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Abstract In the color-word contingency learning paradigm,
each word appears more often in one color (high contingency)
than in the other colors (low contingency). Shortly after begin-
ning the task, color identification responses become faster on
the high-contingency trials than on the low-contingency tri-
als—the contingency learning effect. Across five groups, we
varied the high-contingency proportion in 10% steps, from
80% to 40%. The size of the contingency learning effect was
positively related to high-contingency proportion, with the ef-
fect disappearing when high contingency was reduced to 40%.
At the two highest contingency proportions, the magnitude of
the effect increased over trials, the pattern suggesting that there
was an increasing cost for the low-contingency trials rather
than an increasing benefit for the high-contingency trials.
Overall, the results fit a modified version of Schmidt’s (2013,
Acta Psychologica, 142, 119–126) parallel episodic processing
account in which prior trial instances are routinely retrieved
from memory and influence current trial performance.

Keywords Attention in learning . Attention andmemory .

Perceptual implicit memory

People learn a multitude of associations that help them to nav-
igate their daily lives. For example, we learn to associate the four
seasons with different weather patterns (and learn new associa-
tions when traveling abroad). We learn that a red traffic light is
ordinarily followed by a green light, although occasionally (and
only at certain intersections) an advanced left-turn signal appears

before the light turns green for through traffic. Learning such
associations facilitates quick and/or accurate responding. In the
case of waiting at a red light, we anticipate the green light to
follow and then are ready to press the accelerator when the light
turns green. However, learning the more common association
may impair respondingwhen the less common event occurs. For
example, despite intending to go straight, we may momentarily
take our foot off the brake or even begin pressing the accelerator
when the advance left-turn signal appears because we are antic-
ipating the light turning green.

Thus, experience suggests that learned associations be-
tween stimuli not only may facilitate responding to a stimulus
that has a high probability of being paired with another stim-
ulus but may also impair responding to a stimulus that has a
low probability of being paired with another stimulus. In the
present research, we investigated these possibilities in the con-
text of contingency learning (see De Houwer & Beckers,
2002), using the paradigm developed by Schmidt, Crump,
Cheesman, and Besner (2007; see also Musen & Squire,
1993). In their standard contingency learning task, each trial
consists of one of three words (plate, month, under) presented
in one of three colors (red, yellow, green). Participants re-
spond by identifying the color, typically by pressing a key that
corresponds to the color (but see Forrin &MacLeod, 2017, for
vocal responding). Critically, eachword is presented with high
probability in one color and with low probability in each of the
other two colors. For example, plate might have an 80%
chance of appearing in red and a 10% chance of appearing
in each of yellow and green. In this example, platered is re-
ferred to as a high-contingency pairing, and plateyellow and
plategreen are referred to as low-contingency pairings.

The contingency learning effect refers to the finding that
response times tend to be faster and more accurate for high-
contingency pairings than for low-contingency pairings—de-
spite the fact that the word information actually is not required
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to make the correct response. The effect can occur when par-
ticipants are unaware of the high-contingency pairs (Schmidt
et al., 2007), which suggests that the learning can be implicit,
although the effect is amplified when participants are made
aware of the contingencies (Schmidt & De Houwer, 2012b) or
are given the explicit goal of learning them (Schmidt & De
Houwer, 2012a). Schmidt et al. (2007, Experiment 4) provid-
ed evidence consistent with the idea that the contingency
learning effect is driven by participants learning the associa-
tions between the irrelevant word information and the re-
sponse (i.e., the keypress).

Schmidt (2013; see also Schmidt, De Houwer, &
Rothermund, 2016) has formulated a Parallel Episodic
Processing (PEP) model to explain the contingency learning
effect (inspired, in part, by Logan’s, 1988, instance model of
automaticity). According to the PEP model, participants encode
each trial of the task into episodic memory and then retrieve
previous episodes (in parallel) on subsequent trials. Critically,
the activation for a given response is weighted by the
Bproportion of episodes pointing to that response^ (Schmidt &
DeHouwer, 2016a, p. 87). For example, if plate had appeared in
red on 80% of previous trials, in yellow on 10%, and in green on
10%, the response activation for a Bred^ response to platewould
be higher than for either a Byellow^ or Bgreen^ response,
resulting in faster response times for platered and slower re-
sponses for plateyellow or plategreen. The contingency learning
effect for errors can likewise be explained by the PEP frame-
work: In this example, participants would be more likely to
accidentally respond Bred^ on a plategreen (low-contingency) trial
than to respond Bgreen^ on a platered (high-contingency) trial
because in the first case the response activation for the Bred^
response is relatively high, whereas in the second case the acti-
vation for the Bgreen^ response is relatively low.

The PEP model therefore yields the prediction that the
higher the probability of occurrence of a particular color-
word contingency, the faster and more accurate participants’
responses should be to that contingency. Schmidt and De
Houwer (2016a) tested this claim (which they termed the
Bpure proportion^ account) across two experiments. In
Experiment 1, participants responded to high-contingency,
medium-contingency, and low-contingency trials. Consistent
with their account, response times followed a high < medium
< low pattern of results, and error rates mirrored this pattern
(cf. Schmidt & Besner, 2008; Lin & MacLeod, 2017). In
Experiment 2, participants responded to high-contingency
and low-contingency trials in a learning phase, and then sev-
eral novel words—presented only once each—were added to
a test phase (constituting what they called no-contingency,
Bneutral^ trials). Both response times and error rates followed
a high < low < neutral pattern of results, again consistent with
the pure proportion account.

The primary aim of the present experiment was to compre-
hensively test the pure proportion account by varying the

probability of high-contingency and low-contingency trials in
the contingency learning task across a wide range of probabili-
ties. We used what has become the standard contingency learn-
ing paradigm, which features three words and three colors (see,
e.g., Schmidt & De Houwer, 2012a, 2012b, 2016a, 2016b). A
robust sample participated in one of five different groups (n = 50
per group). In the highest high-contingency probability group,
there was an 80% chance of one of the three high-contingency
pairs occurring on any given trial (and a 20% chance of one of
the six low-contingency pairs occurring). The other four groups
were 70%, 60%, 50%, and 40% high-contingency. In the 40%
high-contingency group, although low-contingency pairs oc-
curred more commonly than high-contingency pairs overall,
each word still had a color that it was paired with more often
(40% of the time) than it was paired with either of the other two
colors (30%, 30%). The wide range of proportions used here
also presented an opportunity to explore the threshold for con-
tingency learning. To our knowledge, our experiment is the first
to use less than 60% high-contingency trials (50% and 40%).
These lower proportions of high-contingency trials allowed us to
estimate the proportion at which the contingency learning effect
would no longer express itself.

The pure proportion account generates the straightforward
prediction that the contingency learning effect ought to increase
as the proportion of high-contingency trials increases (and as
the proportion of low-contingency trials, correspondingly, de-
creases) due to progressively improving high-contingency trial
performance and progressively worsening low-contingency tri-
al performance. As the proportion of high-contingency trials
increases, high-contingency trial performance ought to improve
because the proportion of prior episodes retrieved on a given
trial that point to a high-contingency response would corre-
spondingly increase, thereby increasing the response activation
for a high-contingency response. By the same logic, low-
contingency trial performance ought to worsen with increasing
high-contingency trial proportion because there would be a
progressively smaller proportion of prior episodes that point
to low-contingency responses, decreasing the response activa-
tion for low-contingency responses.

Thus, the pure proportion account suggests that there will
be a performance trade-off between high-contingency and
low-contingency trials simply because as the proportion of
high-contingency trials increases, the proportion of low-
contingency trials necessarily decreases. Increases in response
activation for high-contingency responses therefore are ac-
companied by decreases in response activation for low-
contingency responses.

The present experiment is the first to parametrically vary
high-contingency proportion to map out a function for the
contingency learning effect across Bproportion space.^ As al-
ready noted, prior research that varied the proportion of the
contingencies has focused on comparing performance on
high-contingency trials and low-contingency trials to a
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baseline condition in a within-subjects design, to assess per-
formance costs and benefits (Lin & MacLeod, 2017; Schmidt
& Besner, 2008; Schmidt &DeHouwer, 2016a). In contrast to
those experiments, we did not compare high-contingency and
low-contingency performance to a baseline condition, and we
manipulated the proportion of high-contingency/low-contin-
gency trials between subjects, eliminating the potential intru-
sion of strategy changes across different high-contingency
proportions. Although Schmidt et al. (2007) found a larger
contingency learning effect with 80% high-contingency trials
(Experiment 1a) than with 60% high-contingency trials
(Experiment 1b), they did not compare the magnitude of these
effects (60 ms vs. 27 ms) statistically.1

The second aim of the present work was to investigate the
relation between contingency awareness and performance.
Schmidt and De Houwer (2012b) demonstrated that partici-
pants who were aware of the high-contingency pairs—
indexed via a postexperiment questionnaire—showed larger
contingency learning effects than those who were unaware,
and argued that awareness Bbenefited performance by leading
participants to attend more to the predictive dimension (i.e.,
the word)^ (p. 1765). The increased attention on words may
speed high-contingency response times because individuals
respond to words more rapidly than to colors (see the
relative speed of processing account of Morton &
Chambers, 1973, as applied to the Stroop task), and the pre-
dictive word may therefore frequently give participants a
Bhead-start^ in responding to the color on the high-
contingency trials. In terms of Schmidt et al.’s (2016) PEP
model, contingency awareness may increase the response ac-
tivation for high-contingency pairs without correspondingly
decreasing the response activation for low-contingency pairs.
The present experiment provided a robust data set that allowed
us to test Schmidt and De Houwer’s account that the contin-
gency awareness benefits performance (presumably without
imposing a concurrent cost on low-contingency trials).

Our third aim was to explore the pattern of contingency
learning with practice. Does the contingency learning effect
change as learning progresses? The PEP model predicts that
the contingency learning effect will increase as the imbalance
in memory favoring high-contingency instances over low-
contingency instances increases with experience. But prior
research, typically using 80% high-contingency trials, has
demonstrated that, after emerging early in the task (after as
few as 18 trials; Schmidt, De Houwer, & Besner, 2010), the
contingency learning effect is stable across the rest of the trials

(e.g., Schmidt & De Houwer, 2012a, 2012b, 2016a; Schmidt
et al., 2007; Schmidt et al., 2010). Because the change with
experience may, however, be relatively small—after all, the
contingency learning effect itself is modest—it is possible that
previous studies did not have sufficient power to observe this
change. If so, our large sample size should remedy this.

Method

Participants

Two hundred and fifty University of Waterloo undergraduate
students participated in exchange for course credit, with 50
assigned to each of the five high-contingency proportion
groups.

Apparatus

The experiment was carried out using E-Prime software.
Participants responded using a QWERTY keyboard by press-
ing BJ^ for red, BK^ for yellow, and BL^ for green. Circular
colored tabs of the corresponding color were pasted on those
three keys with the assignment of colors to keys consistent
across participants.

Materials and design

On each of the 300 trials, one of three five-letter words
(month, under, plate) was individually presented in one of
the three different print colors (red, yellow, green), on a black
background in bold, 18 pt. Courier New font. Each of the three
words was presented most frequently in one of the three
colors. For example, month might have been presented 80%
of the time in red and 10% of the time in each of yellow and
green. In this case, monthred was a high-contingency pairing
and monthyellow and monthgreen were low-contingency
pairings. The three color-word high-contingency pairings
were randomly determined for each participant.

The five groups were identical, except for the probability of
a high-contingency pairing occurring on each trial (.80, .70,
.60, .50, and .40). For example, each trial in the .80 probability
condition had an 80% chance of being a high-contingency
trial and a 20% chance of being a low-contingency trial (in
keeping with the methodology of previous contingency
learning research; see, e.g., Schmidt & De Houwer, 2012a,
Schmidt & De Houwer, 2012b). Trials therefore were selected
at randomwith replacement (i.e., a trial was not removed from
the list of possible future trials after it was presented).
Consequently, the overall proportions of high-contingency tri-
als presented to each participant were normally distributed
around the five expected means corresponding to each condi-
tion of the experiment: (1)M = .802, SD = 0.022; (2)M = .698,

1 In a similar task that involved identifying target letters that had high-
contingency or low-contingency flankers,Miller (1987) found that participants
were faster (and more accurate) at identifying targets with high-contingency
flankers than those with low-contingency flankers. Notably, this difference
was significantly larger when there were 92% high-contingency flankers com-
pared to 56%high-contingency flankers, a result that is also consistent with the
Bpure proportion account^ (Schmidt & De Houwer, 2016a).
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SD = 0.024; (3) M = .605, SD = 0.024; (4) M = .498, SD =
0.026; (5) M = .397, SD = 0.026.

Procedure

Participants were instructed that, for each trial, they would see a
word presented in color in the middle of the screen. They were
told to respond to the color of the word as quickly and as
accurately as possible by pressing the BJ^ (red), BK^ (yellow),
or BL^ (green) key. The experimenter informed participants that
colored tabswere placed on these keys to assist their responding
and that they should respond using their dominant hand (index,
middle, and ring fingers). Participants were not informed about
the high-contingency and low-contingency pairings.

On each trial, participants first saw a white fixation B+^ for
150 ms. A blank screen then appeared for 150 ms followed by
a word in color (the target). Participants had 2,000 ms to
respond to the target. After a correct predeadline response,
the next trial started immediately. After an incorrect response
or a 2,000-ms timeout, BXXX^ was presented in white for
500 ms before the next trial.

Once the 300 trials were completed, participants were in-
formed that each word had been presented most often in one
color and were asked whether they had noticed these color-
word relations (the wording of this question was identical to
that found in Schmidt & De Houwer, 2012a, 2012b, translated
from Dutch to English): BIn this experiment, each word was
presented most often in a certain color. Specifically, one word
was presented most often in red, one word was presented most
often in yellow, and one word was presented most often in
green. Did you notice these relationships?^ After the subjec-
tive awareness question, participants were given three forced-
choice questions that assessed their objective awareness of
each of the high-contingency color-word pairings. For each
question, participants were asked: BIn what color was [month/
under/plate] usually presented?^ (Only one word was present-
ed for each question, and the order of the words was random).
Participants responded using the same keys (with tabs) as they
had used throughout the experiment. Participants were coded
as being objectively aware of the contingencies when they
correctly indicated the color in which each of the three words
had appeared most frequently; if they made at least one incor-
rect response, they were coded as objectively unaware.

Results

Data trimming

First, we removed responses that were timeouts (0.10% of
high-contingency trials; 0.13% of low-contingency trials).
Anticipatory response times less than 200 ms were also re-
moved (0.01% of high-contingency trials; 0.01% of low-

contingency trials). We had decided in advance to exclude
the data of any participant who had response times or error
rates that were extreme outliers (more than 3.0 SDs above or
below the mean response time/error rate). There were two
participants with extremely high error rates and one partici-
pant with extremely slow response times. Thus, the data of
247 participants are included in the analyses below. Including
these three outlier participants did not influence the statistical
significance of any of the results.

Relation between high-contingency proportion
and the magnitude of the contingency learning effect

As described in the Method section, participants were assigned
to each of five between-subject conditions that differed accord-
ing to the probability of a high-contingency stimulus occurring
on a given trial (.80, .70, .60, .50, .40). This design resulted in
the participants being presented with a wide range of propor-
tions of high-contingency trials (range: .86–.34), which was
well-suited for the regression analyses reported here.

Response times The response times of only correct responses
were analyzed. All trials on which errors occurred (3.31% of
responses) were removed. Mean error proportions were
2.97% for high contingency and 4.17% for low contingency.
Of main interest, and consistent with our hypothesis, a linear
regression revealed that the size of the contingency learning
effect was significantly positively related to the proportion of
high-contingency trials, R2 = .25, F(1, 245) = 79.86, p < .001.
The linear function estimates the threshold for the contingency
learning effect in response times to be approximately 41%
high-contingency items (see Fig. 1). That is, below 41% high
contingency, contingency learning does not occur, insofar as
there no longer is a response-time performance advantage for
high-contingency (vs. low-contingency) trials. It is unlikely,
however, that the true relation between high-contingency pro-
portion and the contingency learning effect is linear (otherwise
there would be negative contingency learning effects below a
high-contingency proportion of 41%, which seems implausi-
ble, theoretically). Indeed, a quadratic relation, R2 = .25, F(2,
244) = 41.28, p < .001, fit the data as well as the linear func-
tion did, and yielded a similar estimate of the threshold of the
contingency learning effect (approximately 39% high-
contingency items; see Fig. 1). The significant quadratic func-
tion reflects the fact that the magnitude of the contingency
learning effect Baccelerated^ as high-contingency proportion
increased. Thus, the relation appears to be exponential in na-
ture, likely reaching asymptote at zero.

Errors As anticipated, high-contingency proportion was also
significantly positively related to the contingency learning ef-
fect for errors, R2 = .12, F(1, 245) = 34.89, p < .001. The linear
function estimated the threshold for the contingency learning
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effect in error rates to be approximately 42% high-contingency
items (see Fig. 2), consistent with the estimate based on re-
sponse times. Again, a quadratic function,R2 = .13,F(2, 244) =
17.57, p < .001, fit the error data as well as the linear function
did, and gave an identical estimate for the threshold of the
contingency learning effect (42% high-contingency items).

Relation between high-contingency proportion
and performance on high-contingency
and low-contingency trials

The positive relation between the proportion of high-
contingency trials and the size of the contingency learning
effect could reflect either (or both) of two factors: (1) Higher
proportions of high-contingency trials could be associated
with faster and less error-prone responding to high-
contingency trials, and/or (2) higher proportions of high-

contingency trials could be associated with slower and more
error-prone responding to low-contingency trials.

Response times. First, a linear regression revealed that
high-contingency proportion was nonsignificantly related to
response times on high-contingency trials (see Fig. 2), R2 =
.01, F(1, 245) = 1.38, p = .24. Thus, there was no support for
the idea of an increasing benefit of contingency learning as
high-contingency proportion increased; indeed, the numerical
trend was actually in the opposite direction. In contrast, a
second linear regression revealed that high-contingency pro-
portion was significantly positively related to response times
on low-contingency trials (see Fig. 2), R2 = .07, F(1, 245) =
17.10, p < .001. This result was consistent with the possibility
that participants’ responses to low-contingency trials tended to
slow down as low-contingency trials became increasingly
rare, suggesting a growing cost with increasing high-
contingency proportion.

Fig. 2 a High-contingency response times (in ms); b Low-contingency
response times (in ms), each as a function of the proportion of high-
contingency (HC) trials. Means are shown for each participant. Also
shown is an estimation of an overall linear function (solid straight line)
and quadratic function (dotted curving line)

Fig. 1 Contingency learning (CL) effect as a function of the proportion
of high-contingency (HC) trials (a) in response time (in ms), and (b) in
error rate. Mean contingency learning (CL) effect is shown for each
participant. Also shown is an estimation of an overall linear function
(solid straight line) and quadratic function (dotted curving line)
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Errors A linear regression revealed that high-contingency
proportion was significantly negatively related to errors on
high-contingency trials, R2 = .03, F(1, 245) = 8.38, p = .004
(see Fig. 3), and was significantly positively related to errors
on low-contingency trials, R2 = .03, F(1, 245) = 7.54, p = .006
(see Fig. 3). These results indicate that, as high-contingency
trials becamemore frequent (and hence low-contingency trials
became increasingly rare), participants’ responses to high-
contingency trials became more accurate whereas their re-
sponses to low-contingency trials became less accurate.

The relation between contingency awareness
and contingency learning

Table 1 shows the proportion of participants in each group (i.e.,
.80, .70, .60, .50, and .40) who reported being aware of the
high-contingency pairs, in terms of both subjective awareness

and objective awareness measures.2 The empirical pattern is
clear—particularly for objective awareness—and not surpris-
ing: As the high-contingency proportion increased, so did con-
tingency awareness. Subjective awareness seemed to be a
rougher index, in that it only differentiated .80 and .70 from
.60, .50, and .40. Objective awareness rates increasedmonoton-
ically with increasing high-contingency proportion; all of these
rates were significantly greater than chance (16.67%) for par-
ticipants in the .80, .70, .60, and .50 high-contingency propor-
tion groups (p < .01), but not for those in the .40 group (p = .32).

Response times Both subjective awareness, r(246) = .20, p =
.002, and objective awareness, r(246) = .36, p < .001, were
significantly correlated with the size of the contingency learning
effect; the two awareness measures also were significantly
intercorrelated, r(246) = .24, p < .001. To further examine
whether contingency awareness was related to the size of the
contingency learning effect, independent of high-contingency
proportion (a factor with which they were both correlated), both
awareness measures were added as predictors to the regression
analyses reported in the previous section, for which the propor-
tion of high-contingency trials was the only predictor of the
contingency learning effect. With all three predictors included,
the regression model was significant, R2 = .27, F(3, 243) =
29.45, p < .001, and accounted for a significantly higher propor-
tion of the variance in the size of the contingency learning effect
relative to the regression model in which high-contingency pro-
portion was the only predictor,R2change = 0.02, F(2, 243) = 3.44,
p = .03. Both high-contingency proportion and objective aware-
ness were significant predictors of the contingency learning ef-
fect,β = .41, t(246) = 6.42, p < .001, andβ = .15, t(246) = 2.37,
p = .02, respectively, but subjective awareness was not a signif-
icant predictor, β = .05, t(246) = 0.81, p = .42.3

Next, we conducted the same regression with high-
contingency response times as the dependent measure. The
regression model was significant, R2 = .03, F(3, 243) = 2.69,
p = .05, and accounted for a significantly greater proportion of
variance in high-contingency response times relative to the
regression model in which high-contingency proportion was
the only predictor, R2change = 0.03, F(2, 243) = 3.33, p = .04.
Objective awareness was a significant predictor of the high-
contingency response times, β = −0.15, t(246) = 2.10, p = .04,
whereas neither high-contingency proportion nor subjective
awareness was a significant predictor, β = 0.11, t(246) =
1.57, p = .12, and β = 0.12, t(246) = 1.76, p = .08,

Fig. 3 a high-contingency error rates; b low-contingency error rates,
both as function of the proportion of high-contingency (HC) trials.
Means are shown for each participant. Also shown is an estimation of
an overall linear function

2 Overall, 27.9% of participants were both subjectively and objectively aware,
18.6% were subjectively aware but objectively unaware, 19.0% were subjec-
tively unaware but objectively aware, and 34.4% were both subjectively and
objectively unaware.
3 The wording of the subjective awareness question, taken from prior contin-
gency learning research (e.g., Schmidt et al., 2007), may have biased partici-
pants toward responding Byes,^ perhaps attenuating the relation between sub-
jective awareness and the contingency learning effect. A more open-ended
subjective awareness measure may be preferable for future research.
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respectively. Thus, objectively aware participants tended to
respond more quickly to high-contingency trials than did ob-
jectively unaware participants.

Last, we conducted the regression with low-contingency re-
sponse times as the dependent measure. The regression model
was significant, R2 = .08, F(3, 243) = 7.30, p < .001, but did not
account for a greater proportion of variance in low-contingency
response times relative to the regression in which high-
contingency proportion was the only predictor, R2change = 0.02,
F(2, 243) = 2.30, p= .10. Here, high-contingency proportionwas
the only significant predictor of response times,β = .26, t(246) =
3.64, p< .001. Subjective awareness was amarginally significant
predictor, β = 0.13, t(246) = 1.93, p = .06 (in the opposite direc-
tion than would be expected), and objective awareness was not a
significant predictor, β = −0.08, t(246) = 1.18, p = .24.

In sum, these regressions demonstrate that the magnitude of
the contingency learning effect in response times was signifi-
cantly related to two predictors: the proportion of high-
contingency trials and the participant’s objective awareness. In
terms of the relation between the proportion of high-contingency
trials and the size of the contingency learning effect, the Baction^
was in participants’ responses to low-contingency trials: As the
proportion of high-contingency trials increased—and low-
contingency trials became increasingly rare—participants
responded to low-contingency trials increasing slowly (a robust
effect). In terms of the relation between objective awareness and
the size of the contingency learning effect, the Baction^ was in
participants’ responses to high-contingency trials: Participants
who were objectively aware tended to respond more quickly
to high-contingency trials compared with those who were ob-
jectively unaware (a modest effect).

Errors Both subjective awareness, r(246) = .13, p = .04, and
objective awareness, r(246) = .22, p = .001, also were signif-
icantly correlated with the size of the contingency learning
effect in errors. A regression model that included high-
contingency proportion, objective awareness, and subjective
awareness as predictors of the contingency learning effect was
significant, R2 = .12, F(3, 243) = 11.93, p < 0.001, but
accounted for a nonsignificantly higher proportion of the var-
iance, R2

change = 0.004, F(2, 243) = 0.52, p = .60, relative to
the model that only included the high-contingency proportion
predictor. High-contingency proportion was a significant pre-
dictor of the contingency learning effect, β = .32, t(246) =
4.55, p < 0.001, but objective awareness and subjective aware-
ness were not significant predictors, β = .06, t(246) = 0.87, p =
.39, and β = .03, t(246) = 0.42, p = .68, respectively.

When the regression was conducted with high-contingency
error rates as the dependent measure, R2

change was nonsignif-
icant (p = .18), as was the case with low-contingency error
rates as the dependent measure (p = .80). Thus, increasing the
proportion of high-contingency trials tended to increase the
size of the contingency learning effect—both by decreasing

error rates for high-contingency trials and by increasing error
rates for low-contingency trials (see Fig. 3)—whereas contin-
gency awareness was unrelated to the contingency learning
effect in errors.

Block analyses

Here we tested the PEP model’s prediction that the contingen-
cy learning effect would increase over blocks of the experi-
ment. Participants’ response-time data were divided into six
blocks of 50 trials each—the smallest block size for which
there were no missing block data for any of the participants.
The contingency learning effect was significant in each of the
six blocks, and the magnitude of the effect did indeed tend to
increase over blocks (see Table 2).

Response times A Contingency (high vs. low) × Block (one
to six) ANOVA revealed the expected main effect of contin-
gency, F(1, 246) = 95.61,MSE = 2805.52, p < .001, η2 = .28,
and a significant linear contrast of block, F(1, 246) = 9.74,
MSE = 6818.64, p = .002, η2 = .04, indicating that partici-
pants’ response times became slower over the experiment (a
result that we have quite consistently seen in our other contin-
gency learning studies, presumably due to fatigue). Of central
interest, the linear contrast of the Contingency × Block inter-
action was also significant, F(1, 246) = 7.31, p = .007, η2 =
0.03, indicating that the size of the contingency learning effect
increased linearly across the six blocks of the experiment.4

This trend is displayed in Fig. 4.5

4 Note that assessment of whether this linear increase reflected an increasing
benefit on high-contingency trials or an increasing cost on low-contingency
trials (or both) was not possible because this experiment did not incorporate a
Bno contingency^ condition as a baseline (for experiments including such a
baseline, see Lin & MacLeod, 2017).
5 In a supplemental analysis, we added Group (.80, .70, .60, .50, .40 high
contingency) as a between-subjects factor to the ANOVA to examine whether
this increase in the magnitude of the contingency learning effect over blocks
differed depending on the probability with which high-contingency trials oc-
curred. Consistent with this possibility, the ANOVA revealed a marginally
significant linear contrast of the Contingency × Block × Group three-way
interaction, F(4, 242) = 2.32,MSE = 1830.45, p = .06, η2 = .04. We therefore
conducted ANOVAs for each group separately to investigate which group(s)
showed an increasing contingency learning effect over blocks. The linear
contrast of the Contingency × Block interaction was significant (and robust)
for the .70 high-contingency group, F(1, 48) = 12.15, MSE = 1940.41, p =
.001, η2 = .20, but was nonsignificant for the .80 high-contingency group,F(1,
49) = 2.29,MSE = 2775.83, p = .14, η2 = .04, and was absent for the .60, .50,
and .40 groups (Fs < 1). Thus, participants in the .70 high-contingency group
drove the overall effect of the contingency effect increasing significantly in
magnitude over blocks. For the .80 high-contingency group, contingency
learning may to be too rapid to observe a practice effect (see also Schmidt
et al., 2010, for evidence of a rapid onset). In contrast, for the .60 high-
contingency group (and below), practice effects may take extremely high
statistical power to detect because the overall contingency learning effect is
quite weak and less consistent across participants. The .70 high-contingency
group may therefore represent a BGoldilocks zone^ in which the contingency
learning effect is robust enough to be fairly consistent across participants but
not so robust as to have an immediate and sustained impact on performance.
Further research is needed to test this possibility.
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Errors Table 3 shows participants’ mean error rates for high-
contingency and low-contingency trials over the six blocks
(see also Fig. 4). An ANOVA revealed the expected significant
main effect of contingency, F(1, 246) = 36.36,MSE = 0.003, p
< .001, η2 = .13, and a significant linear contrast of block, F(1,
246) = 34.70,MSE = 0.002, p < .001, η2 = .12, suggesting that
error rates increased over blocks, likely due to fatigue. Of main
interest, the linear contrast of the Contingency × Block inter-
action was nonsignificant (F < 1). Thus, in contrast to the
response-time data, there was no evidence in the error data that
the contingency learning effect increased linearly over blocks.

Discussion

In this study, we have mapped out the relation between the
proportion of high-contingency trials and the magnitude of the
contingency learning effect (the difference in responding to
the high-contingency and low-contingency stimuli) for the
standard color-word contingency learning paradigm. As the
proportion of high-contingency trials declines steadily from
80% to 40%, so too does the size of the contingency learning
effect, disappearing at around 40% high contingency. The
function appears to be exponential (see Fig. 1).

These findings can be accommodated by the Parallel
Episodic Processing (PEP) model of Schmidt (2013;
Schmidt et al., 2016). As Schmidt has repeatedly found
(e.g., Schmidt et al., 2010) and as we have also observed

elsewhere (Forrin & MacLeod, 2017; Lin & MacLeod,
2017), contingency learning onsets very quickly. The routine
retrieval of prior instances recovers increasingly many high-
contingency instances and relatively fewer low-contingency
instances as trials progress, resulting in diverging response
functions for high-contingency and low-contingency stimuli.

As the PEPmodel would anticipate, this divergence should
be increasingly apparent (in terms of both response time and
accuracy) as high-contingency proportion increases, exagger-
ating the difference in activation between high contingency
and low contingency. That is precisely what we observed.
Moreover, the threshold for obtaining a contingency learning
effect was approximately 40-30-30 (40% high-contingency
pair, 30% for each of the two low-contingency pairs; see
Fig. 1), which suggests that a contingency learning effect will
emerge when the difference in the proportions of high-
contingency and low-contingency trials exceeds 10%. (Of
course, the smaller this difference in proportions the more
participants would be needed to achieve adequate statistical
power to reliably obtain a contingency learning effect.)

Although we did not examine this case here—the two low-
contingency pairs need not have equal proportions (see
Schmidt & De Houwer, 2016a). It seems likely that a different
threshold for obtaining the contingency learning effect would
emerge if the proportions of the low-contingency pairs dif-
fered (e.g., 40-35-25) because this would result in a larger
difference in response activation between the highest (40%)
and the lowest (25%) contingency pairs relative to when the
low-contingency proportions are identical (i.e., 40-30-30).

There is, however, one feature of our data that conflicts
with the PEP model as currently framed. The model predicts
that, as high-contingency proportion increases, the growth in
the contingency learning effect should result from increasing-
ly better performance on the increasingly frequent high-
contingency trials. Although this empirical pattern was ob-
served for error rates, in terms of response times we found
that the growth in the contingency learning effect appeared

Table 2 Response times in milliseconds (with SEs) for high-
contingency (HC) trials and low-contingency (LC) trials across the six
blocks (of 50 trials each)

Block HC LC CL
effect

t(246) p d

1 573 (5.32) 588 (6.49) 15 3.64 <.001 0.16

2 550 (5.07) 562 (5.89) 12 3.70 <.001 0.14

3 549 (4.75) 567 (5.40) 18 5.21 <.001 0.23

4 559 (5.20) 577 (6.19) 18 4.18 <.001 0.20

5 565 (5.53) 593 (6.29) 28 6.50 <.001 0.31

6 573 (5.88) 595 (6.26) 22 5.43 <.001 0.23

Note. Also shown for each block are the size of the contingency learning
(CL) effect, the paired-samples t statistic, the p value, and the effect size
(Cohen’s d)

Table 1 The proportion of participants in each high-contingency (HC)
group who were subjectively aware and the proportion who were objec-
tively aware of the color-word contingencies

Awareness .40 HC .50 HC .60 HC .70 HC .80 HC

Subjectively aware .34 .32 .33 .63 .70

Objectively aware .12 .36 .42 .65 .80

Table 3 Errors as proportions (with SEs) for high-contingency (HC)
trials and low-contingency (LC) trials across the six blocks (of 50 trials
each)

Block HC LC CL
effect

t(246) p d

1 .022 (.002) .036 (.003) .014 3.66 <.001 .32

2 .027 (.002) .037 (.003) .010 2.94 .004 .24

3 .030 (.002) .036 (.003) .006 1.38 .17 .12

4 .033 (.003) .044 (.004) .011 2.59 .01 .22

5 .035 (.003) .042 (.004) .007 1.66 .10 .14

6 .032 (.003) .053 (.004) .021 4.89 <.001 .39

Note. Also shown for each block are the size of the contingency learning
(CL) effect, the paired-samples t statistic, the p value, and the effect size
(Cohen’s d)
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to derive instead from increasingly poor performance on the
increasingly rare low-contingency trials. We do not see this as
a fatal flaw in the model, however. Instead of seeing perfor-
mance as the outgrowth of the retrieval of increasing numbers
of high-contingency instances, the model simply has to recog-
nize a larger role for the increasingly rare low-contingency
instances in determining performance. This substantial influ-
ence of rare events is certainly not unprecedented: It is, for
example, well established in the attention literature (e.g., Hon
& Tan, 2013; Wolfe, Horowitz, & Kenner, 2005).

Decreasing the proportion of low-contingency trials may
have slowed response times for those trials not only because
of their decreasing response activation (in line with the PEP
model) but also because of increasing response competition
(i.e., interference) from the high-contingency responses.
Interference has long been known to slow responses to incon-
gruent trials in the Stroop task (Stroop, 1935; for a review see
MacLeod, 1991), the finding that color naming is slower for
incongruent stimuli (e.g., GREENblue) than for congruent
(e.g., BLUEblue) or control (e.g., XXXXblue) stimuli.
Moreover, increased facilitation of congruent stimuli in the
Stroop task is related to increased interference of incongruent
stimuli, which can result in a positively skewed, ex-Gaussian
distribution of incongruent stimuli (see Spieler, Balota, &
Faust, 2000). Similarly, then, response times for improbable

low-contingency pairs may be impaired by response compe-
tition from probable high-contingency pairs, stretching the tail
of the low-contingency distribution.

In sum, there are two factors that could account for poor
performance on low-contingency trials: First, they have few
instances in memory (and correspondingly low response acti-
vation), and second, they have to overcome response compe-
tition (interference) from the high-contingency response.
Although these mechanisms are not separable in the standard
color-word contingency paradigm as used in the present ex-
periment, Schmidt and De Houwer’s (2016a) finding that
there is worse performance for low-contingency trials than
for medium contingency trials suggests that increasingly im-
probable trials are responded to increasingly slowly when re-
sponse competition is held constant (interference from high-
contingency trials ought to have been equivalent in the medi-
um contingency and low-contingency conditions). And in a
second experiment, they did not find evidence of response
interference for low-contingency items compared to a novel-
word (i.e., no-contingency) baseline. Likewise, the inverse
relation observed here between the proportion of low-
contingency trials and their response times may have had
more to do with decreasing response activation than with in-
creasing response interference. Further research certainly is
needed to explore this activation versus interference issue. In
particular, manipulations of contingency that result in non-
equivalent low-contingency proportions should be undertaken
to examine the influence of low-contingency proportion.

The nonsignificant relation between high-contingency pro-
portion and high-contingency response times is difficult for the
PEP model to account for. One possibility is that the experi-
mental instructions led to a floor effect for high-contingency
trial response times. Recall that the instructions emphasized
not only speed but also accuracy (as is standard for contingen-
cy learning—and indeed most response-time-based—experi-
ments). This may have encouraged some participants—includ-
ing those who received a high proportion of high-contingency
trials—to constrain their response speed to minimize their error
rate, which would have weakened the relation between the
manipulated proportion of high-contingency trials and the re-
sponse times for those trials.

The second aim of this study was to examine the relation
between contingency awareness and contingency learning. We
found that both subjective and objective awareness were
significantly correlated with the magnitude of the
contingency learning effect. Although Schmidt and De
Houwer (2012b) found a nonsignificant correlation between
objective awareness and the size of the contingency learning
effect, they noted that this could have been attributable to a
restriction of range (i.e., most of their participants were objec-
tively aware). Consistent with their speculation, the wide range
of proportions in the present experiment remedied the restrict-
ed range issue and a significant correlation was in fact

Fig. 4 a Mean response times for the high-contingency (HC) and low-
contingency (LC) trials as a function of block. bMean error rates for the
high-contingency and low-contingency trials as a function of block. Error
bars are standard errors
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observed. Indeed, objective awareness remained a significant
predictor when included in a regression with both high-
contingency proportion and subjective awareness. That subjec-
tive awareness became a nonsignificant predictor may be be-
cause it is a less precise measure of awareness: Of participants
who claimed to be subjectively aware, 40% were objectively
unaware (i.e., they did not correctly identify the high-
contingency pairs).

Objective awareness was significantly related to faster re-
sponse times for high-contingency trials, but not to slower
response time for low-contingency trials. This result replicates
Schmidt and De Houwer’s (2012b) finding of a larger contin-
gency learning effect in aware participants, and is consistent
with their claim that this effect is driven by faster high-
contingency response times. Objective awareness may lead
participants to direct more attention to the nominally
Birrelevant^ word information (Schmidt & De Houwer
2012b) to help speed their responses, and may strengthen
the association between each word and its respective high-
contingency pair. Thus, objective awareness may increase re-
sponse activation for high-contingency pairs (in line with the
PEP model) without influencing activation for low-
contingency pairs. As we noted above, Schmidt and De
Houwer’s (2016a) prior research suggests that increased re-
sponse activation for high-contingency responses does not
adversely affect low-contingency responses (via response
interference).

Last, in a more fine-grained analysis, we observed the con-
tingency learning effect to slowly increase—approximately
linearly—across successive blocks of trials (i.e., a practice ef-
fect). Recently, after we had conducted this experiment,
Schmidt and De Houwer (2016b) also found practice effects
and hypothesized that two criteria had to be met (both of which
were intended to increase the slope of the contingency learning
effect)—that there is a practice phase, and that the word starts
out in a neutral color. The present experiment incorporated
neither of those two criteria, yet we still found a significant
increase in the magnitude of the contingency learning effect
over trials. Consequently, our study constitutes novel evidence
of a practice effect using the Bstandard^ contingency learning
procedure. We suspect that the high statistical power conferred
by our large samples helped to reveal this effect.

Although this experiment is the first to chart the size of the
contingency learning effect over a wide range of high-
contingency proportions, numerous experiments have tracked
the Stroop effect over different proportions of congruent trials
(e.g., Cheesman & Merikle, 1986; Lindsay & Jacoby, 1994;
Jacoby, Lindsay, & Hessels, 2003; for a wide range of
proportions, see Blais, Harris, Guerrero, & Bunge, 2012; for
a review, see MacLeod, 1991). Those experiments have re-
vealed a proportion-congruent effect (Lowe & Mitterer,
1982): Increasing the proportion of congruent trials increases
the magnitude of the Stroop effect—the same empirical

pattern as we observed for the contingency learning effect in
the present research. Although the resemblance between the
proportion-congruent effect and the Bproportion-contingent^
effect observed here aligns with Schmidt and Besner’s (2008)
claim that the proportion-congruent effect is a contingency
effect, a growing body of research has challenged this claim
(e.g., Bugg, 2014; Bugg, Jacoby, & Chanani, 2011; Gonthier,
Braver, & Bugg, 2016). Indeed, in accord with the possibility
that different factors drive these two effects, our present find-
ing that objective contingency awareness modulates the size
of the contingency learning effect can be contrasted with the
prior result that awareness does not affect the magnitude of the
proportion congruent effect (Blais et al., 2012).

To conclude, the present experiment revealed two factors
that were related to the magnitude of the contingency learning
effect in response times. The first (and more robust) was pro-
portion: In particular, increasing the proportion of high-
contingency trials led to increasingly slow responding on
low-contingency trials, which increased the size of the contin-
gency learning effect. The second relevant factor was objec-
tive awareness: Overall, objectively aware participants tended
to have faster response times to high-contingency trials than
did objectively unaware participants. In exploring a broad
range of contingencies in a study with considerable power,
we have expanded what is known about this kind of funda-
mental learning and have provided a further test of Schmidt’s
(2013, Schmidt et al., 2016) Parallel Episodic Processing
model. With the modification of increased emphasis on the
role played by the relatively rare, low-contingency events, the
model provides a successful account of the findings thus far.
As Lin and MacLeod (2017) have argued, the color-word
contingency learning paradigm provides a direct way to ex-
amine the learning of simple associations, and as such is a
valuable addition to our set of cognitive tools.
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