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CDCL(CAS) paradigm 
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SAT solvers:
● Strength: excellent search capabilities
● Weakness: lack mathematical knowledge

CAS systems:
● Strength: Storehouse of mathematical knowledge
● Weakness: lack search capabilities

SAT + CAS

SAT+CAS = excellent search + mathematical knowledge



Applications of the SAT + CAS Paradigm
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Introduced by Zulkoski, Ganesh et al.[1], and independently by Erika Ábrahám [2], 
both in 2015, the SAT + CAS paradigm has made defining contributions in 
combinatorics and graph theory: 
▪ Verified Lam's problem and produced the first set of nonexistence certificates

▪ Found the smallest counterexample of the Williamson conjecture for the first time

▪ First independent verification of the Craigen–Holzmann–Kharaghani conjectures about 
complex Golay pairs up to length 28

▪ Proved the best known result in the conjecture that every matching of a hypercube 
extends to a Hamiltonian cycle (Ruskey–Savage conjecture)

[1] Zulkoski, E., Ganesh, V., Czarnecki, K.: MathCheck: a math assistant via a combination of computer algebra systems and SAT solvers. In: Felty, A.P., Middeldorp, A. (eds.) International Conference on 
Automated Deduction, pp. 607–622. Springer, Cham (2015)
[2] Ábrahám, E.: Building bridges between symbolic computation and satisfiability checking. Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation, pp. 1–6. 
ACM (2015)

SAT + CAS



Satisfiability (SAT) + Computer Algebra Systems (CAS)
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Introduction

￼



Our Main Result: SAT+CAS for Minimal Kochen-Specker Problem
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The first ever successful implementation of the satisfiability solver + computer 
algebra system approach (SAT + CAS) for problems in quantum foundations, 
namely, the minimal Kochen-Specker vector system problem. 

We improved the lower bound on the size of the KS system from 22 to 23, with a 
significant speed-up (30,000x) over previous computational approaches.

The KS Problem
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▪ “Explain” counter-intuitive aspects of Quantum Mechanics (QM) such as 

non-locality, contextuality, complementarity, entanglement,...

▪ Answer questions such as the measurement problem

▪ Attempts include Copenhagen Interpretation, Hidden Variable theories

▪ Axiomatize QM in logic and study its meta properties, e.g., soundness, 

relationship to classical logic, proof systems etc.

Quantum FoundationsQuantum Foundations: Goals and Problems
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Quantum Foundations



The Kochen-Specker and Free-Will Theorems
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KS Theorem

The Kochen-Specker (KS) Theorem states that there is a contradiction between the 
SPIN axiom of standard quantum mechanics and the assumption of 
non-contextuality [3]. (More precisely, there is a contradiction between empirical 
predictions of QM and the following three properties one assumes all systems must 
possess: value-definiteness + non-contextuality + one-one Hilbert correspondence.) 

The Free Will theorem, proposed by John Conway and Simon Kochen, is a result in 
quantum mechanics that challenges determinism. The theorem is based on and 
extends the Kochen-Specker theorem, which shows the limits of our ability to know 
the properties of a quantum system.

[3] Carsten Held. The Kochen-Specker Theorem. In Edward N. Zalta, editor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Spring 2018 edition, 2018.



Spin of a Particle
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One of the central ideas of quantum mechanics is the notion of spin. Certain 
subatomic particles have spin. Given a direction, a particle can spin up (positive), 
down (negative), or not at all.

The KS Problem



Observing SPIN - The Stern–Gerlach Experiment (1922)
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We can observe the particle spinning by performing such experiment. 

The spin of the atom (in the direction of the field) is +1, −1, or 0.

The KS Problem



The Kochen–Specker Experiment 
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Measure the squared spin of a SPIN-1 particle in three mutually orthogonal 
directions.

The KS Problem



The SPIN Axiom 
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● The squared spin of spin-1 particles measured along three orthogonal directions 
is zero in exactly one of these directions.

● Antipodal directions have the same squared spin.

The KS Problem



What is Non-Contextuality?
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Intuitively, non-contextuality asserts that if a QM system possesses a property (value 
of an observable), then it does so independently of any measurement context, i.e., 
independently of how that value is eventually measured.

The KS theorem asserts that any non-contextual hidden variable theory cannot 
reproduce the predictions of QM. 

Put differently and informally, the act of measurement creates properties/reality as 
we understand it. Prior to measurement, QM system don’t have any fixed properties, 
i.e., they are in a superposition of all possible values of an observable.  

The KS Problem



Recap: The Kochen–Specker Theorem 
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There is a contradiction between the SPIN axioms and non-contextuality. It is 
impossible to assign {0, 1} values to the following 31 vectors in a way that does not 
violate the SPIN axiom. The particle cannot have a predetermined spin in every 
direction. [Kochen & Specker 1967]

The KS Problem

31 vector KS system of Conway and Kochen, 1990.
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FIgure 7.17 from The Outer Limits of Reason 
by Noson S. Yanofsky 

• If the North pole direction does not have spin (0), 

then the South pole direction also lacks spin. Then 

all directions along the equator must have spin 1 

(a).

• Assign the direction slightly to the right of the 

North pole as 0 (b) and continue doing so until we 

reach (d).

• It’s impossible to continue this process until every 

point on the sphere is assigned either 0 or 1.

The KS Problem

Intuition behind the KS Theorem



Related Work on the KS Problem
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The KS Problem

Table: A history of the bounds on the size of the minimum KS system.



Converting SPIN axiom to SAT via Graph Colorability 
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The squared spin components of a spin-1 particle are 1, 0, 1 in these three directions. 

Thus, the observable corresponding to the question “is the squared spin 1?” 
measured in three mutually orthogonal directions will always produce no in exactly 
one direction and yes in the other two orthogonal directions in 3-dimensional 
Euclidean space. 

Satisfying the SPIN axiom is equivalent to being 101-colorable: 
▪ Two adjacent vertices are not both assigned to 0. 
▪ Three mutually adjacent vertices are not all assigned to 1. 

Encoding



Encoding the KS Problem
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To find a KS system, we want to find graphs G such that
▪ G is non-101-colorable: G has no possible 101-coloring
▪ G is embeddable: G is an orthogonality graph for a 3-d vector system

In addition, previous research has proven mathematically that G satisfies
▪ Squarefree Constraint: G must not contain a square subgraph
▪ Minimum Degree Constraint: every vertex of G must have minimum degree 3
▪ Triangle Constraint: every vertex is part of at least one triangle subgraph

The KS ProblemEncoding



SAT+CAS Solver
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Orderly Generation



 SAT Symmetry Breaking
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A SAT approach outperformed the previously used graph enumeration
approach. However, a SAT solver generates many isomorphic copies of the
same graph.

Thus, we combine SAT with isomorph-free exhaustive generation (also
previously used to solve Lam’s problem) [Bright, Cheung, Stevens, Kotsireas, and G. 2021].

Orderly 
Generation

[4] C. Bright, K. Cheung, B. Stevens, I. Kotsireas, V. Ganesh. A SAT-based Resolution of Lam’s Problem. AAAI 2021.



Key Insight: Symmetry Breaking in SAT+CAS
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The SAT approach outperforms other graph enumeration approach—but the solver 
generates many isomorphic copies of the same graph.

Orderly 
Generation



Isomorph-free Orderly Generation
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When generating combinatorial objects we only care about generating them up to 
isomorphism.

The notion of canonicity is defined so that:
▪ Every isomorphism class has exactly one canonical representative.
▪ If an adjacency matrix is canonical then its upper-left submatrix of any size is 

also canonical.

Developed independently by Faradžev and Read in 1978.

Orderly 
Generation



Canonicity Examples
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An adjacency matrix is canonical if its “vector representation” is lex-minimal among 
all matrices in the same isomorphism class. 

For example,

are isomorphic adjacency matrices but only the last is canonical.

Orderly 
Generation



Orderly Generation of Graphs
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Orderly Generation



 Orderly Generation in Practice
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Each canonical test is independent, making the method easy to parallelize.

Verifying a matrix is non-canonical is often fast - it requires finding a single
permutation of the vertices giving a lex-smaller matrix.

The KS ProblemOrderly 
Generation



 SAT and Isomorph-free Generation
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Only recently have there been attempts at combining isomorph-free
generation and SAT solving. [Junttila, Karpa, Kaski, and Kohonen 2020. Savela, Oikarinen, and 
Jarvisalo 2020.  Kirchweger and Szeider 2021]

This is perhaps a result of the historical separation between the SAT and
symbolic computation communities. We will now discuss applying orderly
generation and SAT to the minimum Kochen–Specker problem.

The KS ProblemOrderly 
Generation



Orderly Generation with SAT Solver
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Orderly Generation



 Implementation – Cube-and-Conquer
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The cube-and-conquer satisfiability solving paradigm was developed to
solve hard combinatorial problems.

▪ A “cubing solver” splits a SAT instance into a large number of distinct 
sub-problems specified by cubes-formulas.

▪ For each cube a “conquering solver” solves the original instance under the 
assumption that the cube is true.

For large orders, parallelization is applied by dividing the instance into
smaller subproblems using the cube-and-conquer approach. During the
splitting, cube-and-conquer finds the next variable that splits the search
space the most evenly.

Implementation



 Pipeline Overview
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Pipeline



Verification
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SAT: We have enabled DRAT proof logging in the SAT solver so that certificates are 
generated. 

CAS: a CAS-derived permutation provides a witness that the blocked matrix is 
non-canonical.

We used a slightly-modified DRAT-trim (to trust CAS derived clauses) to verify the 
correctness of the DRAT proof and a permutation-applying Python script to verify its 
CAS derived clauses.

We have certified the results up to order 21 so far and the original uncompressed 
proofs are about 200GB in total.

Implementation



Results
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Order SAT only CAS only 
(Nauty)

SAT + CAS Speedup 
over SAT

Speedup 
over CAS

17 10.8 min 25.0 min 0.3 min 36.1x 83.2x

18 53.7 min 395.6 min 1.7 min 31.6x 232.7x

19 6.5 days 6.2 days 13.8 min 675.9x 639.7x

20 N/A N/A 109.4 min N/A N/A

21 N/A N/A 1383.6 min N/A N/A

22 N/A N/A 19 days N/A N/A

The order 21 case was resolved in under a day on a single desktop, while the 
best previous approach used 300 desktops for three months. Our method 
is 30,000x more efficient on the same hardware than the previous best 
approach by Uijlen and Westerbaan 2016.

Results



Conclusion: SAT+CAS for Problems in Quantum Foundations 
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● We improve the lower bound over the minimum KS vector system problem and 
the search efficiency by 30,000x. 

● We provide a rigorous verification of our result via generation of DRAT proofs.

● We demonstrate the benefits of the SAT + CAS paradigm for a problem in 
quantum foundations, showing that it is more effective and less error-prone as 
we uncover inconsistencies with previous result by Uijlen and Westrebaan 2016.

● Future directions: heuristic search, programmatic encoding of non-colorability 
constraints

Conclusion


