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Abstract

We give a bijective proof of a result of Regev and Vershik (Electron J. Combin. 4 (1997)
R22) on the equality of two multisets of hook numbers of certain skew—Young diagrams. The
bijection is given in terms of Dyck paths, a particular type of lattice path. It is extended to
also prove a recent, more refined result of Regev (European J. Combin. 21 (2000) 959), which
concerns a special class of skew diagrams. (©) 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let n,k be positive integers, and o= (ay,...,0) be a partition with at most k£ parts,
each part at most n, so n=>o01 > --- >a; =0. The Young diagram of o is given by

D={(i, ) 1<i<k,1<j<oy_it1}

a collection of unit cells, arranged in rows and columns. Here cell (i, ) appears in row
i and column j, rows numbered from bottom to top, and columns numbered from left
to right. We regard translates of the diagram in the plane as equivalent, and generally
place the bottom-left cell at (1,1). (Note, however that this is not the case for D above
when o; =0.) Also let

R={(Gi,j)|1<i<k1<j<n},
T:{(I’J)| 1<i<k,0(1 — o + 1<]<n-|—a1 —CX,‘},
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Fig. 1. D,R,SQ for n=6,k =4,0=(6,5,3,1).

V=A{G)k+1<i<2kn+o; —oi_x +1<j<n+ o},
SQ=TUY,

so R, T, SQ are skew diagrams (in fact, R is also a Young diagram, the k£ x n rectangle).
For a skew diagram G, let G* be the skew diagram obtained by rotating G through
180°. Thus, for example,

T :{(laj)| I<i<hkop_ipr —op + 1<j<n+ op—jy1 — OCk}.

Also, let G' be the collection of cells obtained by reflecting G about a vertical
axis.

The arm length ag(x) of a cell x in a skew diagram G is the number of cells of
G in the same row of x and to the right of x; the leg length Ig(x) of a cell x in a
skew diagram G is the number of cells of G in the same column and below. The coleg
length of a cell x in a skew diagram is the number of cells in the same column and
above. The hook length hg(x) is given by hg(x)=ag(x) + lg(x) + 1. If E is a subset
of the cells of G, then ALG(E) is the multiset {(ag(x), lg(x))[x €E}, and HG(E) is
the multiset {hg(x)|x € E}. When there is no ambiguity, we write Hg(G) as H(G),
and ALg(G) as AL(G).

For example, the skew diagrams D,R,SQ are illustrated in Fig. 1 for the case
n=06, k=4, «=(6,5,3,1). For the three cells labelled b,c,d in Fig. 1, we have
ap(b)=1,Ip(b)=0,asq(c)=4,lsqo(c) =2 and ar(d) =0, [r(d)=3.

Theorem 1.1 below was conjectured by Regev and Vershik [6], and proved by Regev
and Zeilberger [7], Janson [2], and Bessenrodt [1] (though only for the case n=ou,

in [7]).
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Theorem 1.1. For all n,k, o,
H(SQ)=H(R)UH(D)

is a multiset identity.

Regev and Zeilberger note that their proof is not bijective, and ask for a canon-
ical bijection between the multisets. Bessenrodt [1] presents such a bijection, de-
ducing it from a general result about “removable” hooks in Young diagrams. In
this paper, we present a different bijection, deducing it from another general result,
the main result of the paper. It is convenient to keep arm and leg lengths sepa-
rately, and thus we prove the following result, which is obviously a generalization of
Theorem 1.1.

Theorem 1.2. For all n, k, o,
AL(SQ)=AL(R)UAL(D)
is a multiset identity.

The next result, our main result, is more symmetric and natural looking than Theorem
1.2, but it implies Theorem 1.2. Independently, Theorems 1.2 and 1.3 have also been
obtained by Regev [4], and bijective proofs that are different from ours have been given
by Krattenthaler [3]. (Note that the bijection that we give for Theorem 1.3 actually
yields the same bijection as [3], but it has a different description. The bijection that
we give for Theorem 1.2 is quite different, since it is based on a different partitioning,
and allows us to apply our proof of Theorem 1.3 directly.)

Theorem 1.3. For all n,k, o,
AL(T)=AL(T™)
is a multiset identity.

We delay the proof of Theorem 1.3 until the next section, and proceed now by
giving a bijective proof that it implies Theorem 1.2. The proof involves partition-
ing the cells of R and 7" into two regions each, and identifying cells in various

regions of skew diagrams whose pairs of arm and leg lengths are immediately
equal.

Proof that Theorem 1.3 implies Theorem 1.2. Partition the cells of R into two subsets
Ry and R,, given by

Ri={(.))|1<i<hkn —ap_ip1 + 1<j<n},

Ry={(0, )| 1<i<k,1<j<n— op—ip1}
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Fig. 2. Skew shapes for n=6,k =4,0=(6,5,3,1).

and the cells of 7" into two subsets 7} and T}, given by
Ty ={(L) | 1<i<hkog_ip1 — o + 1<j<n— oy},
Tz*:{(l,j)‘ I<i<kn—o +1<j<n+op—_j1 — O(k}.

The significance of these regions in this proof is that R}L =T;=V*=D and R; =T7.
These equalities (using appropriate translations) are immediate from the definitions of
the regions. See Fig. 2 for an illustration of these regions in the case n=6,k =4,
a=(6,5,3,1), and to check visually the above equalities in this case.

Bijective identification of ALgq(V') and ALg(R;): Now V*:RI, so the jth columns
of V and R, respectively, have the same lengths, for each j=1,..., ;. Furthermore,
V' appears in SQ with cells added below V' to extend all columns of V' to length k.
Similarly, R; appears in R with cells added below R; to extend all columns of R; to
length k. Thus, the arm and leg lengths are equal, for the cells that are i rows from
the topmost entry, in the jth column from the left most column, of /' in SQ and R,
in R, respectively. Thus we establish immediately that

ALsq(V) = ALg(R)). (1)

Bijective identification of ALp~(Ty) and ALg(R;): Now T :Rg, so the ith rows
of T|" and R,, respectively, have the same lengths, for each i=1,...,k (some of these
lengths are zero when o) =n). Furthermore, 7| appears in T" with cells added to the
right of 7 to extend all rows of 7 to length n. Similarly, R, appears in R with cells
added to the right of R, to extend all rows of R, to length n. Thus, the arm lengths
and leg lengths are equal, for the cells that are j columns from the left most entry,
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in the ith row from the bottom row, of 7} in 7* and R, in R, respectively. Thus we
establish immediately that

AL7-(T7) = ALg(R>). (2)

Bijective identification of AL7«(T;) and AL(D): Now Ty =D, and T appears in T'*
with no cells added to the right nor below, so we establish immediately that

AL7+(Ty)=AL(D). 3)
The result: Suppose Theorem 1.3 is true. Then, applying (1), we obtain
ALso(V)UAL(T) = ALg(R; ) U AL(T*). 4)

But AL(T)=ALsgq(T), since T appears in SQ with no cells added to the right nor
below. Also, AL(T*)=AL7+(T;) UAL7-(T5), since T;" and T, partition the cells of
T*. Making these substitutions into (4) gives

ALgo(V)UALso(T) =ALg(R)UAL7+(T{)UAL7+(T5)

= ALR(R;) UALR(R;)UAL(D),

with the second equality from (2) and (3). Now V and T partition the cells of SQ, and
Ry and R, partition the cells of R, so the above result becomes AL(SQ)=AL(R)U
AL(D), and we have established Theorem 1.2. [J

How is this proof bijective? To prove Theorem 1.3 bijectively, in the next section we
determine an explicit bijection ¢: T — T*, that preserves arm and leg lengths (this
means that for each cell x€ T we have ar(x)=ar-(¢p(x)) and I7(x)=I7+(P(x))).
Similarly, to give a bijective proof of Theorem 1.2, we must determine an explicit
bijection i : SQ — RUD, that preserves arm and leg lengths.

In terms of ¢, we now describe such a bijection s that is implicit in the above proof.
First, note that, to establish (1)—(3) above, we have described three simple bijections,
and let us call them (;: V — Ry, {: Ty — Ry, and (3: T, — D.

A bijection iy that establishes Theorem 1.2. For x € SQ, we obtain Y(x) € RUD as
follows:

For x eV, let Y(x)={i(x).

ForxeT,

o if ¢(x) €Ty, let Y(x)=((P(x)),

o if p(x) €17, let (x)=3(P(x)).

This clearly specifies a bijection y of the required type, giving a bijective proof of
Theorem 1.2.



158 L. Goulden, A. Yong| Discrete Mathematics 254 (2002) 153164
2. Dyck paths and the bijection

In this section, we determine a bijection ¢: T — T*, that preserves arm and leg
lengths, as referred to above at the end of Section 1. This provides a bijective proof
of Theorem 1.3.

The bijection is described in terms of a particular type of lattice path that will be
associated with 7 and 7™, called a Dyck path. A Dyck path of length 2k, k >0, is a se-
quence (i, y;), i =0,...,2k, of lattice points in the plane, in which yy= yo; =0, y; =0,
fori=1,...,2k—1,and y;—y;_1=+1 or —1, for i=1,...,2k. Equivalently, a Dyck
path is completely specified by its sequence of steps; if y; — y;_1 = + 1 then the ith
step is an up step, and if y; — y;_; = — | then the ith step is a down step. The height
of the ith step is y;_;, for i=1,...,2k. Since y =0, then the 2k steps consist of k
up steps and k& down steps. We can visualize a Dyck path as a connected path in the
plane by drawing a line segment between the consecutive lattice points in the path.

Let the skew diagrams T};; and T, for i=1,...,n, be given by

Tn={xeT|ar(x)=i—1},

Tihy={xeT|ar(x)<i—1}

and define (7*);) and (T*)(;) in the same way. Consider the skew diagram Ty;, for
each fixed i=1,...,n. Label the k cells of Ty in Tj;), successively, xi,...,x;, from
bottom to top (there is exactly one cell of Tj; in each of the £ rows of 7). Label
the cells of Tjo; in T{;), successively, zi,...,z, from top to bottom (similarly, there is
exactly one cell of Tjg in each of the k rows of 7(;)). In the case i =1, then each cell
of Tjo; will have two labels, one an x; and the other z;,_;, for some j=1,...,k.

Now form a permutation o; of xy,...,x;, z1,...,z; as follows: Place the x’s and
z’s from left to right in ¢; in the order that they appear from left to right as labels
in the cells of 7;. For labels in the same column of 7{;), order them with the x’s
first, followed by the z’s; the x’s are ordered as they appear from bottom to top in
the same column, and the z’s from bottom to top also. For example, in the case
n=11, k=9, «=(11,11,9,8,8,6,3,1,0), we illustrate 7(3) in Fig. 3, with the cells
labelled as described above. In this case, the permutation o3 is given by

03 = X1X2X3Z9Z8X4X5Z7X6Z6Z5Z4X7X8Z3X9Z2Z] .

Now let p; be the lattice path starting at (0,0), whose steps are specified by o;
as follows: the x;’s specify the up steps (labelled x;), and the z;’s specify the down
steps (labelled z;). For example, the lattice path p3 determined from o3 in the example
above is illustrated in Fig. 4.

It is a straightforward induction to prove that the height of the up step labelled x;
in p; is equal to the leg length of the cell labelled x; in T{;), and that the height of
the down step labelled z; in p; is equal to one more than the coleg length of the cell
labelled z; in T{;. But since leg and coleg lengths are always nonnegative, the height
of every up step in p; is nonnegative, and the height of every down step in p; is
positive, so p; is a Dyck path. For example, the lattice path p; illustrated in Fig. 4 is
clearly a Dyck path.
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Fig. 3. T(3) for n=11,k=9,2=(11,11,9,8,8,6,3,1,0).
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Fig. 4. The Dyck path p3 determined from o3.

Now there is a natural bijection between the up steps and down steps in a Dyck
path: pair each up step at height j with the first down step at height j + 1 occur-
ring after that up step (there must be such a down step since the path ends at a
vertex with ordinate equal to 0, and down steps decrease the value of the ordinate
by exactly 1 for each step). Suppose that the up step labelled x; is paired with
the down step labelled zp,(;y in this way, for j=1,...,k. Then P; is a bijection on
{1,...,k}, for each fixed i. For example, for the Dyck path illustrated in Fig. 4, we have
P3(1)=4, P3(2)=8, P3(3)=9, P3(4)=5, P3(5)=7, P3(6)=6, P3(7)=1, P3(8)=3,
and P5(9)=2.

Now rotate 7(;), with its cells labelled as above, through 180°, to obtain . Now
0=(T(;)* =(T*);), and the cells of Ty in T;), labelled with z;’s, become the cells
of (T*)) in 0. Moreover, the coleg length of a cell labelled z; in 7{;, equals the leg
length of the corresponding cell in J, so

I1e, (%)) = Iir=), 2Ry )s
where, for example, /7, (x;) means the leg length of the cell labelled x; in 7(;. Also,

aT(;)(xj):i -1 :a(T*)(n(ZPiU))
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since all cells in 7};; and (7*)[; have arm length equal to i — 1, for each fixed i. But
Ty appears in T with no cells added to the right nor below, so /7, (x;)=Ir(x;) and
aTm(xj) = aT(xj-). Similarly, I(T* )(,)(ZPI'(/)) = IT* (ZPi(/)) and ar )(i)(ZPi(/)) =dar= (ZPiU))'
Thus, putting these equalities together, we have

Ir(x;)=1r-(zp,(j)), ar(x;)=ar-(zp))- (5)
Proof of Theorem 1.3. This follows from Lemma 2.1 immediately, These equations
imply that the mapping from the cell labelled x; in T to the cell labelled zp,(;y in T,

for each i=1,...,n, is arm and leg length preserving, so we have found the bijection
¢ that we require, as stated below. [

A bijection ¢ that establishes Theorem 1.3. For w € T, we obtain ¢p(w)e T* as fol-
lows. Each w is contained in T7; for some unique i=1,...,n. If w has label x; in T(;,
then ¢(w) is the cell with label zp,;) in (7).

This clearly specifies a bijection, that is arm and leg length preserving from (5), giving
a bijective proof of Theorem 1.3.

3. The projective case

A refinement of Theorem 1.2 has been given by Regev [5], in which the

partition o= (ay,...,0,) has a special form. In order to state this result, we require
some adaptations of the notation in Section 1. Let n=k + 1, and o have the form
o= (M,..., Amlh = 1,..., Ay — 1), in Frobenius notation, where k=4 > --- >1,>0,

so A=(41,...,4,) is a partition with m distinct parts. This means that D, the Young
diagram of «, has exactly m cells on the (top-left to bottom-right) diagonal, given by
the cells (k +1 —j,j), for j=1,...,m, with 4; cells to the right of the jth of these
cells in row k +1 —j, and A; — 1 cells below this cell in column j. Let # consist of
all partitions o of this form, for any m>1,k>1 (e.g., R is the Young diagram of a
partition in #, with m=4k and 1;=k+1—j, for j=1,...,k).

For a Young diagram G, let p(G) consist of the cells of G on or below the
diagonal (as described above), and let g(G) consist of the cells of G above the diag-
onal. For a skew diagram, extend this notation by describing the diagonal: for 7, SQ,
where n=+k + 1, and o € 4, the diagonal consists of the cells (k + 1 — j,oq + j), for
j=1,...,k —m; for T*, the diagonal consists of the cells (k+ 1 — j,k+ 1 — o +j),
for j=1,...,m. For example, the skew diagrams D,R,SQ, T are illustrated in Fig. 5
for the case k=5, m=2, «=(5,4,2,1), corresponding to 4 =(4,2). In each of these
skew diagrams, there is a thick line extending from top left to bottom right, which
partitions the diagram G into the cells of p(G), below and to the left of the line, and
the cells of ¢(G), above and to the right of the line.

The following result has been given by Regev [5], whose proof is not bijective. A
bijective proof has been given by Krattenthaler [3]. In the remainder of this paper, we
present a different bijective proof, which directly applies the bijection of Section 2, but
with some more detailed analysis needed.
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Fig. 5. D,R,SQ, T for k=5m=2,0=(5,4,2,1).
Theorem 3.1. For all k,m and o€ 4,
AL(p(SQ)) =AL(p(R)) U AL(¢(D))
is a multiset identity.
In order to prove Theorem 3.1, we first note that
AL(p(SQ)) =AL(p(T)) (6)
so we shall work with 7 on the left-hand side of the result, instead of SQ. For each
i=1,...,k + 1, let u be the smallest row index among the elements of 7};; above

the diagonal of T. Let T’ be the skew diagram obtained from 7 by shifting rows
u,u+1,...,k to the right, where necessary, so that the right most of the £+ 1 cells in
each of these rows occurs in column o +k -+ 1. (If such a u exists, then T’ is actually
the skew diagram T corresponding to the partition (o,...,%,—1). If no element of Tf;
is above the diagonal of T, then we define 7' =T.) The diagonals of 77 and 77" are
the same as for 7 and T*, respectively, except that we might shift the diagram and
diagonal to position the bottom left most cell at (1, 1). For example, the skew diagrams
T/, T are illustrated in Fig. 6 for the case k=35, a=(5,4,2,1), with i =3, for which
u=4. In each of these skew diagrams, there is again a thick line partitioning the cells
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® [ ]
[ J (]
T3 T3

Fig. 6. T' and T?" for k=5,0=(5,4,2,1),i=3.

into those given by p and ¢, and there is a dot in every cell with arm length equal to
i—1=2.

We require the following technical result about the row index u, chosen above for
each i.

Proposition 3.2. Let « € B, with the diagonal of length m, and with oy <k +1. Let u
be the smallest row index among the elements of Tj;; above the diagonal of T. Then

l.u—o,>i—landu—1—o,_1<i —1,
2. u>m,

3. ay—i=u and oy <u,

4, oy +i<o,_; and o1 +i=0,_ 1.

Proof. In the row of T with index a, for a=1,...,k, the diagonal cell is in column
o1 +k+1—a, the right most element is in column «;+k+1—oa,, and the unique element
of Tp; is therefore in column o +k+1—0,—(7—1). This means that the element of Tf;
in row a is above the diagonal of 7 exactly when a;+k+1—0,—(i—1)>a;+k+1—a,
or a—oa,>i— 1. Part 1 of the result follows immediately.

From Part 1, we have u — o, >i — 120, so «, <u. But, since o € %4, then o; > j for
j=1,...,m, where m is the length of the diagonal of o, giving Part 2 of the result.

Now let u — o, =c and u — 1 — a,_; =d, where ¢>i — 1>d, from Part 1. Thus
in the Young diagram D of o, the right most cell in row k£ + 1 — u is in column
u — ¢, and the right most cell in row £+ 1 — (¥ — 1) is in column u — 1 — d. But
o€ B, so symmetry of # implies that the bottom cell in column u + 1 is in row
k+1—(u—c), and the bottom cell in column u is in row k + 1 — (u — 1 —d). Thus
we have o, _.Zu+1, oy 1= =0y_1_qg=u, o, _g<u, and Result 3 follows from
c>i—12d.

Part 4 follows immediately from Parts 1 and 3. [J

Now we are able to give a bijective proof of Theorem 1.3, using the bijective proof
of Theorem 1.3.

Proof of Theorem 3.1. Let M, M,, M5, M, be the multisets of leg lengths of the cells
with arm lengths equal to i — 1, in T?,(T")*, p(T),q(D), respectively. Now, Theorem
1.3 applied to skew diagram T’ gives a bijection between AL(7") and AL((7%)*),
which contains a bijection betweem M, and M,.
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Now, the elements of M| can be partitioned into two subsets: M, corresponding to
the cells on or below the diagonal of T?; and M,, corresponding to the cells above
the diagonal. Thus the elements of M), correspond to cells in rows 1,...,u — 1 of
T?, and the elements of M, correspond to the cells in rows u,...,k. But 7 and T’
differ only in rows u,...,k, so Mj; = Mj. Also, the right most cell of 77 is in column
k+1+a —ay, for j=1,...,u— 1. Now let s be chosen so that

o, <i—1 and o, ;>i—1. (7

Then the bottom element of column k 4+ 1 4+ o — (i — 1) in T is in row s, so M, =
{u—s,....,k — s}, giving

My =M3U{u—s,....k —s} (8)

For example, when «=(5,4,2,1), i=3, as in Fig. 6, we obtain s =3.

Similarly, the elements of M, can be partitioned into three subsets: M>;, correspond-
ing to the cells in columns 1,...,k+1 of T i*; M,;, corresponding to the cells to the
right of column k + 1 but on or below the diagonal of 7°"; and M3, corresponding to
the cells above the diagonal of T ™ Now, the right most cell in rows 1,....,k+1—u
of T' is in column k + 1, and the right most cell in row j of T'" is in column
k+ 1403 1—;, for j=k+2—u,...,k. Therefore, from (7), the cells in M3, occur in
rows 1,...,k+ 1 —s, and the bottom element in each corresponding column is in row
1, so My ={0,...,k —s}.

Now, let r be the largest row index of the elements of My;. Then, since the diagonal
element of row j is in column k+1+k+1—, for j=k+2 —u,...,k, we have

k+1—-r+i—1204-, and k+1—-(@r+D+i—1<oy_, 9)

and from Proposition 3.2(3), we immediately have k — r=u — i, or r=%k —u + i.
For example, in Fig. 6 we have r=4, and indeed, as noted previously, k —u +i=
5 —4 43 =4. Also, the bottom element of the columns corresponding to the cells of
My, all occur in row k + 2 — u, from the second part of Proposition 3.2(4). Thus,
Mpy={tk+2—-s)—(k+2—u),....k—u+i)—(k+2—uw)}={u—s,...,i —2}.

Finally, the leg lengths of the cells of M,; are all the same in 77" as in T*, from
the first part of Proposition 3.2(4). Thus M3 = M4, and we have

My =My UMy UMy =MyU{0,... .k —s}U{u—s,...,i —2}.
The bijection between M; and M, then gives, from (8)
M;U{u—s,....,k—s}=MyU{0,....k —s}U{u—s,...,i — 2} (10)
and we have
M; =M, U{0,...,i — 2} (11)

Now, Theorem 3.1 follows from (6), and the fact that the cells in p(R) with arm
length equal to i — 1 in R have leg lengths O,...,i —2. [
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How is this proof bijective? In the development above, we have claimed that a
bijection follows from (11), but we obtained the latter by “cancelling” the contribution
of the set {u—s,...,k—s} on both sides of (10). In general, a bijection that is deduced
from such a cancellation would require the involution principle, but we can avoid this
principle here by the following observation about the bijective proof of Theorem 1.3
applied to M; and M,: the cells corresponding to elements of M), all appear in a single
column, so in the Dyck path associated with M;, the up steps associated with M, all
appear together, with no down steps between them, and these up steps are followed
by a terminating sequence of down steps. This means that, under the bijection ¢, the
cells corresponding to elements of M, are mapped to a subset of cells corresponding
to elements of M;;. But this leads immediately to a bijection for (11), simply by
restricting ¢ to the cells corresponding to elements of M.
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