Survey Paper

Graph factorization, general triple systems, and cyclic triple systems

R. G. Stanton and I. P. Goulden

Abstract. In this self-contained exposition, results are developed concerning one-factorizations of complete graphs, and incidence matrices are used to turn these factorization results into embedding theorems on Steiner triple systems. The result is a constructive graphical proof that a Steiner triple system exists for any order congruent to 1 or 3 modulo 6 . A pairing construction is then introduced to show that one can also obtain triple systems which are cyclically generated.

1. Introduction

Steiner triple systems are now one of the oldest of combinatorial structures, with applications in many areas from universal algebra to the design of statistical experiments. Basically, a Steiner triple system on v elements is a set of b triples constructed so that each of the v given elements occurs a constant number r of times, and each pair from the v given elements occurs exactly once. It has been known for a long time that such systems exist if and only if v is congruent to 1 or 3 , modulo 6 .

The aim of this paper is to provide a completely self-contained account of some aspects of graph theory, incidence matrices, and triple systems. However, for additional material, we cite [4] for a fine treatment of graph theory and [3] for a wealth of material on designs; [8] is a general introductory text with much material on graphs, designs, and other aspects of combinatorics; [2] is an exhaustive reference list concerning Steiner triple systems.

We first consider factors of graphs, and obtain an easy conceptual proof of the necessary and sufficient conditions for the existence of triple systems (this may be compared with the omission of the case $6 t+1$ in [5] and [8], or with the quite

AMS (1980) subject classification: Primary 05B05, 05B20.
lengthy and involved treatment of this case given in [3]). We will also demonstrate the existence of special cyclic triple systems (this was first done in [6], but the methods used there are considerably more complicated than those which we employ; we introduce a simple "pairing" concept, which we find has also been used in [7], but for a different purpose).

We hope that this unified survey will be useful in providing a direct selfcontained, and simple account of an extremely important type of combinatorial structure.

2. Complete graphs

A complete graph on n vertices consists of n vertices in general position and the $\binom{n}{2}$ joining edges. Such a configuration is denoted by K_{n}; we illustrate K_{4} and K_{5} in Figure 1.

Figure 1
K_{4} and K_{5}
A one-factor of $K_{2 n}$ consists of n vertex-disjoint edges. For example, if the vertices of K_{6} are named $1,2,3,4,5,6$, then the 15 edges may be denoted by (i, j) where $i \neq j$. Here (i, j) is the edge joining vertex i to vertex j. One one-factor would be the set of edges

$$
(1,2),(3,4),(5,6)
$$

since all six vertices appear.
A one-factorization of $K_{2 n}$ consists of $2 n-1$ one-factors such that the edges in the one-factors are all distinct. In the case of K_{6}, the following five one-factors give a complete set of edges, and thus provide a one-factorization:

$$
\begin{aligned}
& F_{1}:(1,2),(3,4),(5,6) \\
& F_{2}:(1,3),(2,5),(4,6) \\
& F_{3}:(1,4),(2,6),(3,5) \\
& F_{4}:(1,5),(2,4),(3,6) \\
& F_{5}:(1,6),(2,3),(4,5)
\end{aligned}
$$

A graphic way of looking at this one-factorization is to think of all edges in F_{i} as being coloured with colour i. Then the one-factorization colours the edges of $K_{2 n}$ in $2 n-1$ colours in such a way that the $2 n-1$ edges leaving any vertex are all coloured distinctly.

The fundamental result on one-factorizations is the following theorem, which can be proved in many different ways. The particular construction we describe was probably first given by König.

THEOREM 2.1. Every complete graph $K_{2 n}$ on $2 n$ vertices possesses a onefactorization.

Proof. Let the vertices be labelled $1,2,3, \ldots, 2 n$. The one-factors are specified as follows.

$$
\begin{aligned}
& F_{1}:(1,2 n),(1+j, 1-j) \text { for } j=1,2, \ldots, n-1 . \\
& F_{2}:(2,2 n),(2+j, 2-j) \text { for } j=1,2, \ldots, n-1 .
\end{aligned}
$$

and, in general,

$$
F_{i}:(i, 2 n),(i+j, i-j) \text { for } j=1,2, \ldots, n-1
$$

All integers in the edges not involving $2 n$ are reduced modulo $2 n-1$ to leave integers in the range $1,2, \ldots, 2 n-1$.

The set F_{i} is a one-factor, since $i+j$ runs over the vertices $i+1, i+2, \ldots$, $i+n-1$, and $i-j$ runs over the vertices $i+n, i+n+1, i+n+2, \ldots, i-1$.

The one-factor F_{i} is easily drawn; vertex i is joined to vertex $2 n$ (see Figure 2). The others are arranged cyclically and joined by a series of parallel chords, as shown.

Figure 2

Also the collection of F_{i} 's is a one-factorization. For suppose there were a repeated edge; then

$$
\left(i_{1}+j_{1}, i_{1}-j_{1}\right)=\left(i_{2}+j_{2}, i_{2}-j_{2}\right)
$$

If $i_{1}+j_{1} \equiv i_{2}+j_{2}, i_{1}-j_{1} \equiv i_{2}-j_{2}(\bmod 2 n-1)$, it follows that $i_{1}=i_{2}, j_{1}=j_{2}$. And if

$$
i_{1}+j_{1} \equiv i_{2}-j_{2}, \quad i_{2}+j_{2}=i_{1}-j_{1}(\bmod 2 n-1)
$$

we immediately deduce that $i_{1}=i_{2}, j_{1}+j_{2} \equiv 0$ (a contradiction).
We have thus proved the theorem, and close this section by illustrating it for K_{10}. The one-factorization produced by the theorem is as follows.

$$
\begin{aligned}
& F_{1}:(1,10),(2,9),(3,8),(4,7),(5,6) \\
& F_{2}:(2,10),(3,1),(4,9),(5,8),(6,7) \\
& F_{3}:(3,10),(4,2),(5,1),(6,9),(7,8) \\
& F_{4}:(4,10),(5,3),(6,2),(7,1),(8,9) \\
& F_{5}:(5,10),(6,4),(7,3),(8,2),(9,1) \\
& F_{6}:(6,10),(7,5),(8,4),(9,3),(1,2) \\
& F_{7}:(7,10),(8,6),(9,5),(1,4),(2,3) \\
& F_{8}:(8,10),(9,7),(1,6),(2,5),(3,4) \\
& F_{9}:(9,10),(1,8),(2,7),(3,6),(4,5) .
\end{aligned}
$$

3. A special factorization

We shall need the result of Section 2 later; in this section, we develop a rather different factorization.

First, we note that all the edges of $K_{2 n}$ fall into n disjoint classes $P_{1}, P_{2}, \ldots, P_{n}$, where edge (i, j) is in P_{k} if and only if $i-j \equiv k(\bmod 2 n)$. We call this splitting the difference partition of $K_{2 n}$.

EXAMPLE. For K_{12}, the difference partition is as follows.

$$
\begin{aligned}
& P_{1}:(1,2),(2,3),(3,4), \ldots,(11,12),(12,1) \\
& P_{2}:(1,3),(2,4),(3,5), \ldots,(11,1),(12,2) \\
& P_{3}:(1,4),(2,5),(3,6), \ldots,(11,2),(12,3) \\
& P_{4}:(1,5),(2,6),(3,7), \ldots,(11,3),(12,4) \\
& P_{5}:(1,6),(2,7),(3,8), \ldots,(11,4),(12,5) \\
& P_{6}:(1,7),(2,8),(3,9),(4,10),(5,11),(6,12) .
\end{aligned}
$$

We now consider the triangles $(1+i, 2+i, 4+i)$ for $i=1,2, \ldots, 2 n$ (addition modulo $2 n$). This gives a set T of $2 n$ triangles. We prove

LEMMA 1. The set T contains exactly those edges from P_{1}, P_{2}, P_{3}.
Proof. We merely note that the differences between $1+i$ and $2+i$ are ± 1, between $1+i$ and $4+i$ are ± 3, between $2+i$ and $4+i$ are ± 2.

In the rest of this section we consider putting together sets $P_{2 x}$ and $P_{2 x+1}$ to form one-factors. Here we will assume that $2 x+1<n$ (since P_{n} is special).

LEMMA 2. Let $(2 n, 2 x+1)=m$; then the pairs in $P_{2 x+1}$ split into two onefactors.

Proof. The gcd m must be odd; then the pairs of $P_{2 x+1}$ split into m cycles of even length $2 \mathrm{n} / \mathrm{m}$.

For example, if $2 n=12,2 x+1=3$, the set P_{3} splits into cycles as follows.

$$
\begin{aligned}
& (1,4),(4,7),(7,10),(10,1) \\
& (2,5),(5,8),(8,11),(11,2) \\
& (3,6),(6,9),(9,12),(12,3) .
\end{aligned}
$$

We can use these cycles to give one-factors by taking alternate pairs, namely,
$(1,4),(7,10),(5,8),(11,2),(3,6),(9,12)$,
and
$(4,7),(10,1),(2,5),(8,11),(6,9),(12,3)$.
This procedure is perfectly general. The numbers in the cycles are, in general,

$$
\begin{aligned}
& 1,2 x+2,4 x+3,6 x+4, \ldots,-2 x \\
& 2,2 x+3,4 x+4,6 x+5, \ldots, 1-2 x \\
& \ldots \cdots \\
& m, m+2 x+1, m+4 x+2, \ldots, m-1-2 x
\end{aligned}
$$

and the one-factors can be written in the general form

$$
\begin{aligned}
& (1,2 x+2),(4 x+3,6 x+4), \ldots,(-4 x-1,-2 x), \\
& (2 x+3,4 x+4),(6 x+5,8 x+6), \ldots,(1-2 x, 2), \\
& \cdots \\
& (m, m+2 x+1) \cdots(m-4 x-2, m-2 x-1)
\end{aligned}
$$

and

$$
\begin{aligned}
& (2 x+2,4 x+3) \cdots(-2 x, 1) \\
& (2,2 x+3) \cdots(-4 x, 1-2 x) \\
& \cdots \\
& (m+2 x+1, m+4 x+2) \cdots(m-1-2 x, m) .
\end{aligned}
$$

The behaviour of $P_{2 x}$ is slightly more complicated since the $\operatorname{gcd}(2 x, 2 n)$ is bound to be even. Our first result is

LEMMA 3. If $(2 n, 2 x)=d$, and if $2 n / d$ is even, then $P_{2 x}$ splits into two one-factors.

Proof. The proof is the same as in Lemma 2. The pairs of $P_{2 x}$ create d cycles of length $2 n / d$, namely,

$$
\begin{aligned}
& 1,2 x+1,4 x+1, \ldots, 1-2 x \\
& 2,2 x+2,4 x+2, \ldots, 2-2 x \\
& \ldots \\
& d-1,2 x+d-1,4 x+d-1, \ldots, d-1-2 x \\
& d, 2 x+d, 4 x+d, \ldots, d-2 x .
\end{aligned}
$$

Since the length $2 n / d$ of each cycle is even, the construction of Lemma 2 applies, and the pairs of $P_{2 x}$ split into two one-factors.

We now want to consider the case $2 n / d$ odd. The cycle decomposition now has cycles of odd lengths. We write the cycles over again, in pairs, making a unit shift in the second cycle of each pair. Thus the cycles are written as

$$
\begin{aligned}
& \left\{\begin{array}{l}
1,2 x+1,4 x+1, \ldots, 1-2 x \\
2 x+2,4 x+2,6 x+2, \ldots, 2
\end{array}\right. \\
& \left\{\begin{array}{l}
d-1,2 x+d-1,4 x+d-1, d-1-2 x \\
d+2 x, d+4 x, d+6 x, \ldots, d .
\end{array}\right.
\end{aligned}
$$

We form two one-factors from these cycle pairs as follows. For the first one-
factor, use the two first elements in each cycle pair:

$$
\begin{aligned}
& (1,2 x+2) \text { with }(2 x+1,4 x+1) \cdots(1-4 x, 1-2 x) \\
& (4 x+2,6 x+2) \cdots(2-2 x, 2) \\
& (d-1, d+2 x) \text { with }(2 x+d-1,4 x+d-1) \cdots(d-1-4 x, d-1-2 x) \\
& (d+4 x, d+6 x) \cdots(d-2 x, d) .
\end{aligned}
$$

For the second one-factor, use the two last elements in each cycle pair:

$$
\begin{gathered}
(1-2 x, 2) \text { with } \quad(1,2 x+1) \cdots(1-6 x, 1-4 x) \\
\\
(2 x+2,4 x+2) \cdots(2-4 x, 2-2 x) \\
\begin{aligned}
&(d-1-2 x, d) \text { with }(d-1,2 x+d-1) \cdots(d-1-6 x, d-1-4 x) \\
&(d+2 x, d+4 x) \cdots(d-4 x, d-2 x) .
\end{aligned}
\end{gathered}
$$

There is a problem with these two one-factors. They have repeated a set A of edges from $P_{2 x+1}$, and they have omitted a set B of edges from $P_{2 x}$. The set A is obviously given by the "first-last" edges from the cycle pairs.

$$
A\left\{\begin{array}{l}
(1,2 x+2) \cdots(d-1, d+2 x) \\
(1-2 x, 2) \cdots(d-1-2 x, d)
\end{array}\right.
$$

The set B consists of the "first-last" joins in each cycle.

$$
B\left\{\begin{array}{r}
(1,1-2 x),(2,2 x+2), \ldots \\
(d-1-2 x, d-1),(d+2 x, d)
\end{array}\right.
$$

We now have the apparatus to prove
THEOREM 3.1. If $2 x+1<2 n$, then $P_{2 x} \cup P_{2 x+1}$ splits into four one-factors.
Proof. If $(2 x, 2 n)=d$ and $2 n / d$ is even, then Lemmas 2 and 3 provide the answer. Each of $P_{2 x}$ and $P_{2 x+1}$ provides two one-factors.

If $(2 x, 2 n)=d$ and $2 n / d$ is odd, we make the following construction. Use Lemma 1 to provide two one-factors from $P_{2 x+1}$, namely F_{1} and F_{2}. Use the cycle construction as described to produce two more one-factors F_{3} and F_{4} from $P_{2 x}$ which repeat the edges A and omit edges B.

Now note that all edges A appear in F_{1} (they are just the edges with "lower"
element odd). We alter F_{1}, still keeping it a one-factor by switching edge pairs. Thus we change

$$
\begin{aligned}
& (1,2 x+2)(1-2 x, 2) \text { to }(1,1-2 x)(2,2+2 x) \\
& \cdots \\
& (d-1, d+2 x)(d-1-2 x, d) \text { to }(d-1, d-1-2 x)(d, d+2 x)
\end{aligned}
$$

This result is to give an altered one-factor F_{1}^{*}, which now contains the missing edges from B but no longer contains the edges from A. So we have

$$
P_{2 x} \cup P_{2 x+1}=F_{1}^{*}+F_{2}+F_{3}+F_{4}
$$

We must now consider the special set P_{n}. It is unlike all other P_{i}, in that it contains only n rather than $2 n$ edges.

LEMMA 4. If n is even, then P_{n} is a single one-factor. If n is odd, then $P_{n-1} \cup P_{n}$ can be split into three one-factors.

Proof. The case of n even is obvious; the edges are $(1,1+n),(2,2+n), \ldots$, $(n, 2 n)$. If n is odd, then the pairs of P_{n} again form a single one-factor. However, we must pair P_{n} with P_{n-1}; in this case, $(2 n, n-1)=2$ and consequently $2 n / d$ is odd; the switching operation between P_{n} and P_{n-1} still works and so $P_{n-1} \cup P_{n}$ gives three one-factors.

Our final result is

THEOREM 3.2. The graph $K_{2 n}$ may be factored into a set of triangles covering P_{1}, P_{2}, P_{3}, and a set of $2 n-7$ one-factors covering the other P_{i}.

Proof. Lemma 1 handles P_{1}, P_{2}, P_{3}. If n is even, then Theorem 2 handles

$$
P_{4} \cup P_{5}, P_{6} \cup P_{7}, \ldots, P_{n-2} \cup P_{n-1}
$$

to give $4[(n-2) / 2-1]=2 n-8$ one-factors. P_{n} is a single one-factor (Lemma 4). This gives our result.

If n is odd, Theorem 2 applies to

$$
P_{4} \cup P_{5}, P_{6} \cup P_{7}, \ldots, P_{n-3} \cup P_{n-2}
$$

to give $4[(n-3) / 2-1]=2 n-10$ one-factors. $P_{n-1} \cup P_{n}$ gives three one-factors (Lemma 4). Again, the total is $2 n-7$ one-factors.

4. An example

We wrote out the difference partition for K_{12} at the beginning of Section 3 .
The set T is immediate. Also, P_{6} is a one-factor. So we merely need construct four one-factors from $P_{4} \cup P_{5}$.

Lemma 2 gives two one-factors from P_{5}, namely,

$$
\begin{aligned}
& F_{1}:(1,6),(11,4),(9,2),(7,12),(5,10),(3,8) \\
& F_{2}:(6,11),(4,9),(2,7),(12,5),(10,3),(8,1)
\end{aligned}
$$

P_{4} has $(12,4)=3$; so we get cycles of length 3 , namely, $159,2610,3711$, 4812 . Pair the cycles as

$$
\begin{array}{rrrrrr}
1 & 5 & 9 & & 3 & 7 \\
11 \\
6 & 10 & 2 & & 8 & 12
\end{array}
$$

and create one-factors

$$
\begin{aligned}
& F_{3}:(1,6),(5,9),(10,2) ;(3,8),(7,11),(12,4) \\
& F_{4}:(9,2),(1,5),(6,10) ;(11,4),(3,7),(8,12)
\end{aligned}
$$

Now A is the set $(1,6),(3,8),(9,2),(11,4)$ appearing in F_{1}, B is the set $(1,9)$, $(6,2),(3,11),(4,8)$; create F_{1}^{*} by replacing A by B and we have

$$
F_{1}^{*}=(1,9),(6,2),(3,11),(4,8),(7,12),(5,10)
$$

Thus $P_{4} \cup P_{5}=F_{1}^{*}+F_{2}+F_{3}+F_{4}$.

5. Steiner triple systems

We now apparently switch our attention to a completely different topic. A Steiner triple system is a set of b blocks of three elements each (triples), selected from a total set of v elements, with the property that every element is used r times and every pair of elements occurs once. A well-known example has $v=9$, $b=12, r=4$, and is illustrated by the blocks $139,142,358,346,457,561$, $679,723,984,925,286,817$.

We can immediately prove the classical
THEOREM 5.1. In a Steiner triple system,

$$
r=\frac{v-1}{2}, \quad b=\frac{v(v-1)}{6} .
$$

Proof. The number of elements in the blocks can be counted as $3 b$ or as rv. The number of pairs is counted as $3 b$ or as $\binom{v}{2}$. Thus

$$
3 b=r v=\frac{v(v-1)}{2},
$$

and the Theorem follows.
THEOREM 5.2. For a Steiner triple system to exist, it is necessary that $v \equiv 1$ or $v \equiv 3(\bmod 6)$.

Proof. r is an integer; hence v is odd. Thus $v \equiv 1,3$, or $5(\bmod 6)$. But $v=6 t+5$ gives

$$
b=\frac{(6 t+5)(6 t+4)}{6}
$$

and this is non-integral. Hence the Theorem.
Our main aim is to show how our knowledge of one-factors of $K_{2 n}$ provides an easy proof of the converse of Theorem 5.2.

6. Incidence matrices

A design is merely a set of blocks selected from a variety set of v elements. Thus if we have eight elements, the blocks

0
124
$\begin{array}{lllll}1 & 3 & 5 & 6 & 7\end{array}$
15
2
347
are a design (not a very interesting one, admittedly). A Steiner triple system is a design where all blocks have length 3 (contain 3 elements), and each pair of elements occurs once in the design.

One easy way of representing a design is by writing down its incidence matrix. This is a matrix A of size $v \times b$ which is made up of zeros and ones, with $a_{i j}=1$ if variety i is in block $j, a_{i j}=0$ if variety i is not in block j. For example, the design listed at the beginning of this section has incidence matrix

$$
A=\left(\begin{array}{llllll}
0 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

The empty column corresponds to the null block; the empty row corresponds to the non-occurrence of variety 8 .

The triple system on 9 elements listed in Section 5 has a 9×12 incidence matrix, namely,

$$
A=\left(\begin{array}{llllllllllll}
1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0
\end{array}\right)
$$

Every Steiner triple system has such an incidence matrix with row sums equal to r, column sums equal to 3 . We shall use incidence matrices to link up the results on one-factorizations of $K_{2 n}$ with Steiner triple systems.

7. An embedding theorem

The set 124 is a (trivial) STS on three elements; we call it D_{1}. The set of blocks $124,235,346,457,561,672,713$, is an STS on 7 elements; we call it D_{2}.

In this example, the blocks of D_{1} (there is only one) occur as a subsystem of the blocks of D_{2}. When this occurs, we say that D_{1} is embedded in D_{2}.

From the point of view of incidence matrices, we may permute the blocks of D_{2} so that the first columns of the incidence matrix of D_{2} (say $I\left(D_{2}\right)$) correspond to those blocks in D_{1}. Then we may permute rows of $I\left(D_{2}\right)$ so that the first rows of $I\left(D_{2}\right)$ correspond to exactly those varieties appearing in D_{1}. The incidence matrix of $I\left(D_{2}\right)$ then has the form

$$
I\left(D_{2}\right)=\left(\begin{array}{c|c}
I\left(D_{1}\right) & B \\
\hline 0 & C
\end{array}\right) .
$$

For example, the designs D_{2} and D_{1} at the beginning of this section give such an incidence matrix as

$$
I\left(D_{2}\right)=\begin{gathered}
\text { var } \\
1 \\
2 \\
4 \\
3 \\
6 \\
7
\end{gathered}\left(\begin{array}{c|cccccc}
1 & 0 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 0 \\
\hline 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right) .
$$

We now prove a fundamental result.

THEOREM 7.1. Any Steiner triple system on v elements can be embedded in an STS on $2 v+1$ elements.

Proof. Let the designs be called D_{1} and D_{2}. The number of blocks in D_{1} is $v(v-1) / 6$, in D_{2} is $(2 v+1) v / 3$.

The r-values for D_{1} and D_{2} (row sums) are $(v-1) / 2$ and v respectively. Now,
let us analyze

$$
I\left(D_{2}\right)=\left(\begin{array}{c|c}
I\left(D_{1}\right) & B \\
\hline 0 & C
\end{array}\right) .
$$

First, there are

$$
\frac{(2 v+1) v}{3}-\frac{v(v-1)}{6}=\frac{v(v+1)}{2}
$$

columns in B and in C. Also, there are $(2 v+1)-(v)=v+1$ rows in C.
Now every pair of varieties corresponding to the last $v+1$ rows must occur. Hence there are at least two ones in each column of C.

The number of ones in each row of B is $v-(v-1) / 2=(v+1) / 2$. Since each of the first v varieties must occur with each of the last $v+1$, the structure of B and C is now constrained: each of the $(v+1) / 2$ occurrences of variety $i(i=1,2, \ldots, v)$ in row i of B occurs in a column with exactly two 1 's corresponding to varieties between $v+1$ and $2 v+1$. These last pairs give a 1 -factor of K_{v+1} in a complete graph whose vertices are named from $v+1$ to $2 v+1$.

This occurs for each $i(i=1,2,3, \ldots, v)$, and so we have v edge-disjoint one-factors of K_{v+1}, that is, a one-factorization. So we build up B by putting $(v+1) / 2$ entries of 1 in each row (all columns disjoint). Then C is filled in by placing a 1 -factor of K_{v+1} in those entries corresponding to occurrences of variety i. By Theorem 1, this is always possible.

EXAMPLE. We take D_{1} as the design on varieties $1,2, \ldots, 7$ with blocks $124,235,346, \ldots, 713$. Then D_{1} has incidence matrix

$$
A=\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right)
$$

The incidence matrix of D_{2} must have 4 more ones in each of the first 7 rows.

Thus

$$
I\left(D_{2}\right)=\left(\begin{array}{l|l}
A & B \\
\hline 0 & C
\end{array}\right),
$$

where B is a 7×28 matrix with form

$$
\left(\begin{array}{lllllllllllllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 1 & 1 & 1 & 1
\end{array}\right) .
$$

We now need a 1 -factorization of K_{8} based on variety names $8,9,10,11,12,13,14,15$. This can be written down by Theorem 1 as follows.

$$
\begin{aligned}
& F_{1}:(8,15),(9,14),(10,13),(11,12) \\
& F_{2}:(9,15),(8,10),(11,14),(12,13) \\
& F_{3}:(10,15),(9,11),(8,12),(13,14) \\
& F_{4}:(11,15),(10,12),(9,13),(8,14) \\
& F_{5}:(12,15),(11,13),(10,14),(8,9) \\
& F_{6}:(13,15),(12,14),(8,11),(9,10) \\
& F_{7}:(14,15),(13,8),(12,9),(10,11) .
\end{aligned}
$$

As soon as these one-factors are produced, we can write down C. The first 8 columns of C correspond to F_{1} and F_{2} and are displayed:

$$
C=\left(\begin{array}{llll|llll|l|llll}
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & \cdots & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & \cdots & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & \cdots & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & \cdots & 1 & 0 & 0 & 0
\end{array}\right) .
$$

8. A second embedding theorem

As might be imagined, we now use Theorem 3 to give another embedding theorem.

THEOREM 8.1. Any STS on v elements can be embedded in an STS on $2 v+7$ elements.

Proof. Our method is similar to that employed in the last theorem. If A is the incidence matrix of D_{1}, then again we have

$$
I\left(D_{2}\right)=\left(\begin{array}{c|c}
A & B \\
\hline 0 & C
\end{array}\right) .
$$

The number of rows in C is now $v+7$. The number of columns in B and C is

$$
\frac{(2 v+7)(2 v+6)}{6}-\frac{v(v-1)}{6}=\frac{(v+7)(v+2)}{2} .
$$

The numbers of 1 's per row of B is

$$
\frac{2 v+6}{2}-\frac{v-1}{2}=\frac{v+7}{2} .
$$

These ones pair up, as in the last Theorem, with 1 -factors on $v+1, \ldots, 2 v+7$, to produce $\frac{v(v+7)}{2}$ columns of C. But this leaves exactly $v+7$ columns over; these last $v+7$ columns have zeros in B and have three ones per column in C.

We thus see that $I\left(D_{2}\right)$ can be written in the more specific form:

$$
I\left(D_{2}\right)=\left(\begin{array}{c|c|c}
A & B_{1} & 0 \\
\hline 0 & C_{1} & C_{2}
\end{array}\right) .
$$

B_{1} has $(v+7) / 2$ ones per row; C_{1} is made up of v one-factors of K_{v+7} (on the symbols $v+1, \ldots, 2 v+7$), and C_{2} is made up of $v+7$ triples covering exactly those edges of K_{v+7} not already used. This is exactly the sort of factorization provided by Theorem 3; so, our embedding is established.

EXAMPLE. For D_{1}, we take the trivial design 123 ; then

$$
A=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

B_{1} is merely the matrix with 3 rows and 15 columns given by

$$
\boldsymbol{B}_{1}=\left(\begin{array}{lllllllllllllll}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

To get C_{1} and C_{2}, we use Theorem 3 on K_{10}, using symbols $4,5,6, \ldots, 13$. Our result first gives C_{2} in the form

$$
C_{2}=\left(\begin{array}{llllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right) .
$$

The partitions P_{4} and P_{5} of Lemma 4 are just

$$
\begin{aligned}
& P_{4}:(4,8),(5,9),(6,10), \ldots,(13,7) \\
& P_{5}:(4,9),(5,10),(6,11),(7,12),(8,13)
\end{aligned}
$$

P_{5} is a one-factor itself; P_{4} yields cycles

$$
4,8,12,6,10 \text { and } 5,9,13,7,11
$$

Our construction then writes these as

$$
\begin{aligned}
& 4,8,12,6,10 \\
& 9,13,7,11,5
\end{aligned}
$$

and produces one-factors

$$
F_{1}:(4,9),(8,12),(6,10),(13,7),(11,5)
$$

and

$$
F_{2}:(10,5),(4,8),(12,6),(9,13),(7,11)
$$

Our switching operation then replaces P_{5} by the one factor

$$
F_{3}:(4,10),(5,9),(6,11),(7,12),(8,13) .
$$

These three one-factors then allow us to write down C_{1} in the form
$C_{1}=\left(\begin{array}{lllll|lllll|lllll}1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$

We have thus constructed the incidence matrix of a design on 13 varieties with 26 blocks.

9. A different embedding

For a different touch, we use another method to prove an extra embedding theorem which we do not really need. However, the result is so simple that it fits in nicely with those of the last two sections.

THEOREM 9.1. Any STS on v symbols can be embedded in an STS on $3 v$ symbols.

Proof. Write down $v(v-1) / 6$ blocks on symbols $1_{1}, 2_{1}, \ldots, v_{1}$. Write down a second such design on symbols $1_{2}, 2_{2}, \ldots, v_{2}$; finally, write down a third design on $1_{3}, 2_{3}, \ldots, v_{3}$. This gives $v(v-1) / 2$ blocks.

Now write down a $v \times v$ latin square on the symbols $1_{1}, 2_{1}, \ldots, v_{1}$. Any latin square will do. So we really need not know what a latin square is; we might just write down the array

$$
\begin{array}{cccccc}
1_{1} & 2_{1} & 3_{1} & \cdots & v_{1} \\
v_{1} & 1_{1} & 2_{1} & \cdots & (v-1)_{1} \\
(v-1)_{1} & v_{1} & 1_{1} & \cdots & (v-2)_{1} \\
(\cdots \cdots \cdots \cdots & \cdots & \cdots & \cdots & \cdots \cdots \cdots \\
2 & 3_{1} & 4_{1} & \cdots & 1_{1}
\end{array}
$$

There are v^{2} elements in this array. We use them to create v^{2} triples by the algorithm:
(Element)(Row co-ordinate sub 2)(Column co-ordinate sub 3).
We now have $v^{2}+v(v-1) / 2=(3 v-1) v / 2$ blocks; this is the correct number for an STS on $3 v$ elements. So we merely need check that each pair occurs exactly once.

Pairs (a_{i}, b_{i}) occur exactly once in the three embedded systems. Pairs (a_{1}, b_{2}) occur exactly once since each symbol occurs exactly once in each row of the latin square; pairs $\left(a_{1}, b_{3}\right)$ occur exactly once since each symbol occurs exactly once in each column of the latin square; finally, pairs (a_{2}, b_{3}) occur exactly once since row and column co-ordinates identify a unique element of the latin square.

EXAMPLE. Start with the design $1_{1} 2_{1} 3_{1}$ and form 2 copies $1_{2} 2_{2} 3_{2}$ and $1_{3} 2_{3} 3_{3}$. Write down the array

$$
\begin{array}{lll}
1_{1} & 2_{1} & 3_{1} \\
3_{1} & 1_{1} & 2_{1} \\
2_{1} & 3_{1} & 1_{1}
\end{array}
$$

and use it to give 9 more blocks, namely,

$$
\begin{array}{lllllllll}
1_{1} & 1_{2} & 1_{3} & 2_{1} & 1_{2} & 2_{3} & 3_{1} & 1_{2} & 3_{3} \\
3_{1} & 2_{2} & 1_{3} & 1_{1} & 2_{2} & 2_{3} & 2_{1} & 2_{2} & 3_{3} \\
2_{1} & 3_{2} & 1_{3} & 3_{1} & 3_{2} & 2_{3} & 1_{1} & 3_{2} & 3_{3}
\end{array}
$$

A similar procedure immediately takes an STS on 7 symbols and produces the $21+49=70$ blocks of an STS on 21 symbols.

10. The existence theorem for triple systems

We now have a means of constructing Steiner triple systems on $6 t+1$ or $6 t+3$ symbols (the only possibilities, by Theorem 5). We list the first few cases before proving the general theorem.
v Construction
3 One block 123
$7 \quad 2(3)+1$
$9 \quad 3(3)=2(1)+7$
$13 \quad 2(3)+7$
$15 \quad 2(7)+1$
$19 \quad 2(9)+1$
$21 \quad 2(7)+7$
$25 \quad 2(9)+7$
$27 \quad 2(13)+1$
$312(15)+1$
Note that Theorem 8, the tripling construction, is not really needed except for a system on 9 elements (and we could write $9=2(1)+7$, the STS on 1 element being the null set).

THEOREM 10.1. An STS exists for any number of elements v, where $v \equiv 1$ or $3(\bmod 6)$.

Proof. Certainly we have just checked this up to v-values of 31 .
Any larger v can be specified as $12 t+1,12 t+3,12 t+7,12 t+9$, and we make the induction hypothesis that the designs exist for smaller values. But

$$
\begin{aligned}
& 12 t+1=2(6 t-3)+7 \\
& 12 t+3=2(6 t+1)+1 \\
& 12 t+7=2(6 t+3)+1 \\
& 12 t+9=2(6 t+1)+7
\end{aligned}
$$

These equations establish Theorem 10.1 by induction. Indeed, we have proved the
stronger result that there exist designs on $12 t+3$ and $12 t+9$ symbols containing an embedded design on $6 t+1$ symbols; there exists a design on $12 t+1$ symbols containing an embedded design on $6 t-3$ symbols; there exists a design on $12 t+7$ symbols containing an embedded design on $6 t+3$ symbols.

11. Pairings

We now move from general triple systems to cyclically generated systems. These special systems will be generated using a pairing concept.

Let $P(1, n)$ be a set of n pairs of integers in which each of the integers 1 to $2 n$ appears exactly once as an element of a pair and each of the integers 1 to n occurs exactly once as a difference between elements of the same pair. For example, the pairs $(1,2),(5,7),(3,6),(4,8)$ form a $P(1,4)$. Similarly, $P(1, n) / j$ is defined to be a set of $n-1$ pairs with each of the integers 1 to $2(n-1)$ appearing exactly once and each of the integers from 1 to n except j occurring as a difference exactly once. Thus, the pairs $(3,4),(6,8),(1,5),(2,7)$ form a $P(1,5) / 3$.

It is convenient to represent $P(1, n)$ pictorially by placing $2 n$ points labelled 1 to $2 n$ on a line and drawing an edge between points that are paired together. $P(1, n) / j$ would be similarly represented on $2(n-1)$ points. For example, the $P(1,4)$ and $P(1,5) / 3$ described in the last paragraph would be represented as in Figure 3. Thus, in a $P(1, n)$, each point must be incident with exactly one edge and the n edges represent each of the differences 1 to n exactly once.

Figure 3
$P(1, n)$ does not exist for all n. If we colour the $2 n$ points alternately black and white, there are n of each colour. Pairs with an odd difference contain one point of each colour. In pairs with an even difference, both points are the same colour. Thus, it is necessary that there be an even number of even integers less than or equal to n. Therefore $[n / 2]$ must be even, and we have

THEOREM 11.1. $P(1, n)$ can exist only for $n \equiv 0,1(\bmod 4)$.
A similar argument determines a necessary condition for the existence of a $P(1, n) / 2$.

THEOREM 11.2. $P(1 / n) / 2$ can exist only for $n \equiv 2,3(\bmod 4)$.
In fact, these conditions are also sufficient, as we shall demonstrate.

12. Sufficiency conditions

Consider $n=4 k$. A $P(1,4)$ was exhibited in Figure 3. $P(1,8)$ and $P(1,12)$ are represented in Figure 4.

Figure 4

A general solution is suggested by Figure 4, and $P(1,4 k)$ is displayed in Figure 5 for $k \geqslant 2$ (the differences label the edges).

Figure 5

A very simple modification provides a $P(1,4 k+1)$ for $k \geqslant 2$ (see Figure 6).

Figure 6

A solution for $P(1,1)$ and $P(1,5)$ exists as shown in Figure 7.

P(1.1)

Figure 7

So we have established the following theorem.
THEOREM 12.1. $P(1, n)$ exists if and only if $n \equiv 0,1(\bmod 4)$.
Solutions as given by the figures above are as follows.

$$
\begin{aligned}
& P(1,4):(1,2), \\
& (5,7),(3,6),(4,8) . \\
& P(1,4 k), k \geqslant 2:(3 k, 3 k+1),(1,2 k),(2 k+1,6 k+1), \\
& \\
& (2 k-i, 2 k+1+i) \text { for } i=1,2, \ldots, k-2, \\
& \\
& (k+2-i, 3 k+1+i) \text { for } i=1,2, \ldots, k, \\
& \\
& (6 k+1-i, 6 k+1+i) \text { for } i=1,2, \ldots, 2 k-1 .
\end{aligned}
$$

$$
P(1,1):(1,2)
$$

$P(1,5):(1,2),(7,9),(3,6),(4,8),(5,10)$.
$P(1,4 k+1), k \geqslant 2:(3 k, 3 k+1),(1,2 k),(2 k+1,6 k+2)$,

$$
\begin{aligned}
& (2 k-i, 2 k+1+i) \text { for } i=1,2, \ldots, k-2 \\
& (k+2-i, 3 k+1+i) \text { for } i=1,2, \ldots, k \\
& (6 k+2-i, 6 k+2+i) \text { for } i=1,2, \ldots, 2 k
\end{aligned}
$$

For $n=4 k+2$, and $k \geqslant 3$, a solution for $P(1, n) / 2$ is represented in Figure 8 .

Figure 8

A simple modification yields a $P(1, n) / 2$ for $n=4 k+3, k \geqslant 2$ (see Figure 9).

Figure 9

For $n=2,3,6,7,10$, we have solutions for $P(1, n) / 2$ represented in Figure 10.

Figure 10

We have thus established the following theorem.
THEOREM 12.2. $P(1, n) / 2$ exists if and only if $n \equiv 2,3(\bmod 4)$.
The solutions represented by the figures above are as follows.
$P(1,2) / 2:(1,2)$.
$P(1,6) / 2:(2,3),(6,9),(4,8),(5,10),(1,7)$.
$P(1,10) / 2:(1,11),(2,10),(3,9),(4,8),(5,14),(6,13),(7,12)$, $(15,18),(16,17)$.

$$
\begin{aligned}
P(1,4 k+2) / 2, k \geqslant 3: & (2 k+2,6 k+2),(2 k+1,6 k+3),(6 k+4,8 k+2), \\
& (5 k+3,5 k+4), \\
& (2 k+1-i, 2 k+2+i) \text { for } i=1,2, \ldots, 2 k, \\
& (6 k+2-i, 6 k+4+i) \text { for } i=1,2, \ldots, k-3, \\
& (5 k+3-i, 7 k+1+i) \text { for } i=1,2, \ldots, k .
\end{aligned}
$$

$P(1,3) / 2:(2,3),(1,4)$.
$P(1,7) / 2:(1,8),(2,7),(3,6),(4,10),(5,9),(11,12)$.

$$
\begin{aligned}
P(1,4 k+3) / 2, k \geqslant 2: & (2 k+3,6 k+3),(2 k+2,6 k+4),(4 k+5,6 k+5), \\
& (7 k+4,7 k+5), \\
& (2 k+2-i, 2 k+3+i) \text { for } i=1,2, \ldots, 2 k+1, \\
& (6 k+3-i, 6 k+5+i) \text { for } 1,2, \ldots, k-2, \\
& (5 k+5-i, 7 k+5+i) \text { for } i=1,2, \ldots, k-1 .
\end{aligned}
$$

13. Cyclic Steiner triple systems

As we pointed out earlier, a Steiner triple system on v elements, denoted $S(2,3, v)$, is a set of triples from v elements in which each pair of distinct elements occur together in a triple precisely once. There are $b=v(v-1) / 6$ triples in such a system and each element occurs $r=(v-1) / 2$ times; such a system is a balanced incomplete block design with parameters $(v, v(v-1) / 6,(v-1) / 2,3,1)$, and $v \equiv 1,3(\bmod 6)$.

We wish to construct the $t(6 t+1)$ triples of an $S(2,3,6 t+1)$ in the following manner: form t sets of $6 t+1$ triples by adding $0,1, \ldots, 6 t(\bmod 6 t+1)$ to all elements of a set of initial triples $\left(a_{i}, b_{i}, c_{i}\right), i=1,2, \ldots, t$. Thus all pairs having differences $\pm\left(a_{i}-b_{i}\right), \pm\left(b_{i}-c_{i}\right), \pm\left(c_{i}-a_{i}\right)$, mod $6 t+1$, will be represented in the set. Adopt the convention that the differences are in the range $-3 t$ to $3 t$. Then, to represent each pair of distinct elements exactly once, the set of t initial triples must have each non-zero integer from $-3 t$ to $3 t$ represented exactly once in the $6 t$ differences. For $t=2$, the pair of triples $(0,1,4),(0,2,7)$ is such a set of initial triples; we shall say that these produce the difference triples $(1,3,4)$ and $(2,5,6)$, meaning thereby that they produce the differences $\pm 1, \pm 3, \pm 4$, and $\pm 2, \pm 5, \pm 6$. Let $Q(t)$ be the set of difference triples. $Q(t)$ is thus a set of t triples $\left(x_{i}, y_{i}, z_{i}\right)$ in which each of the elements $1,2, \ldots, 3 t$ is represented exactly once and either $x_{i}+y_{i}=z_{i}$ or $x_{i}+y_{i}+z_{i}=6 t+1(i=1$ to $t)$.

The process is reversible since, if $Q(t)$ exists, the set of triples $\left(0, x_{i}, x_{i}+y_{i}\right)$ is an appropriate set of initial triples to generate a design $S(2,3,6 t+1)$ on elements $0,1, \ldots, 6 t$. Thus we have

THEOREM 13.1. If $Q(t)$ exists, then $S(2,3,6 t+1)$ exists.

14. Construction of the sets $\mathbf{Q (t)}$

Let us try to find a set $Q(t)$ in the restricted case that $x_{i}=i$ and $x_{i}+y_{i}=z_{i}$ for all $i=1,2, \ldots, t$. Then the set of pairs $\left(y_{i}, z_{i}\right)$ has each integer from $t+1$ to $3 t$ appearing exactly once; since $z_{i}-y_{i}=i$, each integer from 1 to t appears exactly
once as a difference. Thus, the set of pairs $\left(y_{i}-t, z_{i}-t\right)$, where $i=1,2, \ldots, t$, is a $P(1, t)$. Conversely, given a $P(1, t)$, we can reverse the process by placing the elements of pairs in increasing order, adding t to each, and adjoining the difference to yield a $Q(t)$. Thus, by Theorem 12.1, we have

THEOREM 14.1. $Q(t)$ exists for $t \equiv 0,1(\bmod 4)$.

For example, corresponding to the $P(1,4)$ given by $(1,2),(5,7),(3,6),(4,8)$, we have the following $Q(4)$:

$$
(1,5,6),(2,9,11),(3,7,10),(4,8,12)
$$

Now restrict $Q(t)$ so that $x_{i}=i, x_{i}+y_{i}=z_{i}$, for $i \neq 2 ;\left(y_{2}, z_{2}\right)=(3 t-1,3 t)$. Then we have the set of $t-1$ pairs $\left(y_{i}, z_{i}\right)$, for $i=1,3,4, \ldots, t$, with $z_{i}-y_{i}=i$; each element from $t+1$ to $3 t-2$ appears exactly once. Thus, $\left(y_{i}-t, z_{i}-t\right)$, for $i=$ $1,3,4, \ldots, t$, is a pairing $P(1, t) / 2$. Again, we can reverse the process and Theorem 12.2 gives

THEOREM 14.2. $Q(t)$ exists for $t \equiv 2,3(\bmod 4)$.
As an example, if $P(1,6) / 2$ is $(2,3),(6,9),(4,8),(5,10),(1,7)$, then the corresponding $Q(6)$ is

$$
(2,17,18),(1,8,9),(3,12,15),(4,10,14),(5,11,16),(6,7,13)
$$

Thus, combining Theorems 13.1, 14.1 and 14.2 we have
THEOREM 14.3. $S(2,3,6 t+1)$ exists for all values of t.
The triples of an $S(2,3,6 t+1)$ on the elements $0,1,2, \ldots, 6 t$ are obtained by adding $0,1,2, \ldots, 6 t(\bmod 6 t+1)$ to the set of triples given below.

$$
\begin{aligned}
& t=4:(0,1,6),(0,2,11),(0,3,10),(0,4,12) \\
& t=4 k, k \geqslant 2:(0,1,7 k+1),(0,2 k-1,6 k),(0,4 k, 10 k+1), \\
& \\
& (0,2 i+1,6 k+1+i) \text { for } i=1,2, \ldots, k-2, \\
& \\
& (0,2 k-1+2 i, 7 k+1+i) \text { for } i=1,2, \ldots, k, \\
& \\
& (0,2 i, 10 k+1+i) \text { for } i=1,2, \ldots, 2 k-1 .
\end{aligned}
$$

$$
\begin{aligned}
& t=1:(0,1,3) \\
& t=5:(0,1,7),(0,2,14),(0,3,11),(0,4,13),(0,5,15) . \\
& t=4 k+1, k \geqslant 2:(0,1,7 k+2),(0,2 k-1,6 k+1),(0,4 k+1,10 k+3), \\
& \\
& \quad \begin{array}{r}
(0,2 i+1,6 k+2+i) \text { for } i=1,2, \ldots, k-2, \\
\\
\\
(0,2 k-1+2 i, 7 k+2+i) \text { for } i=1,2, \ldots, k, \\
\\
(0,2 i, 10 k+3+i) \text { for } i=1,2, \ldots, 2 k .
\end{array}
\end{aligned}
$$

$$
t=2:(0,1,4),(0,2,7)
$$

$$
t=6:(0,1,9),(0,2,19),(0,3,15),(0,4,14),(0,5,16)
$$

$$
(0,6,13)
$$

$$
t=10:(0,1,27),(0,2,31),(0,3,28),(0,4,18),(0,5,22)
$$

$$
(0,6,19),(0,7,23),(0,8,20),(0,9,24),(0,10,21)
$$

$$
t=4 k+2, k \geqslant 3:(0,4 k, 10 k+4),(0,4 k+2,10 k+5),(0,2 k-2,12 k+4)
$$

$$
(0,1,9 k+6),(0,2,12 k+7)
$$

$$
(0,2 i+1,6 k+4+i) \text { for } i=1,2, \ldots, 2 k
$$

$$
(0,2 i+2,10 k+6+i) \text { for } i=1,2, \ldots, k-3
$$

$$
(0,2 k-2+2 i, 11 k+3+i) \text { for } i=1,2, \ldots, k
$$

$$
t=3:(0,1,6),(0,2,10),(0,3,7)
$$

$$
t=7:(0,1,19),(0,2,22),(0,3,13),(0,4,16),(0,5,14)
$$

$$
(0,6,17),(0,7,15)
$$

$$
t=4 k+3, k \geqslant 2:(0,4 k, 10 k+6),(0,4 k+2,10 k+7),(0,2 k, 10 k+8)
$$

$$
(0,1,11 k+8),(0,2,12 k+10)
$$

$$
(0,2 i+1,6 k+6+i) \text { for } i=1,2, \ldots, 2 k+1
$$

$$
(0,2 i+2,10 k+8+i) \text { for } i=1,2, \ldots, k-2
$$

$$
(0,2 k+2 i, 11 k+8+i) \text { for } i=1,2, \ldots, k-1
$$

15. Cyclic Steiner systems on $\mathbf{6} \boldsymbol{t}+\mathbf{3}$ elements

For completeness, we include a well-known construction for $S(2,3,6 t+3)$ on elements (i, j), for $i=0,1,2$ and $j=0,1, \ldots 2 t$ (Cf. [1], [3] or [5]). The system is obtained by adding $(0,0),(0,1), \ldots,(0,2 t)$ to each of the following $3 t+1$ triples; addition is $\bmod 3$ for the first component and $\bmod 2 t+1$ for the second component.

$$
\begin{gathered}
{[(j, i+1),(j, 2 t-i),(j+1,0)] \text { for } j=0,1,2, \text { and } i=0,1, \ldots, t-1} \\
{[(0,0),(1,0),(2,0)] .}
\end{gathered}
$$

Thus we have
THEOREM 15.1. $\boldsymbol{S}(2,3,6 t+3)$ exists for all values of t.
A simple cyclic construction, yielding $S(2,3,6 t+3)$ on elements $0,1, \ldots, 6 t+$ 2 , may be obtained for $t \equiv 0(\bmod 3)($ see, for example, [8]).

We have thus given constructive cyclic methods for generating Steiner triple systems on v elements whenever $v \equiv 1,3(\bmod 6)$. This provides an elementary proof of

THEOREM 15.2. $S(2,3, v)$ exists and can be cyclically generated for $v \equiv 1,3$ $(\bmod 6)$.

REFERENCES

[1] Bose, R. C., On the construction of balanced incomplete block designs. Annals of Eugenics 9 (1939), 353-399.
[2] Doyen, J. and Rosa, A., An extended bibliography and survey of Steiner systems. Congressus Numerantium 20 (1977), 297-361.
[3] Hall, J., Jr., Combinatorial theory. Blaisdell Publishing Co., Waltham, Mass., 1967.
[4] Harary, F., Graph theory. Addison-Wesley Publishing Co., Reading, Mass., 1969.
[5] Mann, H. B., Analysis and design of experiments. Dover Publications, New York, 1949.
[6] Peltesohn, R., Eine Lösung der beiden Hefferschen Differenzenprobleme. Compositio Math. 6 (1939), 251-257.
[7] Rosa, A., Poznamka o cyklických Steinerových systémoch troiic. Mat--Fyz. Casopis Sloven. Akad. Vied. 16 (1969), 285-290.
[8] Street, A. P. and Wallis, W. D., Combinatorial theory: an introduction. Chas. Babbage Research Centre Inc., St. Pierre, Manitoba, 1977.

Department of Computer Science, Department of Statistics,
University of Manitoba, University of Waterloo,
Winnipeg, Manitoba R3T 2 N 2 Waterloo, Ontario,
Canada. Canada N2L 3G1
and
CSIRO,
Melbourne, Australia.

