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TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 288, Number 1, March 1985 

A BIJECTIVE PROOF 
OF STANLEY'S SHUFFLING THEOREM 

BY 

I. P. GOULDEN 

ABSTRACT. For two permutations a and w on disjoint sets of integers, consider 
forming a permutation on the combined sets by "shuffling" a and w (i.e., a and w 
appear as subsequences). Stanley [10], by considering P-partitions and a q-analogue 
of Saalschutz's 3F2 summation, obtained the generating function for shuffles of a 
and w with a given number of falls (an element larger than its successor) with respect 
to greater index (sum of positions of falls). It is a product of two q-binomial 
coefficients and depends only on remarkably simple parameters, namely the lengths, 
numbers of falls and greater indexes of a and w. A combinatorial proof of this result 
is obtained by finding bijections for lattice path representations of shuffles which 
reduce a and w to canonical permutations, for which a direct evaluation of the 
generating function is given. 

1. Introduction. For a sequence a = a, ... an of integers al,...,an, we define the 
descent set of a, denoted by 9(a), by 9(a) = {ilai > a,,1}, the number of descents 
in a by d(a) = 19(a)l, and the greater index of a by I(a) = i. We say that a 
has length lal = n. 

Let a= a1,... ,am and ,B= Il,....,f} be disjoint subsets of X.+n? 

{1, ... ,m + n}, where a1 < < am and fP1 < < fin. For any permutation a 
of the elements of a, and any permutation c of the elements of /B, we say that a and 
co are (m, n)-compatible. 

The shuffle product of a and w, denoted by 5?(a, c), is the set of all permutations 
of Xn+n in which a and co both appear as subsequences. The following result is 
worth recording, since it leads to the lattice path representation of shuffle products 
in ?2. 

PROPOSITION 1.1. If a and co are (m, n)-compatible, then 

15(o o| (m m+ n ) 

PROOF. There is a bijection between elements p of S"(a, co) and subsets a = 

{ a1,... ,am} of Xm +n defined as follows. If a, < ...< a., and a = a, ... an,, then 
p contains vi in position ai for i = 1, ... , m. 

The elements of o appear, in order, in the set of positions of p complementary to 
a. O 
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148 I. P. GOULDEN 

Consider the generating functions S (a, w) for the shuffle product YS(a, w), 
defined by 

Sk(a, C) =q~ qI(P). 

P Gf(o. LO) 

d(p) =k 

Stanley [10] has obtained a compact expression for Sk( a, w) in terms of the Gaussian 
(or q-binomial) coefficient ['4] defined for nonnegative integersj by 

[] =(1 - q') * q (1 - q) 

and ['4 = 0 otherwise. 

THEOREM 1.2 (SHUFFLING THEOREM). Let a and w be (m, n)-compatible, with 
d(a) = r, d(co) = s. Then 

Sk(a, w) = ql(a)+I(w)+(k-S )(A- r) [m r + 5] [n s + r] C 

The case r = s = 0 had been previously given by MacMahon [8, Vol. II, p. 210]. 
Stanley obtained the Shuffling Theorem by means of his theory of P-partitions, and 
by applying the following identity. 

THEOREM 1.3. 

r q( s) [i) +r-i ] [n s-i s [r +i ] m ] [n r n ] - 

This identity was proved by Gould [4], and is equivalent to Jackson's [7] 

q-analogue of Saalschutz's theorem (see [9, p. 243]). Combinatorial proofs of 
Saalschutz's theorem (a 3F2 summation equivalent to the case q = 1 of Theorem 1.3) 
have been given by Andrews [1] and Cartier and Foata [3]. 

Stanley [10] has asked for a proof of Theorem 1.2 which avoids the use of 
Theorem 1.3. In this paper we present such a proof. Basic to our treatment is the 
combinatorial interpretation of the Gaussian coefficient ['4 as the generating func- 
tion for integer partitions with at mostj parts, and largest part at most i - j, where i 
and j are nonnegative integers. 

LEMMA 1.4. 
1. 

Eqal +-..+a,L1 
() a .x, a q&I(x&i K] 

2. 

L q13,+ `ii= q("S 2[j 
1A,< < ,Si 

PROOF. 1. See Andrews [2, p. 33] for a proof; historical references are given on p. 
51. 
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A BIJECTIVE PROOF OF STANLEY'S SHUFFLING THEOREM 149 

2. Obtained from (1) by letting /, ,, = am + m, for m 1,...,j, since 1 + 2 + 

+j j=(Ij+1). [1 

In ?2 we discuss lattice paths and their relationship to shuffle products. A 
bijective proof of the Shuffling Theorem is given in ?3. 

2. Lattice paths. Suppose that u = (ul, u2) ad v = (vI, v2) are pairs of integers 
with u1 < v1 and u2 < V2. Then B(u, v) = {ul, u1 + 1,...,v1} X {u2,...,v2} is 

called a grid, and we shall denote B(u, v) by B in this section when the context 
allows. We consider lattice paths on a grid, with horizontal and vertical steps. In 
particular, let a, = (a,,, a,2) E B for i = 0,...,k, and let d, = a, - ai-1 for i = 
1, ... I,k. Then if di E {(1, 0), (0, 1)} for i = 1,... ,k, a = aO ... akis called a path on 
B, from ao to ak, of length lal = k. A path of length 0 (a single vertex) is called an 
empty path. The ith difference d, is called the ith step and a, is the ith vertex in the 
path a. We say that d, follows a,-1 and precedes a,. The difference (1, 0) is called a 
step across, and (0,1) is a step up. The vertex a1 is, for i = 1,... ,k - 1, 

(i) an upper corner if d,1 = (0, 1) and d, = (1, 0), 
(ii) a lower corner if d1 = (1, 0) and d, = (0, 1), 

(iii) a horizontal crossing of x = a 1 if di_1 = di = (1, 0), 
(iv) a vertical crossing of y = ai2 if d,1- = d, = (0, 1). 
If b = bob1 ... b. is a path on B, then the product ab is defined when ak = bo by 

ab = aoa1 ... akbl ... b1, and is not defined otherwise. 
Note that a path is uniquely specified by its end-points and either its upper 

corners or lower corners. 

PROPOSITION 2.1. If u1 < xo <X1 < < < Xk <v1 and U2 < Yo < Y1 < < 

Yk-I < Yk < V2 are integers, then there is a unique path on B(u, v) from (xo, yo) to 
(xAh Y.) with upper corners at (x1, y4,... .,(Xkl, Yk-1), and no other upper corners. 
If u1 xO<x1 < ... <xk-I<xk vandu2 YO<Y1 < ... <Yk<v2 are in- 

tegers, then there is a unique path on B(u, v) from (xo, yo) to (Xk, Yk) with lower 
corners at (x1, YI), ... (Xk-1 Yk-1), and no other lower corners. 

PROOF. For upper corners, the path is Pi ... Pk where 

p, = (x_1, Yi-1)(xi- + 1, Y,-,) ... (x, Y,-1)(x,, Y,-1 + 1) ... (x, Y'). 

For lower corners, the path is 81 ... Sk'where 

81 = (x-1I, y,_1)(x11l, Y,-1 + 1) . (xi1, yY)(x,1i + 1, y,) ... (xi, y,). W 

For compactness, we also denote a path by its sequence of steps, using "A" for 
steps across, and "U" for steps up, subscripted by its initial vertex. If the initial 
vertex is (0, 0), then we suppress the subscript. 

The path a on B(u, v) is said to cover B (or to be a cover of B) if ao = u and 
ak = v. If a covers B then it partitions B into 3 sets, consisting of the points in B that 
are 

(i) on a (points (t1, t2) such that t1 = a1l, t2 = a12 for some i = ?. . . ,k), 
(ii) above a (points (t1, t2) such that t1 < a1l, t2 > a,2 for some i = 0,... ,k), 

(iii) below a (points (t1, t2) such that t1 > a1l, t2 < a12 for some i = 0,... k). 
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150 I. P. GOULDEN 

A path b on B is called a < a-path if b is nonempty, and all vertices of b are on or 
below a. A path b on B is called a > a-path if b is nonempty, and all vertices of b are 
above a, except the first and last vertices of b, which may also be on a, but not both 
on a if IaI = 1. For example, if a = UAU2AUA, then U, A2U and (UA2U)(12) are 
< a-paths, while (U2A)(O,) and (UA2)(03) are > a-paths. The path U2A is neither a 
< a-path nor a > a-path. 

Note that the use of "above" and "below" corresponds to the obvious meanings 
of these words in a geometric representation of a path. The constructions which are 
given later in this paper involve many parameters, and require a fair amount of 
notation and terminology to state accurately. It is intended that the terminology 
used throughout this paper be natural in the geometric representations of these 
constructions, though no pictures will be supplied by the author. 

The cover (A'l "11UV2-"2)" is called the canonical cover of B(u, v). 
If a covers B and b is a path on B, then we define WB, a(b) to be the set of all 

upper corners of b that are above a and all lower corners of b that are below a. If c is 
the canonical cover of B, then 'B C(b) is more simply described as the set of all 
upper corners in b. 

In order to define generating functions for sets of paths, we must define a weight 
function for lattice paths. Let the weight of a vertex el = (el,, e12) be w(el) = el, + 
e12, and the weight of a set e = {el,. . . ,ek} of vertices be w(e) = w(el) + * * + 
w(ek)- 

The following weight-preserving mapping 4 for paths is very important to our 
proof of Theorem 1.2. Suppose that a covers B and g is a < a-path on B from z1 to 
Z2 with lower corners below a given by (fl f21), ... I(fk, f2k). Then we define 

74B,(g) to be the path from z1 to Z2 whose upper corners are (11 - 1, f2l + 

1),... '(Ilk - 1, f2k + 1). (This path is unique, by Proposition 2.1.) If b is a path on 
B, then we can write b uniquely as b = hlglh2g2 ... h1g,, for some 1 > 1, where 

9.1.. . - are < a-paths, g, is either a < a-path or empty, hI is either a > a-path or 
empty, and h2,. . .,h, are > a-paths. Then we define 4Ba(b) = hlB,J(gl) 

... 

hl/Bd,(gl), where 4Ba(gi), i = 1,... .,, are given above. (If gl is empty, then 

14B,(gI) = 91) 

For example, if B = B((O, 0), (7, 6)), a = AU2AUA3UAU2A and b = 

(A3U3A3UAU)(Ol), then b = hIg1h2g2, where hI = (A)(0o) and h2 = (UA 2)(33) are 
> a-paths, while g, = (A2U2)(1I1) and g2 = (AUAU)(5,4) are < a-paths. Now 

4Ba(gl) = (AUAU)(11I) and 4'B,a(g2) = (AU2A)(5,4), S5 

14B,J(b) = (A 2UA U 2A3U2A)(0,1)- 

Note that WBa (b) = {(3, 1), (3, 4), (7, 5)} and 'B c(b) = {(2, 2), (3, 4), (6, 6)}, where 
b = 4B,(b)andc = A7U6 is the canonical cover of B. Thus I 'B a(b)I = 3 = I,C(b)I 
and w(WBa(b)) = 4 + 7 + 12 = w('Bc(b)), equalities that are proved to hold in 
general in the following result. 

LEMMA 2.2. Let x, y E B, and define gPB(X, y) to be the set of paths on B from x to 
y. Then for any cover a of B, 

1 PB,a: gB(X, Y) -9 gB(X y): b --* b is a bijection. 
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Moreover, if c is the canonical cover of B, then 
2. IWB,a(b)l = IWB,C(b)1, 
3. wWB,,(b)) = W(WBL.(b)). 

PROOF. 1. First note that if g is a < a-path from z1 to z2, then g = 4Ba(g) is also 
a < a-path from z1 to Z2. This is because if the lower corners of g below a occur at 

(fl, f2l),- .I(fik, f2k), then the upper corners of g, occur at (fil - 1,1 f2l + 
1),... ,(f1k - , f2k + 1), each of which must lie on or below a. Thus g is a path 
from a point (zl) on or below a, to a point (Z2) on or below a, in which all upper 
corners are on or below a. Thus Proposition 2.1 tells us that g is unique, and is also a 
< a-path. Moreover g is recoverable from g as follows. Suppose that g is a < a-path 
from z1 to Z2, whose upper corners are (cII, c21),.. .(Clk c2k). Let g be the unique 
path from z1 to Z2 whose lower corners are (c1l + 1, C21 -- 1),... ,(clk + 1, C2k - 1), 
given by Proposition 2.1. Now g is not necessarily a < a-path, but we can write g 

uniquely as g = djejd2 ... em dm for some m > 1, where dl,. . . Idm are < a-paths 
(d1 and dm can also be empty) and eI,... , en_1 are > a-paths. Also, all lower 
corners of g are below a since (cli, C2,) is on or below a, so (cli + 1, C2i - 1) must be 
below a for i = 1,. .. , k. Thus the lower corners of g must all be internal vertices in 
one of the paths dl,. . . , d. The path e, for i = 1, . . ., m - 1 is a path from a vertex 
on a, say af, to a vertex on a, say al, with a single corner (upper). For i = 1,. . .,m 
- 1, let ri be the segment of a from af to al,. Then ri, of course, has no lower corners 
below a, since r, has no vertices below a, and we have g = djrjd2 ... rmldm, SO 

44 a exists for < a-paths. 
Now, if b = I ... hg,s E 'B(X, y) in the notation of the definition of PBa 

above, then b = h .. E 9AB(x y), where g = 4Bc(gi) for i = 1,. ,1, the 
hi's are > a-paths (by definition), and the ^i's are < a-paths (from above). Thus 

4'`R,2 is well defined, so PB,a is a bijection. 
2 and 3. From the description of [B,a above, we know that if g = 4Ba(g), where g 

is a < a-path, then (6B ,(g)j = IWB,c(g)I (= k above) and w((6B,(g)) = w(WB C( 

(=flI +12l + +fik +f2k above). Again let b = hIg, ... h,g, and b = h1 
* * . Then 

I@'B,a(g) I I ZkB,a(hi)I + IB,a(gl)I 
i=l 

and 

|B,(g)l= 
E j 

WB,j(hji) 
j + I WB,c( gi ) 

i=1 

since the intersecting vertex of a < a-path (like gi or g,) and a > a-path (like hl) 
must be on a, and cannot be an upper corner. But WB ?B(hi) = WB,C(hi) for 

= 1,.. .,1 since hi is a > a-path, and 1WB,a(g9i) = V4B,J(gi)I from above, so 
@B c (g)I = I@B,c(g)I. The proof that w(WB (g)) = W(B,c C(g)) is similar. O 

Finally, denote the grid B((O, 0), (m, n)) by G, and let the set of paths from (0, 0) 
to (m, n), which are the covers of G, be denoted by !A(m, n). (Note that 9A(m, n) = 

9G((O, 0), (m, n)) in the notation of Lemma 2.2.) 
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Now we relate lattice paths to shuffle products of permutations. For (m, n)-com- 
patible permutations a and w, we represent the permutation p E Y(a, w) by the 
path 4,,(p) E 9p(m, n) as follows. If the ith element of p is in a, then the ith step 
in fr,J (p) is across, and if the ith element of p is in w, then the ith step in,, (Jp) is 
up for i = 1,...,m + n. We say that the ith step of 4j(p) represents the ith 
element of p. For example po = 647325819 E S/(6358,47219) is represented by 
44(po) = A U2AUA2U2 E 9(4,5). 

PROPOSITION 2.3. If a and w are (m, n)-compatible permutations, then 4J,: 
Y(a, co) -- 9(m, n) is a bijection. 

PROOF. Immediate from Proposition 2.1, since a subset of Xn+n? of cardinality m 
uniquely specifies the path in 9(m, n) whose m steps across occur in positions 
belonging to that subset. D 

3. The Shuffling Theorem. In this section we establish the Shuffling Theorem by a 
sequence of bijections for lattice paths and permutations. First we need some 
additional notation. 

Let O-to < ... < t-?i=m,O=l<. < ls?+ = n, t={ti, t}and l= 
{l ,... . ,l }. Let B,j be the grid B((tl, lIJ), (t,+1, lJ+1)) for i = 0,... ,r,j = 0,... ,s, so 

Ui= U>0 B,J = G. The grids B,J and BI+ 1 intersect in the segment of y = 1X+?1 from 
(t,, 118+ to (ti+l, lI+,), and the grids Bij and B+,,1 intersect in the segment of 
x = ti + from (ti+1, lJ) to (t1+1, lj + ). These segments are called borders for the grids 
to which they belong. If b E A(m, n), define p,J(b) to be the maximal subpath of b 
on B1,. Let <1,(b) be the set of vertical crossings of y-coordinates in 1, and )Y(b) be 
the set of horizontal crossings of x-coordinates in t. Suppose that a is an array with 
(i, j)-entry a1j for i = 0,. .. I,r,j = 0,. .. ,s, where a1j covers B,J. Then define 

r s 

ti,a(b) =Yt(b) CU VI(b) U) U U f'B,a,a,,(elI(b)), 
1=0 J=0 

and 

Pk 4, 1, a) = E qws.a^. 
b e-A (ni, n) 
-t,,,a (b) I = k 

Finally we say that a is legitimate if no pair of distinct a, 's have a nonempty path as 
their intersection. Note that if a pair of a, 's have a nonempty path as their 
intersection, then the intersection path must lie on the mutual border of the 
corresponding B, 's. 

For example, let m = 9, n = 6, r = 2, s = 1, t= {2,6}, 1 = {3}, a00 = UA2U2, 
aol = (U3A2)(03), a10= (U2A4U)(2O), all = (A4U3)(23), a20 = (UA UA2U)(6o), a21 
= (A3U3)(63) and b = AU2A3U2A2U2A3. Then <',(b) = {(4,3)}, dyt(b) = {(2,2)}, 

too(b) = AU2A, elo(b) = (A2U)(22), ell(b) = (UA2U2)(43), e21(b) = (U2A3)(64) and 
sol(b)= e20(b) = 0. Thus VB(,taJeOO(b)) = {(1, 0), (1, 2)}, 'Bjj,aj(jl(b)) = 

{(4, 4)}, CB21,a91(j2l(b)) = {(6, 6)} and eB,a,,(e,j(b)) = 0 for other i, j. Note that a 
is not legitimate since a00 and a1o have the path (U)(21) in common, where (U)(21) is 
on the border shared by Boo and B1o0 Also note that each corner in b occurs, as a 
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corner, in a unique -ij(b), though distinct i.j can have a nonempty path (again a 
portion of mutual border) as their intersection. For example ell(b) and e2l(b) have 
the path (U 2 ) (6,4) in common in the above example. 

We now give the first of the bijections that will allow us to deduce the Shuffling 
Theorem. Examples of all of the results which lead to the Shuffling Theorem are 
contained in Example 3.6, at the end of this section. 

LEMMA 3.1. Let a = ... am and X = wo ..* w, be (m, n)-compatible, with 
9 (a) = t and ? (w) = 1. If aij is the cover of Bij representing the shuffle of at, + 1 ... at 
and c ... co into increasing order, then 

1. Sk(J, C) = Pk(t, 1, a). 
2. a is legitimate. 

PROOF. 1. Let p Ec Y(a, c) and let b = 0,,(jp) Ec 9(m, n). Suppose that pi is the 
ith element of p, and bi = (bli, b2i) is the vertex of b that follows that ith step, so 

w(bi) = i. 
If bi is the horizontal crossing in b, then pi = 

Cybl, 
and pi+, = b1jj+?1 so Pi > Pi+i if 

and only if bli E 9(a) = t, or equivalently, bi E X(b). If bi is a vertical crossing in 
b, then pi = Co2 and pi+? = b,i+?1 so Pi > p1+l if and only if b2+ E (E ) = 1, or, 
equivalently, bi E <,(b). 

If bi is a corner in b, then bi appears as a corner in 'd,(b), say, and in no other 

8ij(b). If bi is an upper corner, then Pi = Wb2, and pi+, = ab,?i+l Moreover, if bi is 
above ad,, then pi+I occurs before pi in ad,, so Pi > pi+? by the construction of ad,. 

However if bi is on or below ad,, then pi occurs before pi+I in ad,, so Pi < Pi+,- 
Similarly, if bi is a lower corner, then bi is below ad, if and only if Pi > Pi+ 

Thus we have a bijection between descents i E 2(p) and vertices bi E F ,a(b) 
where w(bi) = i. This immediately gives d(p) = j,ti,tla( b)j and I(p) = W(tit la( b)) so, 
from Proposition 2.3, we have 

Sk(aJ CO) = E q = E qW( b,a(b)) = pk(t, 1, a), 

pe59"(a, c) bE (ni, ni) 

d(p)=k j5,,(b)I=k 

as required. 
2. Suppose that aij-, and ai, have a nonempty path in common. Then this path 

must be (f, lj) ... (g, lj) for somef, g with ti < f < g < ti+1. But the next vertex in 

aij after (g, lj) must be (g, I1 + 1), so by definition of aij, af+1 < ... < ag < co/+1 
Similarly af1+ > co, by considering ai1-, and we deduce that c, < af+i < wl+1, so 

wj < o/+1. But, by definition, lI E 2(w), So c, > co +1 and we have arrived at a 

contradiction. Thus aij -1 and a i have at most one vertex in common, for all i, j. 
Similarly, we can show that ai-1j and ajI have at most one vertex in common, for 

all i, j, and conclude that a is legitimate. O 
To proceed from here, it is convenient to define the following total order for the 

set & = {O,. . . ,r} x {O,. . . ,s}. If (r1, s1) and (r2, S2) are in -2, then we say that 

(rl, sO) < (r2, S2) if s, - r, < 2- r2 or if s, - rl = 2- r2 and s, < S2- Thus the 
arrangement of 2 in increasing order is (r, 0), (r - 1, 0), (r, 1),. . ., (0, s - 1), (1, s), 
(0, s). Now let c be the array whose (i, j)-entry is ci1, the canonical cover of Bij, for 

This content downloaded from 129.97.140.60 on Wed, 10 Jul 2013 08:38:46 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


154 I. P. GOULDEN 

For i = 0,... ,(r + 1)(s + 1), let a(i) be the array obtained from a by replacing the 
first i elements (in terms of the above total order) of a by the first i elements of c, so 
a(-) = a, and a((r+ l)(s + 1)) = C. 

For b E 9(m, n), we define bV') E 9(m, n) for i = 0,...,(r + 1)(s + 1), recur- 
sively as follows. Let b(?) = b. For i = 1,... ,(r + 1)(s + 1): 

(i) Let (a, P3) be the ith element of S. 
(ii) If 8a8(b('- 1)) = 0, then b(') = b('- 1). 

(iii) If 8afl(b('-1)) = 8 is a path in B., then 
b('--) =81882 for unique paths 81, 82, each with a single vertex in B,,. Let b('l - 

814 B,fa,fa(8)82' 
For example, if m = 10, n = 8, r = s = 1, t = {4}, I = {3}, aoo = AUA2U2A, 

ao, = (A2U5A2)(03), a1o = (U3A6)(40), a1l = (U2A3U2A3U)(43) and b = 

A4U2A2U2A2U3A2U, then b(?) = b, b0) = b(2) = A5U3A UA2U3A2U and b(3) = b(4)= 

A5U4A2UA3U3. Now, for compactness, denote ,ia(bf i) by y('). Then, in the 
above example, y(0) = {(4, O), (6, 2), (6, 3), (8,4)}, (1) = -(2) = {(4, O), (5, 3), (6, 3), 
(8, 4)}, F(3) = _ (4) = {(4, 0), (5, 3), (5, 4), (7, 5)}, so -F(')I = 4, and w(F(')) = 4 + 

8 + 9 + 12 = 33 for i = 0, ... , 4. This equality is proved to hold in general for any a 
that is legitimate, as in this example, in the following result. 

THEOREM 3.2. If a is legitimate, then, for all k > O, Pk(t, 1, a) = Pk(t, 1, c). 

PROOF. If, in the construction of b(l) from b(-1) above, we have ta(b('1l) = 0, 

or 1ap(b(i-1)) is a single vertex (either top left or bottom right corner of Ba,), then it 
is immediate that 1F(')I = i(I'-1)I and w(,F')) = w(- ('-1)). 

Otherwise, we have b('- 1) = 81882, where 8 = ap(b('-1)), and the final vertex, say 
v1, of 81 is in Ba,,, and the initial vertex, say v2, of 82 iS in Ba,. Suppose that v, is the 
jth vertex in bV'-1) (and bV')) and that v2 is the kth vertex in bV'-1) (and bV')). Then, 
foru = O,...,j - 1 andk + 1,...,m + n, theuthvertexof bV-1)isin('-1)if and 
only if the uth vertex of b(i) is in y('), because these are vertices internal to 81 and 

82, unchanged in the construction. Also, for u = j + 1, . . , k - 1, the uth vertex of 
b('-1) is in F(i-1) if and only if the uth vertex of b(') is in F(), from Lemma 2.2, 

with x = vl, y = v2, B = Bap, a = 
aa,,. But the uth vertex in any path in 9(m, n) 

has weight equal to u. Thus we prove i'(i)j = iW('-1)j and w(F('))= w(- ('-')) 
by proving that v1 E F if and only if v 1 E y(-l), and v2 E F(i) if and only if 

V2 
G 

,F(I 1). 

Consider first v1. If a = /3 = 0, then v, = (0, 0), so 81 is empty, and v1 0- y(l), 

v, 0 F(1). Otherwise v, might lie on the lower border of Ba., with a step up 
immediately preceding it. This means that v, is either a vertical crossing (of y = 1A) 

or an upper corner in bV'-1) and b(l). But if v, is an upper corner in either bV'-1) or 

b(i)I it is an upper corner of Ba., which is above the canonical cover ca_p 1 

Moreover, by our partial order, (a, /3 - 1) < (a, P3), so c is contained in a('1l and 
a('). Thus, whether v, is a vertical crossing or upper corner in bV'-1) and b(l), we have 
v E (1- ) and v1 E y(i). 

The other choice for v1 is that it lies on the left border of Bap, with a step across 
immediately preceding it. Then v1 appears in b(i 1) as 

(i) a horizontal crossing of x = ta. so v, E y('1), or 
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(ii) a lower corner in Bai- 1p0 below aa,, 1 so vIE E (i-l) or 
(iii) a lower corner in Bai,,l on aa_lA, so v1 4 Yj -1) 

In case (i) then either (a) v1 is a horizontal crossing in b(i), so v1 E F('), or (b) v, 
is a lower corner in 0). But (b) can only happen if v1 and v1 + (0,1) are both on 
a 0, which means that v1 is below aa.l (contained in a(') since (a - 1, 3) > (a, /3)) 
since a is legitimate, so v, E F('). 

In case (ii) v1 appears in bV') as either a lower corner (below aai1) or perhaps a 
horizontal crossing, so v1 E F('). 

In case (iii), v1 is either on or above a,, in b('-1), since a is legitimate, so v, 
remains as a lower corner in bV), on aa__/3. But aaip is contained in a(i) (since 
(a - ,f) > (a, 13)) soy1 v (i)* 

Thus, for all choices of v1, we have v 1 E (i-l) if and only if vI E y('). Similarly 
(by considering the above arguments reflected about the line y = x) we can show 
that v2 E Y('-1) if and only if v2 E ('). 

Therefore, as noted above, we have IY(i)l - iY(1l)i and w(('i))= w(- ('-1)), 
and furthermore, Lemma 2.2 tells us that our construction of b(i) from b('-1) is 
bijective. This gives Pk(t,l,a(')) = Pk(t,l,a('-')) and the result follows by applying 
this result for i = 1,. . . ,(r + 1)(s + 1), since a(?) = a and a((r+l)(s+l)) = c. O 

The above result allows us to consider only upper corners, and no lower corners, 
as well as horizontal crossings of arbitrary x-coordinates t and vertical crossings of 
arbitrary y-coordinates 1. The next result allows us to consider only horizontal 
crossings of x-coordinates in m - r = { m - r,.. ., m - 1} and vertical crossings of 

y-coordinates in s = {1,. . . ,s}. For compactness, we letzA = (s2l) - (r2+ l) + mr. 

THEOREM 3.3. For all k >? 0, 

Pk(t, 1, c) = qXr t?k;1/-Ap(m - r,s,c). 

PROOF. First we prove that 

Pk (t, 1, ) = 
1k Mti(r2 - r, 1, C) 

If t = m - r this is obviously true. Otherwise, let h be the largest value of i such that 
ti < m - r - 1 + i, so th+1 > th + 1. Now take an arbitrary b E- 9(m, n) and 
define ,(b) = t,tl(b) as follows. 

Let y be the maximal segment of b with x-coordinates th and th + 1, and 
b = Y1YY2, so Y1 has its final vertex (and no others) with x-coordinate th, and Y2 has 
its initial vertex (and no others) with x-coordinate th + 1. Moreover y = (th, Yi) 

* (th, Y2)(th + 1, Y2) ... (th + 1, y3), where Y1 -< Y2 < y3. We define ((b) sep- 
arately in three cases, depending on the values of Yl, Y2, y3 and their interaction with 
1. Thus we have either 

(i) Y1 = Y2 = 
Y3, or 

(ii)Y1 < Y2 = 
Y3, ory1 < Y2 < Y3 withy2 E 1, or 

(iii)Y1 = Y2 < Y3, or y) < Y2 < y3 with y2 Z 1. 
In case (i), set ((b) = b. 
In case (ii), let {Yl + 1,.. *Y2 -1 I = Igli where li, < * < li and 

set ((b) = yl(th, Y .) (th li )(th + 1, lig) (th + 1, Y3)Y2* (If {YI + 1,. *Y2 - 

1) }r l = 0 then let li =Yi.) 
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In case (iii), let {Y2 + 1. Y3 - 1} n I = {Ij ,... ,lj}, where 1,- < < 1.-. Let 
e be the maximum value of i such that l,, = Y2 + i, and set (b) = Yl(th, Y1) 

*.. (th, Y2+ e + 1)(th + 1, y2+ e + 1) ... (th + 1, Y3)Y2. (If there is no such i, 
then let e = 0.) 

Now it is routine to check that f is reversible, so 9ti: A(m, n) '- 9(m, n): b b' 
is a bijection. Let t' = (tl,. ... ,th1, th + 1, th+1,..., tr), F' = ,l1(b') and we ex- 
amine the effect of dt, on == ?t,1c(b). Let consist of the elements of Ythat are 
also in ' and let C' consist of the elements of F' that are not also in S. 

In cases (i) and (ii), C= {(th, Y2)} and 9' = t(th + 1, Y2)}, so Ir- J = 1 -1 

= 0 and w(S9') - w(M) = (th + 1 + Y2) - (th + Y2) = 1. 
In case (iii), C= {(th, Y2), (th + 1, Y2 + 1),... ,(th + 1, y2 + e)3 and 9' = 

{(th, Y2 + 1), ...* (th, Y2 + e + 1)), s0 'l-j11 = (e + 1)-(e + 1) =0 and 
W(') - W) = (th + Y2 + 1+ **+ th + Y2 e+ l)(th + Y2 + th + 1 Y2 

1 + *. . + th + + y2+ e)= 1. 
Thus in all cases 1Y'l - JYj = 1j'j - 1j1 = 0 and w(Y') - w()= w(9') - 

w(W) = 1, so for the bijection t b -* b' we have Jt,Ic(b')j = Jtjc(b)j and 

w(_t',c(b')) = w(YFtj(b)) + 1. This immediately gives Pk(t', , C) = qPk(t, 1,c), and 
applying this mr - ('+1) -_r.1 ti times yields 

Pk(m - r,1,c) = qmr 2 ) k Ctp )(t,lC) 

But we can similarly show that 

Pk(t, S C) = q&?'Y-= lipk(t, IC) 

(by applying (-' to the reflection of b about y = x, then reflecting back, and 
applying this E'= 1i-(S2 1) times). The result follows by combining these two 
results. El 

By considering the first three results of this section, we obtain a theorem 
expressing the generating function for the shuffle product of an arbitrary pair of 
permutations in terms of the generating function for the shuffle product of the 
canonical pair , = r + 1... mr... and v, = m + s + 1 m + m + s + 2 
*- m+n. 

THEOREM 3.4. If a and c are (m, n)-compatible, with d(a) = r, d(w) = s, then for 
all k > 0, 

Sk(a, ( ) = q J( Sk)(Ar, Vs)- 

PROOF. Applying Theorems 3.2 and 3.3 to Lemma 3.1, we obtain 

SJU' W) = q Pk(M- r,s,c). 
But Lemma 3.1 also yields Sk(Ar, Ps) = Pk(m- r,s,c), since g(Ar) = m- r, 

g(vs) = s, and all elements of vs are larger than all elements of tlr. The result follows 
immediately. O 

We now give a direct evaluation of the canonical generating function Sk(Mr, Vs)- 

THEOREM 3.5. For all k > 0, 

Sk (p T v ) = +(k - r)(k -s) m r + s ][n -s + r] 

This content downloaded from 129.97.140.60 on Wed, 10 Jul 2013 08:38:46 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


A BIJECTIVE PROOF OF STANLEY'S SHUFFLING THEOREM 157 

PROOF. In any p E J'(Cr, vs5), each of m + s + 1,. .. I,m + 2 must be larger than 
the objects that immediately follow them, and each of r,. .. J 1 must be smaller than 
the objects that immediately precede them. Thus Sk(Pr, V5) = 0 unless k >? s and 
k > r, so the result holds when k < maxt r, s }. 

Now assume k > max{ r, s}, and consider arbitrary a = { a,... ,ak-r} C Xm-r+s 

and /3 = { Al .. -Ak-s} C X>-s+r- We construct p E 5'(J4r, V5) from a, /3 as fol- 
lows, considering two cases. 

Case 1 (k > r + s). Place the first s + 1 elements of v5 in positions a1,... as+ I of 
p, and put the first a5s+I - s - I elements of '1r in the remaining positions from I to 
as+l? We have now filled the first as+? positions of p. We follow with the next 

/31 - 1 elements of v5 and then, for i = 2,...,k - s - r, we alternate blocks of the 
next as+, - as+?-1 elements of 1r' and the next 3,I - 1i--, elements of v5. Then we 
place the next m - r + s + 1 - ak-r elements of Ur, so that the first m - r + s + 

/3k - s - r positions of p are now filled. Next we place the remaining r elements of j r in 
positions m - r + s + P3k-s-r?+1, . ,m - r + s + /3k-s, and fill the remaining n - 

S - /3k-s-r positions of p with the final n - s-/3k-s-r elements of v5. For example 
if m = 5, n = 4, r = 2, s = 1, k = 5, a = {1,2,4} c X4 and ,B = {1,2,3,5} cX5, 
then p = 763485291 EE 9(34521, 7689). 

Now the descents of p are the positions occupied by m + s + 1,... , m + 2, the 
positions preceding those occupied by r,...,1, and the positions occupied by an 
element of vs, which is immediately followed by an element of hUr (these are not 
mutually exclusive). Thus for p constructed above, we have 

?2~(P) = {a1, - - ,as, as+, + 1I -1,... .ak-r + 13k-s-r 1, 

m-r + s-1 + 3k5s-r+l,...,m-r + s-1 + / k-s} 

so d(p) = k and I(p) = s - k + r(m - r + s) + k-1ra, + ?,k-1sj ,. 
Case 2 (k < r + s). Let {Y, .. ,Ym-k+s} = Xm-r+s- a and { 81, . n-k+r= 

Xi, -s+ /r , where y1 < .. < Ym-k+s and 81 <. < Sn-k+r. Place the first 
m - r elements of hr in positions Y,- --Ym-r, and put the first Ym-r - m + r 
elements of v5 in the remaining positions from 1 to Ym - r' so that the first Ym -r 
positions of p are filled. We follow with the next 83 - 1 elements of hr and then, for 
i = 1,... ,s + r - k, we alternate blocks of Ym-r+? - Ym-r+?-l elements of vP and 
blocks of 8 - 8, elements of hr. Then we place the next m - r + s - Ym-k+s 
elements of v5, so that the first m - r + s - 1 + s?+r-k+l positions of p are filled. 
Then we place the remaining n - s elements of v5 in positions m - r + s + 

s+r-k+l?'..,m - r + s + 3n-k+r and fill the remaining r + 1 - 3s+r-k+l posi- 
tions with the final r + 1 - 3s+r-k+l elements of hr. Thus we can identify positions 
that are not descents, and have 

P(P)= J+n -I {Y1,... Ym-r-1' Ym-r + 8- 1,. *Ynz-k+s + 3s+r-k?- 1, 

m-r + s1 ? + S+r-k+2, m-r + s1 + ? S3-k+?r}I 
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so d(p) = (m + n -1)-(m + n -k- 1) = k and 
rn-k+s n(-k+r 

(P) ( m+n) _j(n-s-1)(m-r+s)-(n-k+r)). 

But 
n y-k?s k - r 

and 
n-k+r k-s 

S i = ns 2 ) 
i=l i=l 

so simplifying gives 
k-r k-s 

I(p) = s - k + r(m - r+ s) + i + i/3. 
i=l i=l 

It is easy to check that there is a unique such pair of subsets a and ,B associated 
with each p E Y(J4r, vs) with d(p) = k, so the construction is bijective. Thus 

Sk(ILr, Vs=) ( q[(P) 
P EY-'Lr, V0 

d( p) = k 

qs-k+r(m-r+s) qa?l + +a-r 

1ca < .*. <Ck_r?<l-r+s 

X qfll + "'+lk-, 

101 < ... < B * * < 1 1k - s 7s + r 

=qs-k?(m- +?)q (A-r+l) m-r + s] (k-s+I)[n- s + r 

from Lemma 1.4, and the result follows since 

(k -r + 1 + (kk + 1+ s ?-)k + r(m-r + s) = A +(k-s)(k-r). n 

MacMahon [8, Vol. I, p. 169] has given a direct evaluation of Sk(1Io, vo) at q = 1; 
one of his proofs involved the lattice path representation given in Proposition 2.3. 
The special case s = 0 of Theorem 3.5 has been used in Goulden [5] as one of three 
ingredients in a combinatorial proof of an identity equivalent to Theorem 1.3. 

We now have completed all ingredients for a proof of the Shuffling Theorem. 
PROOF OF THEOREM 1.2. The result follows immediately from Theorems 3.4 and 

3.5. El 
We conclude with an example that illustrates all of the results of this section. 
EXAMPLE 3.6. Let 

p=5 10 84 12 276 13 11 319E=9"(5 10 12 27 13 11 9,84631), 

so a = 5 10 12 2 7 13 11 9, w = 84631, m = 8, n = 5, r = s = 3, I(a) = 16, 
I(w)= 8, d(p)= k = 7and I(p)= 47. 
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Then, in the notation of Lemma 3.1, we represent p by ,(jp) = b = 

A2U2A3UA2U2A. Moreover t = {3,6,7}, 1 = {1, 3,4}, ao0 = A UA2, a1o = A2UA(30), 

a20= UA(6,0), a30= UA(70) a01= UAUA2O1), a =AU 2A231), a21=U2A(61) a 
-U2A(7,1), ao2 = UA(03), a12 = AUA(3,3), a22 = UA(63)' a32 =UA(7,3), aO3 = (04) 
a13 = UA334), a23 = UA(64) and a33 = UA(74). AlsoFt a(b) = {(2,0), (2,1), (3,2), 
(5,2), (6,3), (7,3), (7,4)}, so indeed jFita(b)j = 7 = d(p) and w('iFa(b)) = 47 = 

I(p). 
In the notation of Theorem 3.2, we have b (6) b()= b, b(7) = 

A UA UA3UA2U2A, b(8) = AUAUA2UA3U2A, b(9) = AUAUA2UA2UAUA, b(10) = 
A UA UA2UA2UA2U, b(1 ) = A U2A3UA2UA2U and b(16) = = b(12) - 

AU2A3UAUA3U. NowFt,1(b(16)) = {(1, 1), (1,2), (3, 2), (4,3), (5, 4), (6,4), (7, 4)}, so 

,C(b (16))l = 7 = d(p) and w(itlc(b(16))) = 47 = I(p), as required. 
In Theorem 3.3, by applying ( twice (mr - (r2 1) - iZ= ti = 2), we get the path 

b" = A U2A2UA UA4U, and obtain 9,-,ri c(b") = {(1, 1), (1, 2), (3,3), (4,4), (5,4), 
(6,4), (7,4)), so JIni-ric(b")j = 7 = d(p) and w(,5_ric(b")) = 49 = I(p) + 2, as 
required. Finally, by similarly reducing 1 to s, we obtain the path bo = 

A U2A UA UA5U, withY1-_rsc(bo) = {(1,1), (1,2), (2,3), (3,4), (5,4), (6,4), (7,4)), so 

Fnz-r,s,c(b0)j = 7 = d(p) and W(3z-,rss,c(b0)) = 47 = I(p) + A - E= t, - E=l II, 
as required. 

In Theorem 3.4, we finally obtain that p E Y'(a, w) corresponds to 

p' = 4 12 11 5 10 6 9 7 8 3 2 1 13 Ef Y(Ir, s) 

where J'r = 45678321 and vs = 12 11 10 9 13, and d(p') = 7 = d(p), I(p') = 47 - 

I(p) + A - I(a) - I(W). 

Finally in Theorem 3.5 we have k = 7 > 3 + 3 = r + s, so we have Case 1, with 
a = {2, 3, 5, 7}, / = {1, 2, 3, 4} corresponding to p'. Of course I(p') = 47 = s - k + 

r(m - r + s) + Yk94ra, + Lk-fs/3. E 
We say that this proof of the Shuffling Theorem is bijective because we are able to 

explicitly give a bijection between elements of Y(a, w) and pairs of subsets of 

Xsi-s+r and XA,-r+s, the existence of which is implicit in its statement. Thus, in 

Example 3.6 we have demonstrated that 

p=5 1084 12 276 13 11 319 E-Y(5 10 12 27 13 11 9,84631) 

corresponds to a = {2,3,5,7} C Xn- r ?r and 3 = {1,2,3, 4} C <Z_+r* 
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