONS AND 
THE COMBINATORICS OF MULTIPLYING TRANSPOSITIONS 

I. P. GOULDEN 

ABSTRACT. By means of irreducible characters for the symmetric group, formu- 
las have previously been given for the number of ways of writing permutations 
in a given conjugacy class as products of transpositions. These formulas are al- 
ternating sums of binomial coefficients and powers of integers. Combinatorial 
proofs are obtained in this paper by analyzing the action of a partial differential 
operator for symmetric functions. 

1. INTRODUCTION 

Let A = (Al, A2, .. . ) where Al > A2 ... are nonnegative integers and Al + 
A2 + = n . Then A is a partition of n, denoted A - n . If m of the Ai are 
positive we also write A = (AI, ... , Am), and say that A has m parts, denoted 
by l(R) = m. If kj of the parts of A are equal to j for j > 1, we can write 
i = 1 k,2k2 

Associated with every permutation a in Sn, the symmetric group on 
{1, ... , n}, is the partition of n whose parts specify the lengths of the cy- 
cles in the disjoint cycle representation of a. This partition, denoted by d(a), 
is called the cycle distribution of a. For a H- n, the set of all permutations in 
Sn with cycle distribution a is a conjugacy class, denoted by W,. If K, is 
the formal sum of the elements of W, then the set {Kl a H- n} is a basis for 
the centre of the group algebra CSn . Thus we can linearize the product of any 
elements in this set, so if ai H- n for i = 1, ... , m we can write 

&I, --Kam = ECay, .. a>mKy, 
ye-n 

and the numbers cy ( are called connection coefficients for the symmetric 
group. 

An expression for the arbitrary connection coefficient can be given as a sum- 
mation over partitions of n, involving characters of the symmetric group. In 
general this is not very useful because characters are hard to evaluate and the 
summation set is large. However in certain cases this expression can be reduced 
to yield a nice explicit form, as a single-indexed binomial sum. Character the- 
ory has been used by Stanley [19] and Jackson [13, 14, 15] to give classes of 
such explicit forms for various connection coefficients involving n-cycles (cycle 
distribution n) and transpositions (cycle distribution ln-22). 
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422 I. P. GOULDEN 

The form of these results suggests that there should exist derivations of the 
nice expressions for connection coefficients that are free of the use of characters. 
In this direction, Bertram and Wei [2], Boccara [31, and Walkup [20] have 
obtained results for the product of two n-cycles by elementary means. Goulden 
and Jackson [9] have given a direct combinatorial derivation for the value of 
C(, ..., at in the case that I(aI) + + l(am) = n + 1 . Moszkowski [18] has 
given a direct combinatorial derivation for the value of (n) in the case 
that a1, ...I , an-I are transpositions (see also Goulden and Pepper [10]). 

Bedard and Goupil [1] had previously shown by inductive means that 

( 1.1 ) C(n) n(l(al) - 1)!(/(a2) - 1)! at, ,a2- rjj,H?Ifl Ij!fl2j! 

where ai = lfli12fi2 ... for i = 1, 2, and l(al) + 1(a2) = n + 1. In the case 
m = 2 of Goulden and Jackson [9], the RHS of (I1.1) is shown to be the number 
of two-coloured plane trees of a certain type, and an explicit bijection is given 
between these trees and pairs of permutations (a, p) E Ka, x Fs12 such that 
up=(12 ...n) where, of course, (12 ...n)E Fl)- 

Denes [6] (see also Denes [7] and Hurvitz [11, 12]) had previously shown 
that 

(1.2) c .n = n 

where al, ...I Cn- are transpositions (i.e., a, = In 22 for i = 1, .. , n-i). 
In Moszkowski [18] an explicit bijection is given between labelled trees on n 
vertices (it is well known (see, e.g., Cayley [51) that the number of these is nn-2) 
and (n - 1)-tuples of transpositions whose product is (12... n). 

One of the results (Corollary 4.2) in Jackson [15] specializes to give the fol- 
lowing result. 

Theorem 1.1. For a,= In-22, 1, ..., m and in > 1, 

C am nk 

k=O 

Note that when m = n - 1 the RHS of Theorem 1.1 must reduce to nl-2 

from (1.2), and that when m < n - 1 the RHS must reduce to 0, for combina- 
torial reasons. 

The purpose of this paper is to derive an explicit bijective proof of Theorem 
1.1. We proceed by considering a generalization of Theorem 1.1 that allows us 
to identify the role of the summation index k . This generalization is given as 
Theorem 2.1, and is referred to as the main result. 

There are three stages. First, in ?2, we derive the main result in a straight- 
forward manner from the character theory of Sn. Second, in ?3, we give a 
noncharacter, but essentially verificational, proof of the main result by means 
of a partial differential operator for symmetric functions. Third, in ?4, we are 
able to derive an explicit bijective proof of the main result by considering the 
combinatorial implications of the action of this differential operator. 

The common thread running through these three stages is the formal power 
series 

A(r, b, t; x) = (r - b)- {IIH(rt)E(-bt) - 1} 
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A DIFFERENTIAL OPERATOR FOR SYMMETRIC FUNCTIONS 423 

where 
H(u) = 1(1 - uxj)-', E(u) = 11(1 + uxj) 

j>1 1>1 
are well-known as the generating functions for the complete and elementary 
symmetric functions in x = (xl, x2, ...), respectively. 

The reader is referred to Macdonald [17] for a complete treatment of sym- 
metric functions. In this paper we shall be concerned only with the power sum 
symmetric functions, given by 

po = 1, pj = X i +x2+., j > 1 . 

If A = (12, ), ...) is a partition, then PA = PAIPA2 ... and {pAIR all par- 
titions} forms a basis for symmetric functions, where PI, P2, ... are alge- 
braically independent. The generating function for PI , P2, ... is denoted by 
P(u) = Ej> Ipjui . The pj's are related to H and E by 

(1.3) H(u) exp pyJ E(-u)=exp -EPjJ) 

and thus 
a a 

(1.4) u -H(u) = P(u)H(u), uy-E(-u) = -P(u)E(-u). 

Various properties of the series A that we shall need are given in the following 
result, in which [M]N denotes "the coefficient of M in N". 

Proposition 1.2. 
(1) 

n-I tn 
A(r, b, t; x) = j rn-i-kbkAn,k , 

n>l k=O 

(2) 

An, k = an, k, a I Ip, where IWj n!/F Ijijiij! ifa = 1ii2 ... 

c-n j>1 

(3) 

an,k,a - [rn ]kbkl(r - b)-i J1(ri - bj)'i where a - 11212... 
j>i 

(4) A(1,1,t;x)=P(t), : 
(5) En-I an,k, = n5a,(n) for fl n. 

Proof. (1) The division by r - b in the definition of A is well-defined when A 
is considered as a power series in t. As a polynomial in r, b, the coefficient of 
tn in H(rt)E(-bt) - 1 is homogeneous of degree n, for n > 1 (and is 0 for. 
n = 0 since H(O) = E(O) = 1). Moreover, H(rt)E(-bt) - 1 = 0 when r = b, 
so its coefficient of tn is divisible by r - b. Thus, as a polynomial in r, b, the 
coefficient of tn in A is homogeneous of degree n - 1, n > 1. Accordingly, 
we can write A in the given form, where the division by n! is for convenience 
later. 
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424 I. P. GOULDEN 

(2) A is a function of t and xi only through txj, j > 1, and A is a 
symmetric function in x, so the An, k are symmetric functions in x of degree 
n . The result follows because {plI a F- n} is a basis for symmetric functions of 
degree n. Again the multiplication by JWJ is for convenience later, and the 
value of JF, is well-known. 

(3) From (1.3) we have 

A=(r-b)' {exp (pjj(ri-bi)) - 1} 

= (r - b)1 fexp (pj i (r - bi)) - 1 

tn =~~n Sr-b- llIpaJ1(r' - b')". 
n>1 a=11122.. Hn j>1 

This gives immediately, from (2) and (1), 

an,k,a = [?! rn-l-kbkIaIlpaj A = [rn-l-k bk](r - b)-1 7J(ri - bi 

as required. 
(4) Using L'H6pital's rule, which is justified since r and b appear polyno- 

mially as coefficients of powers of t, 

A(1, 1, t; x) = limA(r, 1, t; x) = lim H(rt)E(-t) 1 I r--+l ~r - 1 

= a-{H(rt)E(-t) - l}Ir= =P(t)H(t)E(-t), from (1.4) 

and the result follows since H(t)E(-t) = 1 . 
(5) From (1) and (2) we have 

n-I tn 

A(1, 1, t; x):= E ? t an,k ,a!iWalPa, 
n>1 k=O ahn 

so that 
n-I Ftn l 

Ean k = [a KaIPaJ A(l, 1, t; x) 

[n!] 
k=O 

= [a%lPa]P(t from (4), 

_ /nK wn) o (n), 
l 0, otherwise. 

But lWn)I = n!/n from (2) and the result follows. 51 

The main result is stated in terms of the integers an k, a. In ?2 these integers 
are identified in terms of characters of Sn , and properties of characters are used 
in deriving the main result there. In ? 3 a differential operator for symmetric 
functions is introduced, and its action on A is shown to be nice; the main result 
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A DIFFERENTIAL OPERATOR FOR SYMMETRIC FUNCTIONS 425 

follows, with the an k,a appearing only as the coefficients in the symmetric 
function A. In ?4 we demonstrate that the series A is the generating function 
with respect to an alternating weight for a set of combinatorial objects that we 
call properly painted permutations. This leads to a combinatorial derivation 
of the action of the differential operator on this generating function. In ?5 
we extend this to obtain a direct bijective proof of the main result, in which 
the an, k, appear as the combinatorial sum of alternating weights for sets of 
painted permutations. This quickly leads to a direct bijection for Theorem 1.1 
(with both sides multiplied by 2mn!). 

2. CHARACTERS OF THE SYMMETRIC GROUP 

It is well-known (see, e.g., Burrow [4]) that the centre of the group algebra 
CSn has a basis {FJaI F- n} of orthogonal idempotents, given by 

(2.1) Fa - = X lff8 
J8P-n 

where Xcl is the character of the irreducible representation of Sn associated 
with W., evaluated at KFl, and fP is the degree of this representation. More- 
over we can invert the linear relationship (2.1) to obtain 

(2.2) K a IIZ 1# 8 
Ffl 

JfPn 

The introduction of characters of Sn is relevant because the series An k dis- 
cussed in ? 1 is essentially the generating function for the values of the character 
of the irreducible representation associated with C(Ik n-k). In particular, as 
derived on page 139 of Littlewood [16], 

(2.3) ank, = ( 1)kx(lkn-k) 

We are now ready to give the main result, which yields a value for a linear 
combination of connection coefficients involving arbitrary powers of transpo- 
sitions. The proof exploits the above close connection between an k a> and 
characters. 

Theorem 2.1. For n> 1, n > k > 0, ( = ln-22 for i = 1, ...m, m > 0, 
and /1 F- n, 

Zan, k ,acA,...am, a{(2)nk} an, k,8 

Proof. Since an 1=(l)kX(lkn-k) we have 

(2.4) n! )k Z , 
an, k ,aKa=F(lknk) 

ah-n 

from (2.1). Thus from (2.1), (2.2), 

J(1 1 (1k n-k) m( )k 

(2.5) {K(In-22)}m ankaKa = { In-22)In-22) n!F(lk n-k) 
I:aHn, f(lk ,n-k) f(lk ,n-k) 
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426 I. P. GOULDEN 

But 

f(lk,fn-k) _ (Ik, n-k) 
X(I n) 

1 -)kan, k, (In) from (2.3) 
( 1 )k[r n-l kbk](r - b),n-I from Proposition 1.2(3) 

(n- 1n 

k } 

X(lk n-k) - 1) a ,k,(l-22), from (2.3) 

= (- 1) r n- lkbk] (r - b)n-2 (r + b), from Proposition 1.2(3) 

{n - 2 tn - 2 
k (k 2 (- '2 

and 

LW(n-22)= 
= () from Proposition 1.2(2). 

(n - 2)!2 2 

Thus 
1- 2 2)I1x (il 

, 
n-k) (n ){(fn-2) _ (n-2)} ( 

f(lk, n-k) (nI - k)2 

and substitution of this in (2.5) gives 

{K m n { 
nk} (m 

1)kn! 
{K(In-22)}mZan,k, aKa 2(" (nI) F(Ik, n-k) 

= { (2) - nk} an, k, flKfi from (2.1), (2.4). 
JP~-n 

The result follows immediately by equating coefficients of Kfl on both sides of 
this expression. El 

The above result is closely related to those of Jackson [ 15]. From it we deduce 
the value of a connection coefficient involving arbitrary powers of transpositions 
in the next result. 

Corollary 2.2. For n > 1, a= ln-22 for i =1, ...,m, m > O, and , fl n, 

C. nk am,(n)n { 2 k an, k,, 

Proof. Summing both sides of Theorem 2.1 over k = 0, . .. , n- 1 and equating 
the results yields 

Z (E an,k) Cn,...m = a {(2)a-nk} an kfi8. 

C&-n k=0 k=0 

But 

Z (Z an, k,a) C m1, ..., -m 9 nca m,(n) 
aF-n k=O 

from Proposition 1.2(5), and the result follows upon division by n . El 
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A DIFFERENTIAL OPERATOR FOR SYMMETRIC FUNCTIONS 427 

We obtain Theorem 1.1 in a straightforward way by considering the special 
case f8 = (In) of Corollary 2.2. 

Proof of Theorem 1.1. From Corollary 2.2, the number of m-tuples of transpo- 
sitions (T I ... Tm) and n-cycles a such that mrl ... Tma = id is given by 

C1) .,(n) =-E { (n)-nk}af,k,(ln)) 

where aa = In-22 for i = 1, ..., m. But an,k,(lIn) = (-i)k(nkl), as derived 
in the proof of Theorem 2.1. 

Furthermore T1 ... Tma = id is equivalent to Ti ... Tm - -1 where c-1 is 
also an n-cycle, so 

(In) m() Wn Cc(n ,. ) 

The result follows since IWn)I = (n - 1)! 1 

3. A DIFFERENTIAL OPERATOR FOR SYMMETRIC FUNCTIONS 

For a E Sn, let ?(a) = pd(,), and linearly extend this to define the action 
of 'D on CSn . Thus for example, D(Ka) = IaIPa and 4(D n Ka) = hn- 

Now define the differential operator for symmetric functions (it is well- 
defined since the power sum symmetric functions are algebraically indepen- 
dent). 

A\ = 2 , , :p.iPi+i, + (i + i)PiP 0) 

This operator provides a realization in -the algebra of symmetric functions of 
the multiplication by all transpositions in the symmetric group, as demonstrated 
in the next result. 

Proposition 3.1. For g E CSn, 

(D(K(In-22)g) = A^D(g). 

Proof. Consider an arbitrary transposition (tl, t2) and an arbitrary permuta- 
tion a E Sn 

If t1 and t2 appear on two different cycles in the disjoint cycle representation 
of a, then in the product (tI, t2)a those cycles are replaced by a single cycle 
whose length is equal to the sum of their lengths. Thus a PiPj in <(a) is 
replaced by a Pi+j in 1D((t1, t2)a) for some i, j > 1. 

If tI and t2 appear on the same cycle in a, then in the product (t1, t2)I 
that cycle is replaced by two cycles whose lengths sum to the length of that cycle. 
Thus a Pi+j in 4(a) is replaced by a PiPj in ID((t1, t2)a) for some i, j ? 1. 

The result follows by considering all cases for (tl, t2) and extending linearly 
to CSn. O 

As an exercise, the reader might verify that 

AH(t) = !iH(t), AE(t) = E(t) 

This operator also acts very nicely on the series A discussed in ?1, as described 
in the following result. 
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428 I. P. GOULDEN 

Theorem 3.2. 
(1) 

I aa~ 
A-2 (r5--b- t-aA, 

2ar ab/at 
(2) 

AAn,k={() - nk} An,k, for n > k > O. 

Proof. (1) 

AA= (r - b) 'A {exp (ZPk(rk - bk)) } from (1 3) 

H(rt)E(-bt) J pi{j t'm (r' - b')m(r - b) ?ppjt'+(r'J - bJ) 

2(r-b) 1,1?1 m + 
_H(rt)E(-bt) (mmnr-I 

\r-) j Zpintm m`+ mbtm-E~(r'b`m' +rnb) 
2(r - b 

rn>I i=O 

+ P(rt)2 - P(bt)2} 

_H(rt)E(-bt) bP(t) -r + b 
rtP'(rt) + btP'(b - +b(P(rt) - P(bt)) 

2(r -b) r -b 

+ P(rt)2 - P(bt)2} 

But 
tA H(rt)E(bt) {P(rt) - P(bt)}, from (1.4) 

so 
a a _H(rt)E(-bt) ((r) 

r at = rb b rtP'(rt) + P(rt) - (P(rt) - P(bt)) 

a a_ H(rt)E(-t b 
b -bt- 

A = 
- 

b btP'(bt) - P(bt) - 
r (P(rt) -P(bt)) 

and the result follows. 
(2) We have 

A= Y' An, krnkbk 
n>k>O 

so 

AA= X (AAn,k)rn-1-kbk 
t 

n>k>O 

and 

2 (r b a )ta A= _ An k{2 (r - b )t t rnkbk} 
n>k>O 

-k>OAn k {(n- 1 -k-k)n r b 
n>k>O 

n 
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A DIFFERENTIAL OPERATOR FOR SYMMETRIC FUNCTIONS 429 

Apply (1) and equate coefficients of rn-l-kbktn/n! on both sides to obtain 

AAn,k = -(n-1-2k)n) An,k, 

for n > k > 0, and the result follows. 0 

The above properties of A combine to yield the following proof of the main 
result. 

Second proof of Theorem 2.1. From Proposition 3.1 

(KIni22)Z an,kaKa) = A"kF(Zan,k,aK) = 
m 

E an,k,QF(Ka) 
achn \aHn aohn 

=Am an,k,aIlPa =Am (An,k) 
al-n 

m on 

= {(2)-nk) An,k fromTheorem3.2(2) 

(D{ (2)-nk} E an, k,f8Kf) 

and the result follows. 0 

Thus we have obtained a proof of the results of ?2 that is free of the use of 
characters. By this we refer to the fact that no use is made of the relationship 
between the ank a and characters; instead the an k -a are regarded simply as 
coefficients in the symmetric function A, and the action of A on A is then 
explicitly described. 

This proof, though free of characters, is essentially verificational, since it is 
based on the fact that A satisfies the partial differential equation given in The- 
orem 3.2(1). However, we are able to derive a constructive, directly combina- 
torial, proof of Theorem 3.2 in the next section, which leads to a combinatorial 
proof of the main result in ?5. 

4. PAINTED PERMUTATIONS AND THE DIFFERENTIAL OPERATOR 

By a painted permutation p on {1, ..., n} we shall mean a permutation 
a E Sn in which each element 1, ..., n - 1 is assigned ("painted") one of the 
colours red or blue, and we say in this situation that p is obtained by painting 
a. Thus there are Yn1 ways to paint a for each a E Sn, giving a total of 
2n-ln! painted permutations on {1, ... , n}. We shall be concerned in this 
section with a special subset of painted permutations called properly painted 
permutations, defined below. 

In the disjoint cycle representation of a permutation a E Sn , suppose that the 
cycle containing element n is (n, 1, is, ...1 , ij), and call this cycle the max- 
cycle of a . Consider painting elements il, ..., il red and elements il+ , . . .i 
blue for some 0 < 1 < j, and denote the resulting object by (n, [i1, ., ilIR, 
il ... , ijIB) (if 1 = 0 then [ IR is suppressed and if 1 = j then [lB is 

suppressed). For every other cycle (mi, .I.., mu) in a either paint all elements 
ml..., mu red or all blue, and denote the resulting object (ml, MOR, 
or (mI, ..., u)B, respectively. The result of this procedure is a properly 
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430 I. P. GOULDEN 

painted permutation p, and we say that p is obtained by (properly) painting 
a. Defined B(p) to be the number of cycles of p in which all elements are 
blue, and define ?(p) = 4(a), where ?(a) is given in ?3, and p is obtained 
by painting a. 

Let the set of properly painted permutations on n elements of which k are 
blue (and hence n - 1 - k are red) be denoted by San,k . For p E sn,k, define 
the weight function 

wt(p) = ( I)B(p)(D(p) 

For example, with n = 9, k= 3, 

Wt((9 [6, 31R, [51B)(l, 8)B(2, 7, 4)R) =-P2P3P4* 

The significance of properly painted permutations is that the generating func- 
tion for - ,k with respect to this weight function is the series An, k discussed 
in ? 1, as proved in the next result. 

Proposition 4.1. For n > k > 0, 

Z wt(p) =An ,k 
PESn,k 

Proof. Let 
n-I 

D= >i rn-kbk >ii wt(p) = Z Pd(a)Ga 
k=O PEVn, k ESn 

Then 
G= Z(-1 )B(P)r#red elements in p b#blue elements in p 

p 

where the summation is over all p obtained by properly painting a. 
Now suppose a E W1IV2 2...) so a has ij cycles of length j, and that the 

max-cycle has length m. Then 

m-1 
\~~~~~~ G= ( rlbm ll) K(ri - bJ) i im 

1=0 j>l 

since the max-cycle has 1 red elements and m - 1 - 1 blue elements for some 

1 = 0, ..., m - 1, and each other cycle has, independently, all elements red or 

blue, with the number of the latter giving B(p) . But 

Z rlbmll - (r - b)-(rm - bm) 
1=0 

so 

G= (r - b) fl(ri-bj)i. 
j>l 

Thus G< depends only on the conjugacy class of a, so 

Dn =(r - b)-l IF 1yp. II(ri - bj)'j 
a=1'12i2 2..-n j>l 

Comparing this expression with Proposition 1.2, we immediately have 

[rkbn-l-klD A 

as required. 0 
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A DIFFERENTIAL OPERATOR FOR SYMMETRIC FUNCTIONS 431 

For E E S,, and p a painted permutation, we define Tp (or pT) as follows. 
If p is obtained by painting ci then Tp (or pT) is the permutationc Tc (or 
crT) with elements the same colour as in p. Note that either or both of p and 
Tp (or pT) may be properly painted. 

Now define sets Yn, k and 4, k by 

Yn,k= {(U, V, p)11 < $V ? <n, P E4,k}, 

nk={(Y, z, Y)jl ?<y< n -1, 1<z<n, YE e-n,k}. 

For (u, v, P) e Yn,k, define the weight function 

g(U V, p) = ( l)B(P)pd((uV)p), 

and for (y, z, Y) e 9Tk, define 

f cot(y) if element y is red in y, 
(Y ' ' P) ]-cot(y) if element y is blue in y. 

Generating functions with respect to these weight functions are given by 

fly(X) = E (U, v, p) for Y C Ynk,k 

(u, v, p)EY 

'lX (x) = E co(y, z, y) for 8 C 8kn 
(y,z,Y)E_f 

The connection to ?3 is made clear in the following result. 

Proposition 4.2. For n > k > 0, 

(1) Q<2k(x) = 2AAn,k 

(2) 'I4, k (X) = nk}An,k . 

Proof. (1) The result follows immediately from Propositions 3.1 and 4.1. 
(2) The result follows from Proposition 4.1 since for each y k, there 

are n choices for z and n - 1 choices for y. There are n - 1 - k choices for 
y specifying red elements and k specifying blue elements. The latter reverse 
the sign, so 

Tk (x)={(n - I - k) - k}nAn,k. 
Note that Theorem 3.2 and Proposition 4.2 -imply 

(4.1) Q, k (x) =I4 k (x). 

This means that the effect of multiplying all properly painted permutations in 
Vn,k by the set of transpositions (u, v is the transposition in n,k) is equiv- 
alent to "marking" all pairs of (not necessarily distinct) elements in all properly 
painted permutations in n, k, where the first marked element is painted (i.e., 
not n) and a sign of -1- is introduced if this element is blue (y, z are the 
marked elements in 5, k) . For a general discussion of the relationship between 
the action of ta/st (and ra/lr, b9/lb) as on the RHS of Theorem 3.2.(1) 
and marking (or rooting or distinguishing) of combinatorial objects see, e.g., 
Goulden and Jackson [8]. 

In the remainder of this section we complete a purely combinatorial proof of 
Theorem 3.2 by deriving a direct combinatorial proof of (4.1), which together 
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with Proposition 4.2 implies Theorem 3.2 (multiplied by 2). This proof of 
(4.1) proceeds in the following way. First, we partition 5?n,k into subsets 
YM(f and y(2) and give a sign-reversing involution q on Y(), proving that 

QK(,) (x) = 0. Second we partition 5 k into subsets ?(1) and n(2) and give 
n,k 

-T,k nosustsg 
k n,k 

a sign-reversing involution V on gn(') , proving that T,(I) (x) = 0. Finally, k I ~~~~~~n,k 
we give a weight-preserving bijection q between 5 )(2) and n (2),proving that n,k nk 

T<o2 = 7-e(2). 
n,k n,k 

The sets !'n(1Q and T(1) are given by 

5?n(1) 
- 

{(U V, p) C 5?n,kI elements u, v have different colours in p}, 

47(1) 
- 

{(y, z, y) c 
5n, ,kl elements y, z have different colours in y, 

where "different colours" means, in both cases, that one is red and the other 
blue. The sets 5n9(2) and -(2) are their complements in 5?nk and ,k. n ,k n,k 

The easiest of the mappings is ig; for (y, z, y) E (1)j, define 

VI(Y, z, Y) = (z, Y, ). 

(Note that z $A n since z is painted.) 

Theorem 4.3. For n > k > 0, 
(1) V/ is a fixed-point-free involution on n(l) 

n,k~~~~~~~~~~~, (2) co(VI(y , z , y)) =-cO(y , z , y) for (y , z , y) E4l) 

(3) T1(i) (x) = 0 

Proof. (1) Elements y, z have different colours in 49lj),so VI has no fixed 
points. Moreover 

VI(VI(Y, Z, 2Y)) = VI(Z, Y, Y) = (Yj, z, Y), 

and the result follows. 
(2) If element y is red in y, then z is blue in y, so w (yj, z, y) = wt(y) and 

i(VI(yv, z, y)) = Cc(z), y, y) = -wt(y). If element y is blue in y , then z is 
red in y, so w&(y, z, y) = -wt(y) and wo(ql(y, z, y)) =w(z, y, y) = wt(y). 
Thus in either of the two possible cases w(V&(y, z, y)) = -w(y, z, y) . 

(3) From (1) and (2) we obtain T,P(1)(X) 
= -T,P(l)(X) and the result fol- 

n,k n,k 

lows. 51 

For the sign-reversing involution q on 9?( we define L(p), for p E -Vn,k 5 
to be the first blue element encountered on the max-cycle of p after element 
n (by construction, any red elements on the max-cycle occur between n and 
L (p)) . If there are no blue elements on the max-cycle of p , we define L (p) = 0 . 

To define ij, let (u, v, p) C 59(1) and assume u is a red element in p and n,k 
v is a blue element in p (otherwise exchange u and v) . Then 

Case 1. If L(p) 5 0 and v 5 L(p), then 

j(u, v, p) = (u, L(p), (u, L(p))(u, v)p). 
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Case 2. Otherwise, if L(p) = 0 or v = L(p), then 

j(u, v, p) = (u, v, (u, v)(u, n)(u, v)p(u, n)). 
For example, with n = 9, k = 5, p = (9, [4]R, [7, 3]B)(1, 8, 5)B(2, 6)R, 

so L(p) = 7, we 

Al: 77(4, 3, p) =(4, 7, (9, [3IB)(7)s(l, 8, 5)B(4)R(2, 6)R), 

A2: q(6, 3, p) =(65 75 (9, [45 6, 2]R,5 [3]s)(7)B(l, 8, 5)s), 

A3: q(6, 8, p) = (6, 7, (9, [4, 6, 2]R, [8, 5, 1, 7, 3]B)), 

A4: q(4, 8,5 p) = (4,5 7, (9, [8,55 , 1, 7,5 3]B)(4)R(2, 6)R), 

A5: j(4, 7, p) = (4, 7, (9)(3, 7)B( , 8, 5)B(4)R(2 ,6)R) 

A6: q(2, 7, p) =(2, 7, (9, [6, 2, 4]R)(3, 7)B(1, 8, 5)s) 

To prove that q is a sign-reversing involution, it will be helpful to charac- 
terize properly painted permutations p c 5V,k among painted permutations 
by partitioning nV,k into two subsets 5Vn(i) for i = 1- 2. Let the image of n,k -1,.Ltteiaeo 
element i in p be p(i). Then vn(1) consists of all painted permutations on nk 
{ 1, .. ., n} with k blue elements, in which p(j) = n for exactly one blue el- 
ement j and either p(n) is blue or p(n) is red and p(j) is blue for exactly 
one red element j (in which case j = p-'(L(p))). In every other case, p(j) 
and j have the same colour. (Thus qC(I) consists of the properly painted per- nk 

mutations with at least one blue element on the max-cycle.) Similarly n (2) 

consists of all painted permutations on { 1, ... , n} with k blue elements, in 
which either p(n) = n or p(n) is red and p(j) = n for exactly one red element 
j. In every other case p(j) and j have the same colour. (Thus _ (2) consists 
of the properly painted permutations with no blue elements on the max-cycle.) 

Using this characterization of the elements of 5V,, k we can prove that I has 
the desired properties (it may help to first verify (1) and (2) for the six examples 
given above). 

Theorem 4.4. For n > k > 0 
(1) i is a fixed point-free involution of 9?(1)' 

(2) 4(q(u, v, p)) =-4(u, v, p) for (u, v, p) 5'? k 
n,k~ ~ ~ ~ ~ ~~~~~~, (3) 929Q,) (x) = O. 

n , k 

Proof. Let 77(u , v, p) = (u', v', p') 
(1) In Case 1 (e.g., Al, A2, A3, A4), we must have p c sl('), and calculate 

that 

p'(p-1(L(p))) = u, p (p'(u)) = v, p'(p-1(v)) = L(p) 
and p'(j) = p(j) for all other j = l, ..., n. But u is red and v, L(p) are 
blue. Moreover p-1(v) is blue and neither of p-'(u) or p-1(L(p)) is blue. 
Thus L(p') = v, and in all cases we can verify that (u', v', p') satisfies Case 
1. 

Now v' $A v so there are no fixed points for q in Case 1. Moreover, 
77(77(U, v, p)) = 77(u', v/, p') = (u', L(p'), (u', (L(p'))(u', v')p') 

= (u, v, (u, v)(u, L(p))(u, L(p))(u, v)p) = (u, v, p) 
and in this case q is a fixed-point-free involution. 
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In Case 2, either p c V(2) (so L(p) = 0) or p c ( with v = L(p) (e.g., 
A5, A6), and we calculate that 

p'(p-1(n)) = v, p'(p-1(v)) = n, p'(n) = p(u), p'(u) = p(n) 

and p'(j) = p(j) for all other j = 1, ..., n. But u is red and v is blue. 
Moreover if L(p) = 0 then p-I(v) is blue and none of p(n), p-I(n), p(u) 
is blue. If L( p) = v then p- 1 (n) is blue and either p(n), p- 1 (v) are red with 
p(u) red or p(u) = v, or p(n) = v with p(u) red. In all cases we can verify 
that (u', v', p') satisfies Case 2. 

Furthermore, if p c _V(1) then p' s i ) and if p then p' c n(l) 
so q has no fixed points in Case 2. Moreover, 

i(q(u, v, p)) = i(u', v', p') = (u', v', (u', v')(u', n)(u', v')p'(u', n)) 
= (u', v', (u', v')(u', n)(u', v')(u, v)(u, n)(u, v)p(u, n)(u', n)) 
= (u, v, p) since u' = u, v' = v 

and in this case also q is a fixed-point-free involution. 
(2) In Case 1, 

(u', v')p' = (u, L(p))(u, L(p))(u, v)p = (u, v)p 

and in Case 2, 

(u', v')p' = (u, v)(u, v)(u, n)(u, v)p(u, n) = (u, n)(u, v)p(u, n). 

But (u, n)(u, v)p(u, n) is conjugate to (u, v)p, so in both cases we have 

d((u', v')p') = d((u, v)p) . 

In both cases, if v lies on a cycle with all elements blue in p (e.g., A3, A4), then 
the elements on that cycle join the max-cycle in p', and B( p') = B( p) - 1 . If v 
lies on the max-cycle of p (e.g., Al, A2, A5, A6), then a new cycle containing 
v, with all elements blue, is created in p', and B(p') = B(p) + 1 . Thus in all 
cases 

(Il)B(P') = ( l)B(P) 

and the result follows. 
(3) The results in (1) and (2) demonstrate that Qy(l) (x) = -Q ?C' (x) and 

n,k n,k 

the result follows immediately. El 

To define the final mapping q, let (u, v, p) c 5'(2) and define 0(u, v, p) = 

(y, z, y) where 
(i) 

fv if u=n, 
y u otherwise, 

(ii) z = v, 
(iii) 

{ p(u, v) if either u = n, v red or u red, v = n, 
Y (u, v)p otherwise. 
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For example, with n = 9, k = 5, p = (9, [4]R, [7, 3]B)(l, 8, 5)B(2, 6)R, 

we obtain 

BI: 0(6, 2, p) = (6, 2, (9, [4]R, [7, 3]B)(1, 8, 5)B(2)R(6)R), 

B2: 0(7, 8, p) = (7, 8, (9, [4]R, [8, 5, 1, 7, 31B)(2, 6)R), 
B 3: p (2, 9, p) = (2, 9, (9, [6, 2,5 4]R,5 [7,5 3]s)(1,5 8, 5)B),5 

B4: p(3,5 9,5 p) = (3,5 9,5 (9, [4]R,5 [7]B)(3)Bs(1, 8,5 5)s (2,5 6)R), 

B5: 0(95 45 p) =(4, 45 (9, [7,5 3]s)(1,5 8, 5)B(4)R(2,5 6)R),5 

B6: 0(9, 5,5 p) = (5, 5,5 (9, [4]R,5 [7,5 3,5 , 1,5 8]s)(2,5 6)R) - 

We now prove that 0 has the required properties. 

Theorem 4.5. For n > k > 0 
(1) 0 is a bijection from R(2) to T(2) n,k n,k' 

(2) wq(0(u, v, p)) = 4(u, v, p) for (u, v, P)c , 

(3) Q_9(2) (x) = P9,(2) (X). 
n,k n,k 

Proof. Let 0(u, v, p) = (y, z, y) for (u, v, P) C 5(2'. 
(1) Since u, v are not of different colours, then yj, z are not of different 

colours. Moreover 1 < z < n because 1 < v < n and 1 < y < n - 1 because 
u $A v and 1 < u < n. Now if y = p(u, v) (e.g. B3, B5) then 

y(v) = p(u), 2y(u) = p(v) 

and y(j) = p(j) for all other j. If y = (u, v)p (e.g., B1, B2, B4, B6) then 

y(p (u)) = v, Y(P-'(v)) = u 

and y(j) = p(j) for all other j. In both cases it is straightforward to verify 
that y' c ak, SO (y, Z, ZY) c _(2S) and 0 is an injection. But 0 is a bijection 
since we can compute its inverse: if (n, z, y) c 5(2k) then 

0-l(y 5 z y) = (u, v, p) 

where 
(i) 

n if y = z, 
u 

y otherwise, 
(ii) v = z 
(iii) 

{ y(u, v) if eithery red, z = nor z =y, 
(u, v)y otherwise. 

Again it is straightforward to verify that 1 < u $A v < n and p c -n,k SO 

(U, v , P) c 5'(2). The result follows. 
(2) We have 

(U ,V p) = (-l)B(P)Pd((u, v)p) 

and 
(I1)B(Y)pd(y) if y is red in y,5 

co(y, z, ~) = { (-I)B(Y)Pd(y) if y is blue in y. 
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Now y = (u, v)p or p(u, v) and (u, v)p is conjugate to p(u, v), so in both 
cases we have 

d((u, v)p) = d(y) 

Moreover, if neither of u, v is red, then y = (u, v)p has one more cycle with 
all elements blue than p if u, v are on the same cycle of p (e.g., B4) and one 
less cycle if u, v are on different cycles (e.g., B2, B6). But this means that y 
is blue, so in this case 

I(-)B(P) =_(I)B(y) 

If neither of u, v is blue (e.g., B1, B3, B5), then (u, v)p and p(u, v) have 
the same number of cycles with all elements blue as p, and y is red, so 

(_I)B(p) - (I)B(y) 

whether y = p(u, v) or (u, v)p. The result follows immediately. 
(3) This follows directly from (1) and (2). 0 

We now have completed all the pieces for a combinatorial derivation of The- 
orem 3.2. 

Combinatorial proof of Theorem 3.2. 

2AAn,k = Qsrn,k(x), from Proposition 4.2(1) 
= Q5o(1 (x) + 

Q59(2) 
(x) 

n,k In,k 

= Q9(2) (x), from Theorem 4.4(3) 
n,k 

= 2-(2) (x), from Theorem 4.5(3) 
n,k 

= Ql) (x) + Qng(2) (x), from Theorem 4.3(3) 
n,k n,k 

= %9;,k (X) 

= 2 { (n) - nk} An,k from Proposition 4.2(2). 

This proves Theorem 3.2(2) (multiplied by 2). Theorem 3.2(1) follows im- 
mediately by multiplying on both sides by rn-l-kbktn/n! and summing over 
n>k>O. O 

The author has been unable to choose the pairs u, v and y, z canonically 
to remove the factor of 2 on both sides. 

In the next section, the combinatorial steps in this proof are iterated to yield 
a combinatorial proof of the main result. 

5. THE COMBINATORICS OF MULTIPLYING TRANSPOSITIONS 

We now extend the combinatorial material in ?4 to multiplication by m 
transpositions. To do this, define sets 59n, k, m and 9n, k, m by 

9n,k,m = {((uI, V1),. (Umr, Vm) p)Il < ui 7vi < n, 
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For ((u1, v1), * *, (Ur, Vm), p) E 59n,k,m, define the weight function 

$(m)((Ul, V1), ... , (Ur, Vr), p) = (-1)B(P)Pd((uI,vi)..(um,vm)p)* 

For ((YI, Z1)) ** , (Ym, Zm) , Y) C Sz, k, m, let N(yi, . .. , Yn; y) be the num- 
ber of yi, i = 1,..., n, for which element yi is blue in y , and define the 
weight function 

()((yl ZI) , * * ?(Ym , Zm) , y) = (-)N(Yi.Ym2.)Q y )B(Y)pd(y) 

Generating functions with respect to these weight functions are given by 

Qgn)(x) = Z (m)(s) for 5? c 5n,k,m r 

sEY 

T(m) (x) = w(m) (t) for S? C S, k, m . 
tET 

The extension of Proposition 4.2 is immediate. 

Proposition 5.1. For n > k > 0, m > 0 we have 

(1) ()k (X = 2mAmAn,k, 
(2) '1:'mj) (x) = 2m{(n) - nk}mAk 

We now proceed as in ?4, to deduce a combinatorial proof of the main result 
by giving a direct combinatorial proof that 

(5.1) =,T ) Sk (X)* 

This proof of (5.1) proceeds by partitioning 59n, k, m into subsets n(k 1) mand 
5n2) m g-and (2k into subsets 

, i n a k) m . We give sign-reversing 
involutions 1(m) on n)km and l/(m) on (), that (X) = a m~~ , , i proving ta 

m 

n,k,m 

and T(m) (x) = 0. Then we give a weight-preserving bijection 4)(m) between 
n,k,mn 

and a mnX proving that m = i', (x), and hence arriving at 
n,k,m n,k,m 

(5.1). 
The sets 5n(,) m 7(i) i = 1, 2, and mappings 71(i), y(iM), 4)(m) are n,k,mn nk,mrn' 

defined in terms of the sets Yn(i) A(i), i = 1 2, and mappings 
- 

5 V of n,k' nk'-,2adapnsi,igq o 
?4, as follows: First let 

?n,k,m= {((u1, v1), ... V , (Um, Vm), P) E!n ,k,iml 

element ui, vi have different colours in p for some i = 1, ... m, 

and let 71(i) act on ((uI, v1 ), ... , (um, vm), P) ES(2 k m by replacing (ui, vi, 
p) by (u', v', p') = 7(ui, vi, p) and leaving all other Uj, vj unchanged, 
where i is the minimum choice such that ui, vi have different colours in p. 
Since all elements have the same colour in p as in p', the proof of Theorem 
4.4 immediately yields a proof that 6(m) is a fixed-point-free sign-reversing 
involution on 9(l1) and hence we have a combinatorial proof that 

(5.2) Q2( ()0 (x) = 0. 
n k 
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Next consider 

9;k, ((Y1 s ZI) *** (Ym z Zm) z Y) Egn,k,ml 

elements yi, zi have different colours in y for some i = 1, ... m, 

and let yi(m) act on ((Yi, zi), ... (Ymn zm) 2 Y) E (), m by interchanging Yi 
and zi for the minimum i = 1, ..., m such that yi and zi have different 
colours (thus replacing (yi, zi, y) by V(yiy, zi , y)) . Then we follow the proof 
of Theorem 4.3 to prove that yl(m) is a fixed-point-free sign-reversing involution 
on 9-(1) and hence we have a combinatorial proof that 

n,~~~~~~~~~~~~~~~~ k, m n,k,m'~~~~~~n,, 

(5.3)~~~~~~~~~~~~y2 (x)2)0 
Finally we describe the mapping 0(m) from R9(2) to n(2)m (the com- n,k,mn nk, 

plements of Rn(1m and j(l) in 9n,k,m and rn,k,m). Consider s = n, k,rn gn-,Ik),rn 
((U1, vI),..., (Um Vm) P) E E<2)m and let Ym = p. In succession, as 
j=O, l,...,m-l,let 

O(Um-j a Vm-j , Ym-j) = (Ym-j i Zm-j 2 Ym-j- I) 

This is well-defined since all elements have the same colour in Y -j as in p 
for all j, so (um-j, Vm-jm, Ynm-j) E 99(2) for all j. Then 

n,k 1.Te 
o5 )(s) = ((Y1 9 zi) 9 ... 9 (.Ym 9 zm~) 9 YO) 

For example, when n = 9, k= 5, m = 4, 

0(4)((8 , 9) , (5, 3), (9, 7), (2, 9) , (9 , [4]R , [7 , 3]B)( , 8 , 5)B(2 , 6)R) 

= ((8, 9), (5, 3), (7, 7), (2, 9), (9, [6, 2, 4]R, [8, 3, 7, 5, 13B)). 

The proof of Theorem 4.5 allows us to establish immediately that ?(m) is a 
weight-preserving bijection from n(2k m to n 2k m; and hence gives a combi- 
natorial proof that 

(5.4) Q(m) (x) = T()) (x). 
n,k,m n,k,m 

Combining (5.2), (5.3), (5.4) we have a direct combinatorial proof of (5.1) 
and hence, via Proposition 5.1, of Theorem 2.1, the main result (multiplied by 
2m). 

One more combinatorial step is needed to obtain a direct combinatorial proof 
of Theorem 1.1. This is to account for the application of Proposition 1.2(5). 
Consider p E Uk-Vn, k * If d (p) :$ (n) find the largest element in { 1, .I . , n - 1 } 
not on the max-cycle and switch the colour of the cycle containing that element, 
to obtain ;'(p) = p' E Uk-n,k with d(p') # (n). But B(p') = B(p) ? 1 and 
d(p) = d(p') so 1(Dp) = -1( p'). Moreover p :$ p' and 4(4(p)) = p so 4 is 
a fixed-point-free sign-reversing involution on {P E Uk - ,kld(p) $ (n)}, and 
we have a combinatorial proof that 

n n-1 

ZWn ,k = Z: j (D(p) =aPn 
k=O k=O PESn,k 
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where a is the number of ways of properly painting an n-cycle, so a = n. 
We now give a combinatorial proof of Theorem 1.1 (multiplied by n!2m). 

Combinatorial proof of Theorem 1.1. On the RHS, after multiplying by n!2m 
we have 

1], I n-1 2k)nm(n 1 ( nE (m) (X) 
k=O k=O 

and on the LHS we have 
n-i 

2mn!c(n) &m - [P1]Z k m(X) 
k=O 

The combinatorial proof proceeds as follows: For each s = ((uI, vI),..., 
(Um r Vm) x P)) E k with d(p) = (n) and d((ul, vl) ... (um, vm)p) = 

In, find o(m)(s) = t = ((Y, z 1)z i ** (Ymn, Zm) 2 Y) E Uk2I k, m with d(y) = 
in 

The contributions of s with d(p) : (n) and d((uI, v1) (um, Vm)p) = in 
are cancelled by application of . 

(The contributions of elements of n (Ik) mand 5n(k m 
by , (m) and V/ m) respectively.) 0 

The author has been unable to remove the factor of 2m (due to working 
with ordered pairs as transpositions) nor the factor n! (due to working with 
all properly painted n-cycles). In the special case m = n - 1, the relationship 
to the combinatorial proofs of Moszkowski [18] or Goulden and Pepper [10] is 
quite unclear, especially because the bijection in this paper is between two sets 
with alternating weights, and not directly involving labelled trees at all. 

ACKNOWLEDGMENTS 

This work was supported by grant A8907 from the National Sciences and 
Engineering Research Council of Canada. 

REFERENCES 

1. F. Bedard and A. Goupil, The poset of conjugacy classes and decomposition of products in 
the symmetric group, Canad. Math. Bull. 35 (1992), 152-160. 

2. E. A. Bertram and V. K. Wei, Decomposing a permutation into two large cycles: An enu- 
meration, SIAM J. Algebraic Discrete Meth. 1 (1980), 450-461. 

3. G. Boccara, Nombre de representations d'une permutation comme produit de deux cycles de 
longueurs donnees, Discrete Math. 29 (1980), 105-134. 

4. M. Burrow, Representation theory offinite groups, Academic Press, New York, 1965. 
5. A. Cayley, A theorem on trees, Quart. J. Math. Oxford 23 (1889), 376-378. 
6. J. Denes, The representation of a permutation as the product of a minimal number of trans- 

positions and its connection with the theory of graphs, Publ. Math. Inst. Hungar. Acad. Sci. 
4 (1959), 63-70. 

7. , A generalization of a result ofA. Hurwitz, Colloq. Math. Soc. Janos Bolyai 25 (1978), 
85-91. 

8. I. P. Goulden and D. M. Jackson, Combinatorial enumeration, Wiley-Interscience, New 
York, 1983. 

This content downloaded from 129.97.140.60 on Wed, 10 Jul 2013 08:35:22 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


440 I. P. GOULDEN 

9. , The combinatorial relationship between trees, cacti and certain connection coefficients 
for the symmetric group, European J. Combin. 13 (1992), 357-365. 

10. I. P. Goulden and S. Pepper, Labelled trees and factorizations of a cycle into transpositions, 
Discrete Math. 113 (1993), 263-268. 

11. A. Hurwitz, Uber Riemannsche Flachen mit gegebenen Verzweigungspunkten, Math. Ann. 
39 (1891), 1-61. 

12. , Uber die Anzahl der Riemannschen Flachen mit gegebenen Verzweigungspunkten, 
Math. Ann. 55 (1902), 53-66. 

13. D. M. Jackson, Counting cycles in permutations by group characters, with an application to 
a combinatorialproblem, Trans. Amer. Math. Soc. 299 (1987), 785-801. 

14. , Counting semiregular permutations which are products of a full cycle and an involu- 
tion, Trans. Amer. Math. Soc. 305 (1988), 317-331. 

15. , Some problems associated with products of conjugacy classes of the symmetric group, 
J. Combin. Theory Ser. A 49 (1988), 363-369. 

16. D. E. Littlewood, The theory of group characters, 2nd ed., Oxford Univ. Press, London, 
1950. 

17. I. G. Macdonald, Symmetric functions and Hall polynomials, Clarendon Press, Oxford, 
1979. 

18. P. Moszkowski, A solution to a problem of Denes: a bijection between trees andfactorizations 
of cyclic permutations, European J. Combin. 10 (1989), 13-16. 

19. R. P. Stanley, Factorization of a permutation into n-cycles, Discrete Math. 37 (1981), 
255-262. 

20. D. W. Walkup, How may ways can a permutation be factored into two n-cycles?, Discrete 
Math. 28 (1979), 315-319. 

DEPARTMENT OF COMBINATORICS AND OPTIMIZATION, UNIVERSITY OF WATERLOO, WATERLOO, 

ONTARIO, N2L 3G1 CANADA 
E-mail address: ipgouldenfmath .uwaterloo. ca 

This content downloaded from 129.97.140.60 on Wed, 10 Jul 2013 08:35:22 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

	Article Contents
	p.421
	p.422
	p.423
	p.424
	p.425
	p.426
	p.427
	p.428
	p.429
	p.430
	p.431
	p.432
	p.433
	p.434
	p.435
	p.436
	p.437
	p.438
	p.439
	p.440

	Issue Table of Contents
	Transactions of the American Mathematical Society, Vol. 344, No. 1 (Jul., 1994), pp. 1-477
	Front Matter
	The Cauchy Problem in C for Linear Second Order Partial Differential Equations with Data on a Quadric Surface [pp.1-48]
	The Inverse Stable Range Functor [pp.49-56]
	Finitely Generated Kleinian Groups in 3-Space and 3-Manifolds of Infinite Homotopy Type [pp.57-77]
	Integer Points on Curves of Genus 2 and their Jacobians [pp.79-100]
	Homoclinic Loop and Multiple Limit Cycle Bifurcation Surfaces [pp.101-130]
	Graphs with the Circuit Cover Property [pp.131-154]
	Spectral Analysis for the Generalized Hermite Polynomials [pp.155-172]
	Representable K-Theory of Smooth Crossed Products by R and Z [pp.173-201]
	Minimal Torsion in Isogeny Classes of Elliptic Curves [pp.203-215]
	Generalised Castelnuovo Inequalities [pp.217-260]
	The Brown-Peterson Homology of Mahowald's X Spectra [pp.261-289]
	3-Primary v-Periodic Homotopy Groups of F and E [pp.291-306]
	Mean Value Inequalities in Hilbert Space [pp.307-324]
	A General View of Reflexivity [pp.325-360]
	Groups and Fields Interpretable in Separably Closed Fields [pp.361-377]
	Structural Instability of Exponential Functions [pp.379-389]
	A 4-Dimensional Kleinian Group [pp.391-405]
	A Banach Space Not Containing c, l or a Reflexive Subspace [pp.407-420]
	A Differential Operator for Symmetric Functions and the Combinatorics of Multiplying Transpositions [pp.421-440]
	On Nonlinear Delay Differential Equations [pp.441-477]
	Back Matter



