
Aequationes Mathematicae 22 (1981) 1-28 
University of Waterloo 

0001-9054/81/010001-28501.50 + 0.20/0 
© 1981 Birkh~iuser Verlag, Basel 

Survey Paper 

Graph factorization, general triple systems, 
and cyclic triple systems 

R. G. STANTON and I. P. GOULDEN 

Abstract. In this self-contained exposition, results are developed concerning one-factorizations of 
complete graphs, and incidence matrices are used to turn these factorization results into embedding 
theorems on Steiner triple systems. The result is a constructive graphical proof that a Steiner triple 
system exists for any order congruent to 1 or 3 modulo 6. A pairing construction is then introduced to 
show that one can also obtain triple systems which are cyclically generated. 

1. Introduction 

Steiner triple systems are now one of the oldest of combinator ia l  structures, 

with applications in many areas from universal  algebra to the design of statistical 

experiments.  Basically, a Steiner triple system on v e lements  is a set of b triples 

constructed so that each of the v given elements  occurs a constant  number  r of 

times, and each pair from the v given elements  occurs exactly once. It has been 

known for a long time that such systems exist if and only if v is congruent  to 1 or 

3, modulo  6. 
The  aim of this paper  is to provide a completely self-contained account of 

some aspects of graph theory, incidence matrices, and triple systems. However,  

for addit ional  material ,  we cite [4] for a fine t rea tment  of graph theory and [3] for 

a wealth of material  on designs; [8] is a general  introductory text with much 

material  on graphs, designs, and other  aspects of combinatorics;  [2] is an 

exhaustive reference list concerning Steiner triple systems. 

W e  first consider factors of graphs, and obtain an easy conceptual  proof of the 

necessary and sufficient condit ions for the existence of triple systems (this may be 

compared  with the omission of the case 6 t +  1 in [5] and [8], or  with the quite 
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lengthy and involved treatment of this case given in [3]). We will also demonstrate 
the existence of special cyclic triple systems (this was first done in [6], but the 
methods used there are considerably more complicated than those which we 
employ; we introduce a simple "pairing" concept, which we find has also been 
used in [7], but for a different purpose). 

We hope that this unified survey will be useful in providing a direct self- 
contained, and simple account of an extremely important type of combinatorial 
structure. 

2. Complete graphs 

A complete graph on n vertices consists of n vertices in general position and the 

(2 )  joining edges. Such a configuration is denoted by K, ;  we illustrate K 4 a f l d  

K5 in Figure 1. 

F i g u r e  1 

K 4 and K 5 

A one-factor of /£2, consists of n vertex-disjoint edges. For example, if the 
vertices of K6 are named 1,2,3,4,5,6, then the 15 edges may be denoted by (i, j) 
where i~]. Here (i,j) is the edge joining vertex i to vertex j. One one-factor 
would be the set of edges 

(1, 2), (3, 4), (5, 6), 

since all six vertices appear. 
A one-factorization of K2, consists of 2n - 1 one-factors such that the edges in 

the one-factors are all distinct. In the case of K6, the following five one-factors 
give a complete set of edges, and thus provide a one-factorization: 

F, :(1, 2), (3, 4), (5, 6) 

F2: (1, 3), (2, 5), (4, 6) 

F3:(1, 4), (2, 6), (3, 5) 

F4: (1, 5), (2, 4), (3, 6) 

F , : ( I ,  6), (2, 3), (4, 5). 
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A graphic  way of looking  at this one- fac tor iza t ion  is to  think of all edges  in F~ as 

being co loured  with colour  i. Then  the one- fac tor iza t ion  colours  the  edges  o f / ( 2 ,  

in 2 n -  1 colours  in such a way that  the  2 n -  1 edges  leaving any vertex are  all 

co loured  distinctly. 

The  fundamenta l  result  on one- fac tor iza t ions  is the  following theorem,  which 

can be p roved  in many  different  ways. The  par t icu la r  construct ion we descr ibe  

was p robab ly  first given by K~Snig. 

T H E O R E M  2.1. Every complete graph K2, on 2n vertices possesses a one- 
f actorization. 

Proof. Let  the vert ices be  labe l led  1 , 2 , 3 , . . . , 2 n .  T h e  one- fac tors  a re  

specified as follows. 

F l : ( 1 , 2 n ) , ( l + j , l - j )  for 1 = 1 , 2  . . . . .  n - 1 .  

F2:(2,2n),(2+j,  2 - j )  for j = l , 2  . . . . .  n - 1 .  

and,  in general ,  

F~:(i, 2 n ) , ( i + j , i - j )  for  j = l , 2  . . . . .  n - 1 .  

Al l  integers  in the  edges not  involving 2n are  r educed  modu lo  2 n -  1 to leave 

integers  in the  range  1, 2 . . . . .  2 n -  1. 
The  set  Fi is a one-fac tor ,  since i +  j runs over  the  vert ices i + 1, i + 2 . . . . .  

i + n - 1, and  i - j  runs over  the  vert ices i + n, i + n + 1, i + n + 2 . . . .  , i - 1. 

T h e  one- fac to r  F~ is easily drawn;  ver tex i is j o ined  to ver tex  2n (see F igure  

2). T h e  o thers  a re  a r ranged  cyclically and jo ined  by a series of para l le l  chords,  as 

shown. 

i-3 i-2 

"~--~'~i+ 2 
i+5 

Figure 2 
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Also the collection of F~'s is a one-factorization. For  suppose there were a 
repeated edge; then 

(i1 +11, il-jO-~(i2+j2, i2-j2). 

If il + j~ =-- i2 + J2, il - Jl =-- i 2 -  J2 (rood 2n - 1), it follows that i~ = i2, J l = J2. And  if 

il+jl=--i2--J2, i2+j2=~it--]~ (rood 2 n -  1), 

we immediately deduce that il = i2, Jl +J2 ~ 0  (a contradiction). 
W e  have thus proved the theorem, and close this section by illustrating it for 

Klo. The one-factorization produced by the theorem is as follows. 

FI : (1 ,  10), (2, 9), (3, 8), (4, 7), (5, 6) 

F2:(2, 10), (3, 1), (4, 9), (5, 8), (6, 7) 

/73:(3, 10), (4, 2), (5, 1), (6, 9), (7, 8) 

.U4:(4 , 10), (5, 3), (6, 2), (7, 1), (8, 9) 

F5:(5, 10), (6, 4), (7, 3), (8, 2), (9, 1) 

F6:(6 , 10), (7, 5), (8, 4), (9, 3), (1,2)  

Fv: (7, 10), (8, 6), (9, 5), (1, 4), (2, 3) 

F8:(8, 10), (9, 7), (1, 6), (2, 5), (3,4)  

F9:(9,  10), (1, 8), (2, 7), (3, 6), (4, 5). 

3. A special factorization 

We shall need the result of Section 2 later; in this section, we develop a rather 
different factorization. 

First, we note that all the edges of Kz, fall into n disjoint classes 
P1, P2 . . . . .  P~, where edge (i, j) is in Pk if and only if i - ]  =-k (mod 2n). We  call 
this splitting the difference partition of K2~. 

E X A M P L E .  For  Ki2, the difference partition is as follows. 

P1 :(1, 2), (2, 3), (3, 4) . . . . .  (11, 12), (12, 1) 

P2:(1 ,3) ,  (2,4),  (3,5)  . . . . .  (11, 1), (12,2)  

P3:(1, 4), (2, 5), (3, 6) . . . . .  (11, 2), (12, 3) 

P4:(1,  5), (2, 6), (3,7)  . . . . .  (11, 3), (12,4)  

Ps:(1,  6), (2, 7), (3 ,8)  . . . . .  (11,4) ,  (12,5)  

P6:(1, 7), (2, 8), (3,9),  (4, 10), (5, 11), (6, 12). 
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We  now consider the triangles (1+i, 2+i ,  4+ i )  for  i =  1 ,2  . . . . .  2n (addition 
modu lo  2n). This  gives a set T of 2n triangles. We  p rove  

L E M M A  1. The set T contains exactly those edges from P~, P2, P3. 

Proof. We merely  note  that  the differences be tween 1 + i  and 2 + i  are ±1,  
be tween 1 + i  and 4 + i  are +3,  be tween 2 + i  and 4 + i  are ±2.  

In the rest of  this section we consider putt ing together  sets P2~ and P2~+1 to 
fo rm one-factors.  He re  we will assume that  2x + 1 < n (since P. is special). 

L E M M A  2. Let (2n, 2 x + l ) =  m;  then the pairs in Pzx+l split into two one- 
factors. 

Proof. The  gcd m must  be  odd; then the pairs of P2~+1 split into m cycles of 
even length 2n/m. 

For  example ,  if 2n = 12, 2x + l - -3 ,  the set P3 splits into cycles as follows. 

(1, 4), (4, 7), (7, 10), (10, 1) 

(2, 5), (5, 8), (8, 1 1), (11, 2) 

(3, 6), (6, 9), (9, 12), (12, 3). 

We  can use these cycles to give one-factors  by taking al ternate  pairs, namely,  

(1,4),  (7, 10), (5, 8), (11, 2), (3, 6), (9, 12), 

and 

(4, 7), (10, 1), (2, 5), (8, 11), (6, 9), (12, 3). 

This  p rocedure  is perfect ly general.  The  numbers  in the cycles are, in general,  

1 , 2 x + 2 , 4 x + 3 , 6 x + 4  . . . . .  - 2 x  

2 , 2 x + 3 , 4 x + 4 , 6 x + 5  . . . . .  1 - 2 x  

m, m + 2 x  + 1, m + 4 x + 2  . . . . .  m - l - 2 x  

and the one-factors  can be writ ten in the general  form 

(1, 2x + 2), (4x + 3, 6 x + 4 )  . . . .  , ( - 4 x  - 1, - 2 x ) ,  

(2x + 3, 4x + 4), (6x + 5, 8x + 6) . . . . .  (1 - 2x, 2), 

(m, m + 2 x +  1).  • • ( m - 4 x - 2 ,  m - 2 x -  1) 
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and 

( 2 x + 2 , 4 x + 3 ) . . .  ( -2x ,  1) 

(2, 2x + 3)-  • • ( -4x ,  1 - 2x) 

( m + 2 x +  1, m + 4 x + 2 ) .  • • ( m -  1 - 2 x ,  m). 

The  behaviour of P2~ is slightly more  complicated since the gcd (2x, 2n) is 
bound to be even. Our  first result is 

L E M M A  3. I f  (2n, 2 x ) =  d, and if 2n/d is even, then P2x splits into two 
one -factors. 

Proof. The proof  is the same as in Lemma 2. The pairs of P2x create d cycles 
of length 2n/d, namely, 

1 , 2 x +  1 , 4 x +  1 . . . . .  1 - 2 x  

2, 2 x + 2 , 4 x + 2  . . . . .  2 - 2 x  

d -  1 , 2 x + d -  1 , 4 x + d -  1 . . . . .  d -  1 - 2 x  

d, 2x + d, 4x +d . . . . .  d - 2 x .  

Since the length 2n/d of each cycle is even, the construction of L e m m a  2 applies, 
and the pairs of P2~ split into two one-factors.  

We now want to consider the case 2n/d odd. The  cycle decomposit ion now has 
cycles of  odd lengths. We write the cycles over again, in pairs, making a unit shift 
in the second cycle of each pair. Thus the cycles are written as 

1 , 2 x +  1 , 4 x +  1 . . . . . .  1 - 2 x  

2 x + 2 , 4 x + 2 ,  6 x + 2  . . . . .  2 

d -  1 , 2 x + d - l , 4 x + d - l , d - l - 2 x  

d+2x ,  d+4x ,  d + 6 x  . . . . .  d. 

We form two one-factors  f rom these cycle pairs as follows. For  the first one- 
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factor, use the two first elements in each cycle pair: 

( 1 , 2 x + 2 )  with ( 2 x + l , 4 x + t ) ' " ( 1 - 4 x ,  l - 2x )  

(4x + 2, 6x + 2) • • • ( 2 -  2x, 2) 

( d - l , d + 2 x )  with ( 2 x + d - l , 4 x + d - l ) ' " ( d - l - 4 x ,  d - l - 2 x )  

(d + 4x, d + 6x) -  • - ( d -  2x, d). 

For  the second one-factor,  use the two last elements in each cycle pair: 

( 1 - 2 x ,  2) with ( 1 , 2 x + l ) ' " ( 1 - 6 x ,  l - 4 x )  

(2x + 2, 4x + 2) - - • (2 - 4x, 2 - 2x) 

( d - l - 2 x ,  d) with ( d - l , 2 x + d - 1 ) ' " ( d - l - 6 x ,  d - l - 4 x )  

( d +  2x, d + 4 x )  " " • (d-4x, d-2x).  

There  is a problem with these two one-factors.  They have repeated a set A of 
edges from P2~+1, and they have omit ted a set B of edges from Pax. The set A is 
obviously given by the "first-last" edges from the cycle pairs. 

A~(1 ,  2 x + 2 )  • • • ( d -  I, d + 2 x )  

[ ( 1 - 2 x ,  2) ( d - - 1 - 2 x ,  d). 

The  set B consists of the "first-last" joins in each cycle. 

B ~(1, 1 - 2 x ) ,  (2, 2 x + 2 )  . . . .  

t (d - 1 - 2x, d - 1), (d + 2x, d). 

We now have the apparatus to prove 

T H E O R E M  3.1. If 2x + 1 < 2 n ,  then P2~ UP2~+I splits into four one-factors. 

Proof. If (2x, 2 n ) =  d and 2n/d is even, then Lemmas  2 and 3 provide the 
answer. Each of P2x and P2~+~ provides two one-factors.  

If (2x, 2 n ) =  d and 2n/d is odd, we make  the following construction. Use 
L e m m a  1 to provide two one-factors  from Pz~+t, namely F1 and/72. Use the cycle 
construction as described to produce  two more  one-factors  F3 and F4 f rom P2~ 
which repeat  the edges A and omit edges B. 

Now note that all edges A appear  in FI  (they are just the edges with " lower"  
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element odd). We alter F~, still keeping it a one-factor by switching edge pairs. 
Thus we change 

( 1 , 2 x + 2 ) ( 1 - 2 x ,  2) to ( 1 , 1 - 2 x ) ( 2 , 2 + 2 x )  

( d - l , d + 2 x ) ( d - l - 2 x ,  d) to ( d - l , d - l - 2 x ) ( d , d + 2 x ) .  

This result is to give an altered one-factor F~, which now contains the missing 
edges from B but no longer contains the edges from A. So we have 

P~, u P~.+, = ~ +  F~ +F~ + F4. 

We must now consider the special set P,. It is unlike all other P~, in that it 
contains only n rather than 2n edges. 

L E M M A  4. If  n is even, then P, is a single one-factor. If n is odd, then 
P, ~ U P, can be split into three one-factors. 

Proof. The case of n even is obvious; the edges are (1, 1+ n), (2, 2+  n ) , . . . ,  
(n, 2n). If n is odd, then the pairs of P, again form a single one-factor. However,  we 
must pair P, with P, 1; in this case, (2n, n - 1) = 2 and consequently 2n/d is odd; 
the switching operation between P. and P,_~ still works and so P,  1 u Prt gives 
three one-factors. 

Our  final result is 

T H E O R E M  3.2. The graph Ken may be factored into a set of triangles 
covering P1, P2, P~, and a set of 2n - 7 one-factors covering the other Pu 

Proof. Lemma 1 handles P~, P2, P3. If n is even, then Theorem 2 handles 

P4UPs, P6UP7 . . . . .  P,-2 U P,-1, 

to give 4 [ ( n - 2 ) / 2 - 1 ] ~  2 n -  8 one-factors. P, is a single one-factor (Lemma 4). 
This gives our result. 

If n is odd, Theorem 2 applies to 

PaUPs, P6UP7 . . . . .  P,-3UP,-z ,  

to give 4 [ ( n - 3 ) / 2 - 1 ] =  2 n -  10 one-factors. P,-1 UP .  gives three one-factors 
(Lemma 4). Again, the total is 2 n -  7 one-factors. 
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4. An example 

Graph factorization 9 

We wrote out the difference partition for Klz at the beginning of Section 3. 
The set T is immediate. Also, P6 is a one-factor. So we merely need construct 

four one-factors from P4 tO Ps. 
Lemma 2 gives two one-factors from Ps, namely, 

F , : ( I , 6 ) ,  (11,4), (9, 2), (7, 12), (5, 10), (3,8) 

F2:(6, 11), (4, 9), (2, 7), (12, 5), (10, 3), (8, 1). 

P4 has (12 ,4)=3;  so we get cycles of length 3, namely, 159 ,  2610 ,  3711 ,  
4812 .  Pair the cycles as 

1 5 9  3 7 1 1  

6 10 2 8 12 4 

and create one-factors 

F3:(1,6), (5,9), (10,2); (3, 8), (7, 11), (12,4) 

F4:(9, 2), (1, 5), (6, 10); (11, 4), (3, 7), (8, 12). 

Now A is the set (1, 6), (3, 8), (9, 2), (11, 4) appearing in F1. B is the set (1, 9), 
(6, 2), (3, 11), (4, 8); create ~ by replacing A by B and we have 

F'~ = (1, 9), (6, 2), (3, 11), (4, 8), (7, 12), (5, 10). 

Thus P4 U Ps = F'~ + F2 + F3 + F4. 

5. Steiner triple systems 

We now apparently switch our attention to a completely different topic. A 
Steiner triple system is a set of b blocks of three elements each (triples), selected 
from a total set of v elements, with the property that every element is used r 
times and every pair of elements occurs once. A well-known example has v = 9, 
b = 12, r = 4, and is illustrated by the blocks 139 ,  142 ,  358 ,  3 4 6 ,  4 5 7 ,  561 ,  
6 7 9 ,  7 2 3 ,  9 8 4 ,  9 2 5 ,  2 8 6 ,  817 .  
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W e  can immedia te ly  p rove  the classical 

T H E O R E M  5.1. I n  a S te iner  triple sys tem,  

r = - -  
v - 1 v ( v -  1) 

b -  
2 ' 6 

Proof.  The  number  of e lements  in the  blocks can be  coun ted  as 3b or  as rv. 

The  n u m b e r  of pairs  is coun ted  as 3b o r  as ( 2 ) .  Thus  

3b  = rv = v ( v -  1) 
2 ' 

and  the T h e o r e m  follows. 

T H E O R E M  5.2. For  a S te iner  triple s y s t e m  to exist,  i t  is necessary  tha t  v =- 1 or 

v ~ 3 (rood 6). 
P r o @  r is an integer;  hence v is odd.  Thus  v ~ l ,  3, or  5 (mod6) .  But 

v = 6t + 5 gives 

(6t + 5)(6t + 4) 
b = 

6 

and this is non- integral .  Hence  the Theorem.  
O u r  main aim is to show how our  knowledge  of one-fac tors  of K2n provides  an 

easy p roof  of the  converse  of Theo rem 5.2. 

6. Incidence matrices 

A des ign  is mere ly  a set of b locks  se lec ted  f rom a var ie ty  set of v e lements .  
Thus if we have eight  e lements ,  the  blocks 

¢ 

1 2 4 

1 3 5 6 7 

1 5 

2 

3 4 7 
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are a design (not a very interesting one, admittedly). A Steiner triple system is a 
design where all blocks have length 3 (contain 3 elements), and each pair of 
elements occurs once in the design. 

One  easy way of representing a design is by writing down its incidence matrix. 
This is a matrix A of size v x b which is made up of  zeros and ones, with a~i = 1 if 
variety i is in block ], a~ i = 0 if variety i is not  in block j. For  example, the design 
listed at the beginning of this section has incidence matrix 

A = 

0 1 1 1 0 O~ 

0 1 0 0 1 0 

0 0 1 0 0 1 

0 1 0 0 0 1 

0 0 1 1 0 0 

0 0 1 0 0 0 

0 0 1 0 0 1 

\ 0 0 0 0 0 0 

The empty column corresponds to the null block; the empty row corresponds to 
the non-occurrence  of variety 8. 

The triple system on 9 elements listed in Section 5 has a 9 x 12 incidence 
matrix, namely, 

A = 

1 1 0 0 0 1 0 0 0 0 0 1 

0 1 0 0 0 0 0 1 0 1 1 0 

o 1 0 t 1 0 0 0 1 0 0 0 

0 1 0 1 l 0 0 0 1 0 0 0 

0 0 1 0 1 1 0 0 0 1 0 ~ 

0 0 0 t 0 1 1 0 0 0 1  oooooooo / 
0 0 1 0 0 0 0 0 1 0 1 

1 0 0 0 0 0 1 0 1 1 0 

Every Steiner triple system has such an incidence matrix with row sums equal to r, 
column sums equal to 3. We  shall use incidence matrices to link up the results on 
one-factorizations of  K2, with Steiner triple systems. 
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7. A n  embedding  theorem 

The set 1 2 4 is a (trivial) STS on three elements; we call it D1. The set of 
blocks 1 2 4, 2 3 5, 3 4 6, 4 5 7, 5 6 1, 6 7 2, 7 1 3, is an STS on 7 elements; we call 
it D 2. 

In this example, the blocks of D1 (there is only one) occur as a subsystem of 
the blocks of D2. When this occurs, we say that D1 is embedded in D2. 

From the point of view of incidence matrices, we may permute the blocks of 
D2 so that the first columns of the incidence matrix of D2 (say I(D2)) correspond 
to those blocks in D1. Then we may permute rows of I(D2) so that the first rows 
of 1(D2) correspond to exactly those varieties appearing in D1. The incidence 
matrix of I(D2) then has the form 

I(D2) = \ 0 

For example, the designs D2 and D~ at the beginning of this section give such an 
incidence matrix as 

v a t  

1 

2 

4 

I(D2) = 3 

5 

6 

7 

0 

0 

0 0 0 1 0 1 

1 0 0 0 1 0 

o 0 1 1 0 0 

1 1 0 0 0 1 . 

1 0 1 1 0 

0 1 0 1 1 

0 0 1 0 1 

We now prove a fundamental result. 

T H E O R E M  7.1. Any  Steiner triple system on v elements can be embedded in 
an STS on 2v + 1 elements. 

Pro@ Let the designs be called D1 and D2. The number of blocks in D~ is 
v ( v - 1 ) / 6 ,  in /)2 is (2v+  1)v/3. 

The r-values for D1 and Dz (row sums) are (v - 1)/2 and v respectively. Now, 
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let  us analyze 
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I ( D 2 ) = \  0 I C I "  

First ,  there  are  

( 2 v + l ) v  v(v-1)  v(v+ l) 
3 6 2 

columns  in B and in C. Also,  there  are ( 2 v +  1 ) - ( v ) =  v +  1 rows in C. 

Now every  pa i r  of var ie t ies  cor responding  to  the last v + 1 rows must  occur. 

Hence  there  are  at least  two ones in each column of C. 
The  number  of ones  in each row of B is v - ( v  - 1)/2 = (v + 1)/2. Since each of 

the  first v var ie t ies  must  occur  with each of the  last  v + 1, the  s t ructure  of B and C 

is now const ra ined:  each of the  (v + 1)/2 occurrences  of var ie ty  i (i = 1, 2 . . . . .  v) 

in row i of B occurs in a co lumn with exact ly two l ' s  co r respond ing  to var ie t ies  

be tween  v +  1 and 2 v +  1. These  last pairs  give a 1-factor o f / q , ~ l  in a comple te  

graph whose vert ices are named  f rom v + 1 to 2v + 1. 

This occurs  for  each i (i = 1, 2, 3 . . . . .  v), and  so we have v edge-d i s jo in t  

one- fac tors  of K~,+I, that  is, a one-fac tor iza t ion .  So we bui ld up B by put t ing 

(v + 1)/2 entr ies  of 1 in each row (all columns disjoint) .  Then  C is filled in by 

placing a 1-factor o f / Q + I  in those entr ies  cor responding  to occurrences  of variety 

i. By T h e o r e m  1, this is always possible.  

E X A M P L E .  W e  take  D~ as the  design on var ie t ies  1, 2 . . . . .  7 with blocks 

t 24, 235, 346 . . . . .  713. Then  D1 has incidence matr ix  

A = 

1 0 0 0 1 0 1~ 

1 1 0 0 0 1 0 

0 1 1 0 0 0 1 

1 0 1 I 0 0 0 

0 1 0 1 1 0 0 

0 0 1 0 1 t 0 

~0 0 0 1 0 1 1 / 

The  incidence matr ix  of  D2 must  have 4 more  ones  in each of  the  first 7 rows. 
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8. A second embedding theorem 

As might  be imagined,  we now use T h e o r e m  3 to give ano ther  embedd ing  

theorem.  

T H E O R E M  8.1. A n y  STS on v elements can be embedded in an STS on 

2v + 7 elements. 

Proof. O u r  m e t h o d  is s imilar  to  that  e m p l o y e d  in the last theorem.  If A is the  

incidence matr ix of D1, then again we have 

A B 

The  number  of rows in C is now v + 7. The  number  of columns in B and C is 

( 2 v + 7 ) ( 2 v + 6 )  v ( v - 1 )  ( v + 7 ) ( v + 2 )  

6 6 2 

T h e  numbers  of l ' s  per  row of B is 

2 v + 6  v - 1  v + 7  

2 2 2 

These  ones  pa i r  up, as in the  last Theorem,  with 1-factors on v + 1 . . . . .  2v + 7, to  

(v + 7) 
p roduce  - -  columns of C. But  this leaves exact ly v + 7 columns over ;  these 

2 
last v + 7 columns have zeros  in B and have three  ones  pe r  column in C. 

W e  thus see that  I ( D J  can be  wri t ten in the  more  specific form: 

I (DJ=  \0 t C, I C2/" 

B1 has ( v + 7 ) / 2  ones pe r  row; C~ is made  up of v one- fac tors  of Kt,+7 (on the 
symbols  v + 1 . . . . .  2v +7) ,  and (22 is made  up of v + 7 tr iples covering exact ly 

those edges  of /Q+7 not  a l ready used. This  is exactly the  sort  of factorizat ion 

p rov ided  by T h e o r e m  3; so, our  embedd ing  is establ ished.  
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EXAMPLE. For D1, we take the trivial design 1 2 3; then 

AEQ. MATH. 

Bt is merely the matrix with 3 rows and 15 columns given by 

B l =  

(i1111ooooooooo!) 
0 0 0 0 1 1 1 1 1 0 0 0 0 . 

0 0 0 0 0 0 0 0 0 1 1 t 1 

To get C1 and C 2 ,  w e  use Theorem 3 on Klo, using symbols 4, 5, 6 . . . . .  13. Our 
result first gives (?2 in the form 

1 0 0 0 0 0 0 1 0 1 \  

o1\ 1 0 0 0 0 0 0 1 

1 1 0 0 0 0 0 0 

i 0 1 1 0 0 0 0 0 0 

C2 = 1 0 1 1 0 0 0 0 0 

0 1 0 1 1 0 0 0 0 

o o o o  

0 0 0 1 0 1 1 0 0 

0 0 0 0 1 0 1 1 0 ]  
/ 0 0 0 0 0 1 0 1 1 

The partitions P~ and P5 of Lemma 4 are just 

P4:(4, 8), (5, 9), (6, 10) . . . . .  (13,7) 

P5:(4, 9), (5, 10), (6, 11), (7, 12), (8, 13). 

P5 is a one-factor itself; P4 yields cycles 

4, 8, 12, 6, 10 and 5, 9, 13, 7, 11. 
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Our  construction then writes these as 

4, 8, 12, 6, 10 

9 , 1 3 , 7 , 1 1 , 5  

and produces one-factors 

F , : (4 ,  9), (8, 12), (6, 10), (13,7), (11, 5), 

and 

F2:(lO, 5), (4, 8), (12, 6), (9, t3), (7, 11). 

Our switching operation then replaces P5 by the one factor 

F3:(4, 10), (5, 9), (6, t l ) ,  (7, 12), (8, 13). 

These three one-factors then allow us to write down C1 in the form 

C1 z 

i 0 0 
0 0 

0 1 

0 0 0 

0 1 0 

1 0 0 

0 0 1 

0 0 0 

0 0 

0 0 0 

0 1 1 

0 0 0 

1 0 0 

0 0 0 1 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 0 0 0 

1 0 0 0 

1 0 0 0 

0 0 0 0 

0 1 0 0 

0 0 0 1 

0 0 0 

0 1 0 

0 0 0 

0 0 1 

1 0 0 

0 1 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 

0 0 0 0 1 

0 1 0 0 0 

1 0 0 0 0 

0 0 t 0 0 000  / 
0 0 0 0 

We have thus constructed the incidence matrix of a design on 13 varieties with 26 
blocks. 

9. A different embedding 

For a different touch, we use another method to prove an extra embedding 
theorem which we do not really need. However, the result is so simple that it fits 
in nicely with those of the last two sections. 
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T H E O R E M  9.1. A n y  S T S  on 1) symbols can be embedded in an S T S  on 31) 

symbols. 

Proof. Write down v(v  - 1)/6 blocks on symbols  11, 2/ . . . . .  1)1- Write  down a 
second such design on symbols 12, 22 . . . . .  v2; finally, write down a third design on 
13, 23 . . . . .  1)3. This gives v ( v -  1)/2 blocks. 

Now write down a v x v latin square on the symbols  11, 21 . . . .  , vl. Any  latin 
square will do. So we really need not know what  a latin square is; we might just 
write down the array 

11 21 31 " ' "  1)1 

vt 11 2, " ' "  (1)-1)1 

(1)-  1), 1)1 11 " ' "  ( v - 2 ) 1  

21 31 41 " ' "  11 

There  a r e  i )  2 elements  in this array. W e  use them to create v 2 triples by the 
algorithm: 

(Element ) (Row co-ordinate  sub 2)(Column co-ordinate  sub 3). 

We  now have v2+ v(v - 1)/2 = (3v - 1)v/2 blocks; this is the correct  number  for an 
STS on 3v elements.  So we merely  need check that each pair  occurs exactly once. 

Pairs (a~, b~) occur exactly once in the three embedded  systems. Pairs (al ,  b2) 
occur exactly once since each symbol  occurs exactly once in each row of the latin 
square;  pairs (al ,  b3) occur exactly once since each symbol  occurs exactly once in 
each column of the latin square;  finally, pairs (a2, b3) occur exactly once since row 
and column co-ordinates  identify a unique e lement  of the latin square.  

E X A M P L E .  Start with the design 11 2t 31 and fo rm 2 copies 122232 and 
13 23 33- Write  down the array 

11 21 31 

31 11 21 

2l 31 l l  

and use it to give 9 more  blocks, namely,  

11 12 13 21 12 23 31 12 33 

31 22 13 11 22 23 21 22 33 

21 32 13 31 32 23 11 32 33. 
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A similar procedure immediately takes an STS on 7 symbols and produces the 
2 1 + 4 9 = 7 0  blocks of an STS on 21 symbols. 

10. The existence theorem for triple systems 

We now have a means of constructing Steiner triple systems on 6t + 1 or 6t + 3 
symbols (the only possibilities, by Theorem 5). We list the first few cases before 
proving the general theorem. 

v Construction 

3 One block 1 2 3 

7 2(3) + 1 

9 3(3) = 2(1) + 7 

13 2(3)+7 

15 2(7) + 1 

l 9 2(9) + 1 
21 2(7)+7 

25 2(9) + 7 

27 2(13)+ 1 

31 2(15)+1 

Note that Theorem 8, the tripling construction, is not really needed except for a 
system on 9 elements (and we could write 9 = 2 ( 1 ) + 7 ,  the STS on 1 element 
being the null set). 

T H E O R E M  10.1. A n  STS  exists for any number of  elements v, where v ~ 1 or 

3 (mod 6). 

Proof. Certainly we have just checked this up to v-values of 31. 
Any larger v can be specified as 12t+ 1, 12 t+3 ,  12 t+7 ,  12 t+9 ,  and we make 

the induction hypothesis that the designs exist for smaller values. But 

12t+ 1 = 2 ( 6 t - 3 ) + 7 ,  

1 2 t + 3 =  2(6t+ 1)+ 1, 

12 t+7  = 2(6t + 3) + 1, 

1 2 t + 9 = 2 ( 6 t + 1 ) + 7 .  

These equations establish Theorem 10.1 by induction. Indeed, we have proved the 
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stronger result that there exist designs on 12t + 3 and 12t+ 9 symbols containing 
an embedded design on 6t+ 1 symbols; there exists a design on 12t+ 1 symbols 
containing an embedded design on 6 t - 3  symbols; there exists a design on 12t + 7 
symbols containing an embedded design on 6t + 3 symbols. 

11. Pairings 

We now move from general triple systems to cyclically generated systems. 
These special systems will be generated using a pairing concept. 

Let P(1, n) be a set of n pairs of integers in which each of the integers 1 to 2n 
appears exactly once as an element of a pair and each of the integers 1 to n occurs 
exactly once as a difference between elements of the same pair. For example, the 
pairs (1, 2), (5, 7), (3, 6), (4, 8) form a P(1, 4). Similarly, P(1, n)/j is defined to be 
a set of n - 1 pairs with each of the integers 1 to 2(n - 1) appearing exactly once 
and each of the integers from l to n except j occurring as a difference exactly 
once. Thus, the pairs (3, 4), (6, 8), (1, 5), (2, 7) form a P(1, 5)/3. 

It is convenient to represent P(I ,  n) pictorially by placing 2n points labelled 1 
to 2n on a line and drawing an edge between points that are paired together. 
P(1, n)/j would be similarly represented on 2 ( n - 1 )  points. For example, the 
P(1,4) and P(1, 5)/3 described in the last paragraph would be represented as in 
Figure 3. Thus, in a P(1, n), each point must be incident with exactly one edge 
and the n edges represent each of the differences 1 to n exactly once. 

Figure 3 

P(1,5) 

P(1, n) does not exist for all n. If we colour the 2n points alternately black and 
white, there are n of each colour. Pairs with an odd difference contain one point 
of each colour. In pairs with an even difference, both points are the same colour. 
Thus, it is necessary that there be an even number of even integers less than or 
equal to n. Therefore [n/2] must be even, and we have 
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T H E O R E M  11.1. P(1, n) can exist only for n -=0, 1 (mod 4). 

A similar argument determines a necessary condition for the existence of a 

P(1, n)/2. 

T H E O R E M  11.2. P(1/n)/2 can exist only/'or n =-2, 3 (mod 4). 
In fact, these conditions are also sufficient, as we shall demonstrate. 

12. Sufficiency conditions 

Consider n = 4k. A P(1, 4) was exhibited in Figure 3. P(1, 8) and P(1, 12) are 

represented in Figure 4. 

P(1,8) P(1,12) 

Figure 4 

A general solution is suggested by Figure 4, and P(1,4k) is displayed in Figure 5 

for k ~> 2 (the differences label the edges). 

P(1,4k) 

4k-1 

Figure 5 



22 R.G. STANTON AND 1. P GOULDEN AEO. MATH 

A very simple modification provides a P(1, 4k + 1) for k / > 2  (see Figure 6). 

4k+1 

~ P(14k+l) 
4k-1 

Figure 6 

A solution for P(1, 1) and P(1, 5) exists as shown in Figure 7. 

P (1.1) 

Figure 7 

So we have established the following theorem. 

T H E O R E M  12.1. P(1, n) exists if and only if n-=--0, 1 (mod 4). 

Solutions as given by the figures above are as follows. 

P(1, 4) :(1,  2), (5, 7), (3, 6), (4, 8). 

P (1 ,4k ) ,  k>~2:(3k, 3k+l), (1 ,2k) ,  ( 2 k +  1 , 6 k + 1 ) ,  

(2k-i ,  2k+l+i)  for i = 1 , 2  . . . . .  k - 2 ,  

(k+2-i ,  3k+l+i)  for i = 1 , 2  . . . . .  k, 

(6k+l - i ,  6k+l+i)  for i = 1 ,  2 . . . . .  2 k - 1 .  
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e( l ,  1):(1, 2). 

P(1, 5):(1,  2), (7, 9), (3, 6), (4, 8), (5, 10). 

P ( 1 , 4 k +  1), k ~>2: (3k, 3 k +  1), (1, 2k), ( 2 k + 1 , 6 k + 2 ) ,  

( 2 k - i ,  2 k + l + i )  for  i = 1 , 2  . . . . .  k - 2 ,  

(k+2-i, 3k+l+i) for  i = 1 , 2  . . . . .  k, 

(6k+2-i, 6k+2+i) for i = l ,  2 . . . . .  2k. 

For  n = 4k + 2 ,  and k />3 ,  a solution for P(1, n)/2 is represented  in Figure 8. 

4k-2 

Figure 8 

A simple modification yields a P(1, n)/2 for n = 4k +3 ,  k >12 (see Figure 9). 

4k+2 

P(1 4k+3)I2 ~ ~  
4k-2 

Figure 9 

23 
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For n = 2, 3, 6, 7, 10, we have solutions for P(1, n)/2 represented in Figure I0. 

P(12)/2 P(1.3)/2 

P( 1,10 )/2 P( 1,7 )/2 

Figure 10 

We have thus established the following theorem. 

T H E O R E M  12.2. P(1, n)/2 exists if and only if n =- 2, 3 (mod 4). 

The solutions represented by the figures above are as follows. 

P(1, 2)/2 : (1, 2). 

P(1, 6)/2:(2, 3), (6, 9), (4, 8), (5, 10), (1,7). 

P(I, 10)/2:(1, 1t), (2, 10), (3,9), (4,8), (5, 14), (6, 13), (7, 12), 

(15, 18), (16, 17). 

P(1 ,4k+2) /2 ,  k>~3:(2k+2,6k+2),  (2k+ 1 ,6k+3) ,  (6k+4 ,  Sk+2) ,  

(5k +3, 5k +4), 

( 2 k + l - i ,  2k+2+i)  for i = 1 , 2  . . . . .  2k, 

( 6 k + 2 - i ,  6k+4+i)  for i = 1 , 2  . . . . .  k - 3 ,  

( 5 k + 3 - i ,  7 k + l + i )  for i = 1 , 2  . . . . .  k. 

P(1, 3)/2 :(2, 3), (1, 4). 

P(1, 7)/2:(1, 8), (2, 7), (3, 6), (4, 10), (5, 9), (11, 12). 
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P(1, 4k + 3)/2, k t> 2 : (2k + 3, 6k + 3), (2k + 2, 6k + 4), (4k + 5, 6k + 5), 

(7k +4 ,  7k +5) ,  

(2k + 2 - i ,  2k + 3 + i )  

(6k + 3 - i ,  6k + 5+ i) 

(5k + 5 - i ,  7k + 5+ i) 

for i = 1 , 2  . . . . .  2 k + l ,  

for 1, 2 . . . . .  k - 2 ,  

for i = 1 , 2  . . . . .  k - 1 .  

25 

13. Cyclic Steiner triple systems 

As we pointed out earlier, a Steiner triple system on v elements, denoted  
S(2, 3, v), is a set of triples f rom v elements in which each pair of distinct 
elements occur together  in a triple precisely once. There  are b = v ( v -  1)/6 triples 
in such a system and each element occurs r = ( v - 1 ) / 2  times; such a system is a 
balanced incomplete block design with parameters  (v, v ( v - 1 ) / 6 ,  ( v - 1 ) / 2 ,  3, 1), 
and v --- 1, 3 (mod 6). 

We wish to construct the t(6t + 1) triples of an S(2, 3, 6t + 1) in the following 
manner:  form t sets of 6 t +  1 triples by adding 0, 1 . . . . .  6t ( m o d 6 t +  1) to all 
elements of a set of initial triples (a~, b~, c~), i = 1, 2 . . . . .  t. Thus all pairs having 
differences ±(a~-b~),  + ( b ~ - q ) ,  2 ( q  - a0,  mod 6 t +  1, will be represented in the 
set. Adop t  the convention that the differences are in the range - 3 t  to 3t. Then, to 
represent each pair of distinct elements exactly once, the set of t initial triples 
must have each non-zero  integer f rom - 3 t  to 3t represented exactly once in the 6t 
differences. For  t = 2, the pair of triples (0, 1, 4), (0, 2, 7) is such a set of initial 
triples; we shall say that these produce the difference triples (1, 3, 4) and (2, 5, 6), 
meaning thereby that they produce  the differences 21 ,  23 ,  24 ,  and 22,  25 ,  ±6.  
Let Q(t)  be the set of difference triples. Q(t)  is thus a set of t triples (x~, y~, z~) in 
which each of the elements 1, 2 . . . .  , 3 t  is represented exactly once and either 
x~+y~=z~ o r x ~ + y i + z ~ = 6 t + l  ( i = l  t o t ) .  

The  process is reversible since, if Q(t)  exists, the set of  triples (0, x~, x~ + y~) 
is an appropriate  set of initial triples to generate  a design S ( 2 , 3 , 6 t + 1 )  on 
elements 0, 1 . . . . .  6t. Thus we have 

T H E O R E M  13.1. If Q(t) exists, then S(2, 3, 6 t +  1) exists. 

14. Construction of the sets Q(t )  

Let us try to find a set Q(t) in the restricted case that x~ = i and x~ + Yi = z~ for 
all i = 1, 2 . . . . .  t. Then the set of pairs (yi, z~) has each integer f rom t +  1 to 3t 

appearing exactly once;  since z~ - y~ = i, each integer f rom 1 to t appears exactly 
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once as a difference. Thus,  the set of pairs (yi - t, z~ - t), where  i = l, 2 . . . . .  t, is a 
P(1, t). Conversely,  given a P(1, t), we can reverse the process by placing the 
e lements  of  pairs in increasing order,  adding t to each, and adjoining the 
difference to yield a Q(t) .  Thus,  by T h e o r e m  12.1, we have 

T H E O R E M  14.1. O(t )  exists for t -=0,  1 (mod4) .  

For  example ,  corresponding to the P(1, 4) given by ( I ,  2), (5, 7), (3, 6), (4, 8), 
we have the following Q(4):  

(1, 5, 6), (2, 9, 11), (3, 7, 10), (4, 8, 12). 

Now restrict Q(t)  so that  xi = i, xi + Yi = z~, for i~  2; (Y2, Z2) = ( 3 t -  1, 3t). Then 
we have the set of t - 1  pairs (y~, z~), for i =  1, 3 ,4  . . . . .  t, with z~-y~ = i; each 
e lement  f rom t + l  to 3 t - 2  appears  exactly once. Thus,  (y~-t ,z~-t) ,  for  i =  
1, 3 , 4  . . . . .  t, is a pairing P(1,  t)/2. Again,  we can reverse the process and 
T h e o r e m  12.2 gives 

T H E O R E M  14.2. Q(t) exists for t -=2,  3 (mod4) .  

As  an example,  if P(1,  6)/2 is (2, 3), (6, 9), (4, 8), (5, 10), (1, 7), then the 
corresponding Q(6) is 

(2, 17, lS), (1, 8, 9), (3, 12, 15), (4, 10, 14), (5, 11, 16), (6, 7, 13). 

Thus, combining Theo rems  13.1, 14.1 and 14.2 we have 

T H E O R E M  14.3. S(2, 3, 6t + 1) exists for all values of t. 

The  triples of an S(2, 3, 6t + 1) on the e lements  0, 1, 2 . . . . .  6t are obta ined by 
adding 0, 1, 2 . . . . .  6t (mod 6t + 1) to the set of  triples given below. 

t = 4 : ( 0 ,  1,6),  (0 ,2,  11), (0 ,3 ,  10), (0 ,4 ,  12). 

t = 4k, k t> 2: (0, 1, 7k + 1), (0, 2k - 1, 6k),  (0, 4k, 10k + 1), 

(0 ,2 i+1 ,6k+1+i )  for  i = 1 , 2  . . . . .  k - 2 ,  

( 0 , 2 k - l + 2 i ,  7 k + l + i )  for i = 1 , 2  . . . . .  k, 

(0,2i, 10k+l+ i )  for  i = 1 , 2  . . . . .  2 k - 1 .  
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t =  1 :(0, 1, 3). 

t=5:(O, 1,7), (0,2, 14), (0,3, 11), (0,4, 13), (0,5, 15). 

t = 4 k + l ,  k~>2:(O, 1, 7k +2), (0, 2 k - 1 , 6 k  + 1), (O, 4 k + l ,  lOk+3),  

(0,2i+1,6k+2+i) for i = 1 , 2  . . . . .  k - 2 ,  

(0,2k-l+2i,  7k+2+i) for i = 1 , 2  . . . . .  k, 

(0,2i, lOk+3+i) for i = 1 , 2  . . . . .  2k. 

t =2 : (0 ,  1,4), (0,2,7).  

t = 6: (0 ,  1, 9), (0, 2, 19), (0, 3, 15), (0, 4, 14), (0, 5, 16), 

(0, 6, 13). 

t=lO:(O, 1, 27), (0,2,31),  (0, 3, 28), (0,4, 18), (0,5,22),  

(0, 6, 19), (0, 7, 23), (0, 8, 20), (0, 9, 24), (0, 10, 21). 

t=4k+2, k~>3:(O, 4k, lOk+4),  (O, 4 k + 2 , 1 0 k + 5 ) ,  ( 0 , 2 k - 2 , 1 2 k + 4 )  

(0, 1, 9k+6) ,  (0,2, 12k+7) ,  

(0,2i+1,6k+4+i) for i = 1 , 2  . . . . .  2k, 

(0,2i+2,10k+6+i) for i = 1 , 2  . . . . .  k - 3 ,  

(0,2k-2+2i, l lk+3+i) for i = 1 , 2  . . . . .  k. 

t = 3:(0 ,  1, 6), (0, 2, 10), (0, 3, 7). 

t=7:(O, 1, 19), (0, 2, 22), (0, 3, 13), (0, 4, 16), (0, 5, 14), 

(0, 6, 17), (0, 7, 15). 

t=4k+3, k/>2: (0 ,4k ,  lOk+6), ( 0 , 4 k + 2 ,  lOk+7),  (0,2k, lOk+8) ,  

(0, 1, 11k+8) ,  (0,2, 12k + 10), 

(0,2i+1,6k+6+i) for i = 1 , 2  . . . . .  2 k + l ,  

(0,2i+2,10k+8+i) for i = 1 , 2  . . . . .  k - 2 ,  

(0,2k+2i, l lk+8+i) for i = 1 , 2  . . . . .  k - 1 .  

27 
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15. Cyclic Steiner systems on 6 t +  3 dement s  

For completeness, we include a well-known construction for S(2, 3, 6 t+3)  
on elements (i , j) ,  for i = 0 ,  1,2 and ] = 0 ,  1 . . . .  2t (Cf. [1], [3] or [5]). The 
system is obtained by adding (0, 0), (0, 1) . . . . .  (0, 20  to each of the following 
3t+ 1 triples; addition is rood3 for the first component and m o d 2 t +  1 for the 
second component. 

[ ( j , i+ l ) ,  (j, 2 t - i ) ,  ( ]+1 ,0) ]  for j = 0 , 1 , 2 ,  and i = 0 , 1  . . . . .  t - l ;  
[(o, o), (1, o), (2, o)]. 

Thus we have 

T H E O R E M  15.1. S(2, 3, 6 t+3)  exists for all values of t. 

A simple cyclic construction, yielding S(2, 3, 6t + 3) on elements 0, 1 . . . . .  6t + 
2, may be obtained for t--=0 (mod 3) (see, for example, [8]). 

We have thus given constructive cyclic methods for generating Steiner triple 
systems on v elements whenever v =-1, 3 (rood 6). This provides an elementary 
proof of 

T H E O R E M  15.2. S(2, 3, v) exists and can be cyclically generated for v ==- 1, 3 
(mod 6). 
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