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A B S T R A C T   

Memory is reliably better for information read aloud relative to information read silently—the production effect. 
Three preregistered experiments examined whether the production effect arises from a more time-consuming 
retrieval process operating at test that benefits items that were produced at study. Participants studied items 
either aloud or silently and then completed a recognition test which required responding within a short deadline, 
under the assumption that a time-consuming retrieval process would be less able to operate when less time was 
available. Results generally supported this prediction. Even under speeded responding instructions, however, 
there was a robust production effect, suggesting that other, more rapid, processes also contribute to the pro
duction effect. Based on two extant verbal accounts, a computational model of the production effect using REM is 
introduced.   

Introduction 

Actively engaging with to-be-remembered information has been 
demonstrated to enhance memory accuracy relative to more passive 
methods, such as simply silently reading. This has been demonstrated 
with a variety of manipulations, including generating (Slamecka & Graf, 
1978), drawing (Wammes, Meade, & Fernandes, 2018), and enacting 
(Engelkamp, 1998). Consistent with these findings is an even simpler 
form of engagement: When individuals vocalize to-be-remembered in
formation, they remember it better than information that they read 
silently (e.g., MacLeod et al., 2010; Wakeham-Lewis et al, 2021). This 
memory effect—the production effect—is robust, having been replicated 
using a variety of methods, including spelling, writing, mouthing, 
whispering, and singing (e.g., Forrin et al., 2012; Quinlan & Taylor, 
2013). MacLeod and Bodner (2017) provide a brief review of the bur
geoning literature on production. 

Determining the mechanism(s) underlying an effect is always chal
lenging, and this is no less true in the case of the production effect 
(Bodner, Jamieson, Cormack, MacDonald, & Bernstein, 2016; MacLeod 
et al., 2010). In the current investigation, we tested the account of Forrin 
et al. (2012) centered on the concept of relative distinctiveness, an 
explanation originally put forward by Conway and Gathercole (1987; 
and championed more recently by MacLeod et al., 2010). The central 

claim in this account is that the act of producing an item results in the 
formation of an item-specific and “distinctive” record within memory. 
Produced items are distinctive in the sense that they have additional, 
item-specific, production-associated features encoded with them, 
thereby differentiating them from items studied silently—and from 
other items studied aloud. Forrin et al. (2012) suggested that these 
production-associated details could consist of the motoric (e.g., moving 
one’s mouth to pronounce the item) and/or perceptual (e.g., hearing 
one’s own voice) features involved in producing each item. These details 
are encoded along with other information about the word (e.g., its 
meaning). For example, in a recent computational model of the pro
duction effect using MINERVA2, a multitrace model of memory retrieval 
(see Hintzman, 1984; 1986), Jamieson, Mewhort, and Hockley (2016) 
captured this aspect of the Forrin et al. (2012) account by adding fea
tures to each item (each trace) that was “produced” at encoding/study. 
In the present investigation, we further develop this account by exam
ining how these production-associated features might influence retrieval 
during recognition. In particular, we focus on the time available at 
retrieval. Extant verbal descriptions (Forrin et al., 2012; MacLeod et al., 
2010), implementations (Jamieson et al., 2016), and previous work 
(Ozubko, Gopie, & MacLeod, 2012; but also see Fawcett & Ozubko, 
2016) suggest that this might be a critical variable. 

One means by which production-associated features might be used at 
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retrieval is if individuals attempt to reinstate the encoding/study context 
by trying to replay the original encoding/study event. For example, 
Forrin et al. (2012) proposed the following: 

Any unique production provides a distinctive cue that participants can use 
at test to help remember studied words. In line with the proceduralist 
account, this distinct encoding activity is preserved in the original pro
cessing record (Kolers, 1973; Kolers & Roediger, 1984) and can sub
sequently be replayed to aid retrieval. (p. 1054) 

If the production effect is due, at least in part, to such a replaying 
process, then it should be sensitive to the amount of time available at 
retrieval, assuming that engaging in such a process reflects an inten
tional act over and above more passive retrieval processes. Indeed, in the 
Jamieson et al. (2016) implementation of the Forrin et al. account, the 
retrieval mechanism involved multiple iterations with the production- 
associated features contributing only after the first retrieval attempt. 
Thus, their implementation also suggested that the time available at 
retrieval is a critical variable in the influence of production on memory. 

More generally, the idea that certain details of a given encoding/ 
study event might become available only later in a given retrieval 
attempt has some support in the literature (e.g., Gronlund & Ratcliff, 
1989; Hintzman & Curran, 1994; McElree, Dolan, & Jacoby, 1999). In 
understanding the time course of retrieving associative information, 
Gronlund and Ratcliff (1989) had participants study word pairs and 
then, at test, identify whether a word pair was originally studied 
together—intact—or separately—rearranged. They found evidence that 
an additional 200 ms was needed to incorporate this associative infor
mation from study into recognition decisions. Similarly, Hintzman and 
Curran (1994) presented participants with a series of nouns, some of 
which were in plural form (e.g., apples rather than apple). In a subse
quent old-new recognition test, near-target foils took the form of the 
targets in the opposite plurality (e.g., if apples had been studied, then 
apple might be tested). Participants were told to endorse only test items 
that exactly matched a study item; critically, they accepted more of the 
near-target foils under shorter signal-response-lag conditions but 
showed less acceptance of these foils when more time for retrieval was 
given. Finally, McElree et al. (1999) found comparable results when 
they manipulated study modality (heard vs. read). They asked partici
pants only to judge items as old if they had been heard and found that 
response sensitivity increased as processing time at test increased. Thus, 
the information required to distinguish rearranged pairs from intact 
pairs, near-target foils from actual targets, and undesired targets from 
desired targets was less available earlier on in the retrieval attempt and 
became more available with additional time. 

In recent computational work, Cox and Shiffrin (2017) modelled the 
delayed availability of plurality and modality information by having the 
relevant features contribute to the decision more slowly (after more time 
steps), than other features (also see FESTHER; Lamberts, 2002). Relevant 
to the present work, Cox and Shiffrin (2017) discussed a couple of po
tential reasons for the delay of certain features. One reason might be that 
“when the relevant modality or context information is not already pre
sent in the environment or in the presentation of the test item, partici
pants must generate (“imagine”) that information themselves and add it 
to the memory probe” (p. 823). For example, if participants are pre
sented at test with visual stimuli, the auditory features of the items 
studied are not included in the test item itself. Thus, if participants are to 
use the auditory information from the original study episode as a 
memory cue, they must attempt to do so themselves. This idea mirrors 
the situation in typical studies of the production effect (in recognition) 
such that the production-associated features are not present in the 
visually displayed test item. Thus, if participants are to use the 
production-associated information as a memory cue for the original 

study episode, they would have to do so by reinstating the target 
production-associated information themselves (i.e., by replaying it). 

A second potential reason why certain features might take longer to 
contribute is if they depend more on recollection. Recollection has long 
been hypothesized to take longer, on average, than judging whether an 
item is familiar (Cox & Shiffrin, 2017; Eichenbaum, Yonelinas, & Ran
ganath, 2007; Yonelinas, 2002). One way that the production effect 
could, at least in part, rely on recollection-based processing is if par
ticipants use recollection of the production to make their recognition 
decision—an idea first suggested by MacLeod et al. (2010). For example, 
Dodson and Schacter (2001) suggested that individuals might use the 
recollection of the study episode of an item as the evidence needed that 
the item was studied, a strategy they termed the distinctiveness heuristic. 
In fact, there is evidence for an association between the production ef
fect and recollection. Ozubko et al. (2012) found that participants were 
significantly more likely to report recollection for items produced at 
study than for silent studied items or new items. If the production effect 
relies on the recollection of the study episode, and if recollection re
quires more time on average to benefit memory, then it would be 
reasonable to expect that the magnitude of the production effect would 
be influenced by the amount of time available at retrieval. 

Taken together, there exist a number of reasons to expect that the use 
of production-associated features will be sensitive to the amount of time 
that individuals have available at test. If the production effect is the 
outcome of using of such features, then it should be reduced when 
responding is speeded. The use of response deadlines and speeded 
responding in memory research has a long history and has been used to 
test accounts of memory phenomena in a number of domains (e.g., 
Gardiner et al., 1999, 2004; Sauvage, Beer, & Eichenbaum, 2009; Toth, 
1996; Wammes et al. 2018; Wickelgren & Corbett, 1977). For example, 
Wammes et al. (2018) used speeded responding to disentangle a more 
time-consuming process from other factors contributing to retrieval 
accuracy in the context of the drawing effect (i.e., enhanced memory for 
items drawn at study). They tested recognition memory for written 
versus drawn items and sped responding for half of their participants (i. 
e., a deadline of 800 ms). Although the drawing effect persisted in both 
the speeded and standard (i.e., not speeded) conditions, Wammes et al. 
(2018) found that the size of the effect was significantly smaller under a 
response deadline. This finding is consistent with the observed memory 
advantage for drawn items as emerging, at least partially, through a 
more time-consuming process at retrieval. 

Finally, another popular class of explanation for the production ef
fect is the concept of memory strength (Bodner & Taikh, 2012; Bodner, 
Taikh, & Fawcett, 2014; Taikh & Bodner, 2016; Fawcett, 2013; Fawcett 
& Ozubko, 2016). According to strength-based accounts, “reading words 
aloud strengthens the representations of those items more so than does 
reading words silently, and therefore words read aloud are easier to 
recognise and recall than are words read silently” (Ozubko et al., 2014, 
p. 510). This greater strength results in the produced items being more 
accessible at the time of retrieval, giving rise to the memory advantage 
for the produced items. We will return to the strength-based account 
during the modelling component of the current work. 

Given the account described by Forrin et al., (2012) and the various 
reasons to expect that the use of production-associated information at 
retrieval may be sensitive to available retrieval time, we turn to the 
present investigation examining a manipulation of time available at 
retrieval together with a production manipulation. 

The present investigation 

In each of three preregistered experiments, we tested recognition 
memory for items read aloud (i.e., produced) versus items read silently 
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(i.e., not produced) under both standard (i.e., not speeded) retrieval and 
speeded retrieval conditions. If the production effect relies, at least in 
part, on a retrieval act sensitive to time available at retrieval (Forrin 
et al., 2012; Jamieson et al., 2016; Ozubko et al., 2012), then speeding 
retrieval should reduce the magnitude of the production effect. If the 
production effect were to remain unaltered under speeded responding 
(within reasonable limits), then this would suggest that a process which 
is insensitive to time underlies the production effect. A third possibility 
is that the production effect will be reliably reduced but still remain 
under speeded conditions. This finding could support one of two ideas: 
(1) that the production effect relies on both a more time-sensitive 
retrieval process (e.g., recollection and/or context reinstatement) and 
at least one other process that is completed faster at retrieval or (2) that 
any time-taking process(es) underlying the production effect was (were) 
still able to occur, at least in part, under speeded conditions. 

Experiment 1 

Experiment 1 was preregistered at osf.io/kwzj3/. In an otherwise 
standard production effect experiment, two conditions differed in the 
deadline for responding on the recognition test. The standard condition 
had a deadline of 5000 ms to respond to each test item; the speeded 
condition had a short deadline of 800 ms per test item.1 All experiments 
were preregistered individually, and data collection for each experiment 
was conducted prior to the preregistrations of subsequent experiments. 

Method 

Participants 
Participants were undergraduate psychology students from the 

University of Waterloo taking part for course credit. The first 48 usable 
sets of participant data were analyzed based on an a priori power 
analysis with a desired power of .80 (with α = .05, two-tailed) to detect a 
Cohen’s d of 0.40. This accounts for a production effect in the speeded 
condition to be at least a 50% reduction compared with a production 
effect of approximately d = 0.80 in the standard, non-speeded condition. 
No demographic information was collected from participants in any of 
the current experiments. All participants across all experiments partic
ipated in person before the COVID-19 pandemic and no participants 
from one experiment participated in another. 

Stimuli 
The stimulus set consisted of 160 words with lengths ranging from 

four to ten letters and frequencies ranging from nine to 146,371 using 
FreqCount2 from SUBTLEX-UK (Van Heuven, Mandera, Keuleers, & 
Brysbaert, 2014) and frequencies ranging from nine to 39,491 using 
FreqCount3 from SUBTLEX-US (Brysbaert & New, 2009). The 160 items 
were randomly arranged to form four unique lists containing 40 items 
each (available at osf.io/un5ca/). Lists were counterbalanced such that 
each list appeared equally often as the set of items for speeded targets, 
speeded foils, standard targets, and standard foils. The presentation 
order of items within each list was also randomized during study/ 
encoding and again during test/retrieval. 

Procedure 
Participants sat approximately 50 cm in front of a computer monitor 

and followed instructions given by the monitor and the researcher in the 

two blocks of the experiment. Each block consisted of a study phase and 
a recognition test phase. During the study phase, participants were 
presented with 40 items, half of which randomly appeared in white font 
(to be read silently) and the other half of which appeared in blue font (to 
be read aloud), all against a black background. Each item was presented 
for 2000 ms and was followed by a 400-ms blank interval. 

During the recognition test phase, participants were presented with 
the 40 study items plus 40 foils in a new randomized order, all in gray 
font against a black background. Participants keyed a response of ‘F’ for 
studied items (regardless of whether they were read aloud or silently), 
and ‘J’ for non-studied items. In the standard block, participants were 
given 5000 ms to respond to each presented item. In the speeded block, 
participants were given 800 ms to respond to each presented item (a 
value selected based on Wammes et al., 2018). If a participant did not 
respond before the deadline, a tone sounded to notify them, and no 
response was collected. Prior to starting each recognition test, partici
pants were reminded that guessing was better than no response. Half of 
the participants had the speeded block first and the standard block 
second; the remaining participants had the two blocks in the reverse 
order. 

Results 

Hit rate and response time for hits were each analyzed using a 2 
(silent vs. aloud) × 2 (standard vs. speeded) repeated measures analysis 
of variance (ANOVA). False alarm rate was analyzed using a (standard 
vs. speeded) repeated measures ANOVA. For each of hit rate and 
response time for hits, we also conducted an analogous analysis 
considering block type order (standard first vs. speeded first) as a 
between-participants factor. Cases in which order interacted with the 
other factors of interest are noted and presented in Section I of the 
Supplementary Materials; however, in Experiment 1, no order analyses 
revealed significant interactions. Note that we report the preregistered 
analyses for sensitivity in Section II of the Supplementary Materials 
because the current computation of sensitivity is partially redundant to 
hit rate—the silent and aloud targets are compared against the same 
foils. This is the case for all experiments. 

Data from 18 participants were replaced as they did not meet the 
preregistered inclusion criteria: They did not respond in time to at least 
80% of recognition trials before the deadline and/or they had hit rates at 
or below 50% on one of the recognition tests. Trials (4.9% of total trials) 
wherein participants did not provide responses (i.e., the deadline was 
reached before a response was provided) were removed before analysis. 
Given the high proportion of participants needing replacement, we ran 
parallel analyses including the 18 participants (i.e., N = 66) and report 
these results in square brackets following the analogous main results 
(the tables and figures accompanying these data are available in Section 
III of the Supplementary Materials). Results were qualitatively the same 
as when excluding them. Means of hit rate, false alarm rate, and correct 
response time are presented in Table 1 as a function of experimental 
condition.4 Data and analyses code for Experiment 1 are available at osf. 
io/un5ca/. 

Hit rate 
Mean hit rates as a function of condition are presented in Fig. 1. 

There was a main effect of production on hit rate such that there were 
higher hit rates for items read aloud at study than for items read silently 
(aloud: .82 [.81]; silent: .64 [.64]), F(1, 47) = 118.07, p < .001, ηG

2 =

.28 [F(1, 65) = 153.45, p < 001, ηG
2 = .24], indicating a typical pro

duction effect, d = 1.15 [1.09]. Additionally, there was a main effect of 
speeding on hit rate such that there were significantly higher hit rates in 
the standard condition than in the speeded condition (standard: .78 

1 The preregistered response deadline of 2400 ms for the standard group was 
due to an oversight in updating the preregistration after the decision was made 
to apply the 5000-ms response deadline instead. As such, we deviated from the 
preregistered response deadline only for the standard condition.  

2 Not including campground which was not in the database.  
3 Not including avenue, captain, foundation, harbor, matrix, uncle, or valley, 

which were not in the database. 

4 Means for incorrect response times by item type, speeding condition, and 
experiment are available at https://osf.io/un5ca/ 

M.O. Kelly et al.                                                                                                                                                                                                                                

https://osf.io/un5ca/


Journal of Memory and Language 123 (2022) 104299

4

[.78]; speeded: .68 [.67]), F(1, 47) = 21.52, p < .001, ηG
2 = .10 [F(1, 65) 

= 28.31, p < 001, ηG
2 = .09]. The production effect in the standard 

condition did not differ from that in the speeded condition (standard: .20 
[.20]; speeded: .17 [.15]), F(1, 47) = 1.01, p = .321, ηG

2 < .01, [F(1, 65) 
= 3.58, p = .063, ηG

2 = .01]. 

False alarm rate 
The analysis of false alarm rate was not preregistered. As would be 

expected, however, false alarm rate was significantly lower in the 
standard condition than in the speeded condition (standard: .12 [.13]; 
speeded: .20 [.24]), F(1, 47) = 23.87, p < .001, ηG

2 = .08 [F(1, 65) =
29.13, p < .001, ηG

2 = .10]. 

Response time for hits 
There was a main effect of production on response time for hits such 

that participants responded significantly faster to items read aloud than 
to items read silently (aloud: 718 ms [731 ms]; silent: 767 ms [791 ms]), 
F(1, 47) = 12.39, p < .001, ηG

2 = .04 [F(1, 65) = 19.08, p < .001, ηG
2 =

.04]. As expected, there was a main effect of speeded responding on hits 
such that response times were significantly slower in the standard con
dition than in the speeded condition (standard: 906 ms [934 ms]; 
speeded: 579 ms [588 ms]), F(1, 47) = 184.84, p < .001, ηG

2 = .70 [F(1, 
65) = 135.44, p < .001, ηG

2 = .59]. The interaction between production 
and deadline was significant such that the production effect in response 
time for hits was smaller in the speeded condition than in the standard 
condition (standard: − 81 ms [-119 ms]; speeded: − 2 ms [-0.5 ms]), F(1, 
47) = 8.97, p = .004, ηG

2 = .04 [F(1, 65) = 17.05, p = .001, ηG
2 = .04]. 

There was a significant production effect in response time for hits in the 
standard condition, t(47) = 3.34, p = .002, d = 0.48 [t(65) = 4.34, p <
.001, d = 0.53], but not in the speeded condition, t(47) = 0.34, p = .733, 
d = 0.05 [t(65) = 0.08, p = .934, d = 0.01]. 

Exploratory 
We also analyzed the proportion of timeouts (i.e., the proportion of 

trials wherein participants did not respond before the deadline). Given 
that the proportion of timeouts was negligible in the standard condition 
(see Table 1), we focused on analyzing the speeded condition. The 
proportion of timeouts did not differ among silent, aloud, and foil items 
(silent: .11 [.14]; aloud: .09 [.13]; foil: .10 [.14]), F(2, 94) = 1.85, p =
.163, ηG

2 = .02 [F(2, 130) = 0.87, p = .421, ηG
2 < .01]. 

Discussion 

We found consistent effects of production on hit rate and hit rate 
response time, as well as consistent effects of speeded responding on hit 
rate, false alarm rate, and correct response time. The results of Experi
ment 1 did not provide clear evidence of an effect of speeding recogni
tion responses on the size of the production effect in hit rate, which is 
inconsistent with the prediction we derived from the account described 
by Forrin and colleagues. We did, however, observe an interaction be
tween production and speeded responding for response time. Taken 
together, the results of Experiment 1 are mixed. The primary dependent 
variable in studies of the production effect—hit rate—did not show the 
interaction predicted based on the account described by Forrin et al. 
(2012). That said, the means were in the predicted direction and the 
interaction was marginal when all of the data (i.e., including those 
excluded in the main data set) was included (the interaction was also 
significant in the pre-registered sensitivity analysis reported in Section II 
of the Supplementary Materials). Thus, Experiment 2 further examined 
the interaction between production and speeding. 

Experiment 2 

In Experiment 2, we sought to provide a second test of the interaction 
between production and speeded retrieval by reducing the response 
deadline in the speeded condition. Specifically, rather than 800 ms, the 
speeded retrieval condition now featured a 750 ms deadline with the 
intent of reducing the time available at retrieval but with caution about 
potentially losing responses due to too little time to respond. Experiment 
2 was preregistered at osf.io/xt84h/. 

Method 

The method of Experiment 2 was identical with that of Experiment 1 
with three exceptions. First, the response deadline of the recognition 
task was set to 750 ms (i.e., 50 ms earlier; although this was incorrectly 
preregistered as using an identical deadline to that in Experiment 1). We 
also changed the minimum response rate to 60% (i.e., from 80% in 
Experiment 1) and we increased power by collecting 64 sets of usable 
participant data based on the determined N of Experiment 1 (i.e., 48), 
and the addition of two full cycles of counterbalances (i.e., 2 × 8 = 16). 
As in Experiment 1, participants were undergraduate students from the 
University of Waterloo taking part for course credit, and none had taken 
part in Experiment 1. All other aspects of Participants, Stimuli, and 

Fig. 1. Experiment 1: Mean hit rate by study/encoding condition and speed 
manipulation. Mean false alarm rates are in parentheses by speed manipulation. 
Error bars are bias-corrected accelerated bootstrap 95% confidence intervals 
using 10,000 replications. 

Table 1 
Experiment 1: Mean Hit Rate, False Alarm Rate, and Response time for Hits and Correct Rejections for Each Item Type by Condition (CI95 in Parentheses).   

Silent Aloud New 

Standard 
Hits and false alarms .68 [.64, .73] .88 [.84, .91] .12 [.09, .16] 
Response time (ms) for hits and correct rejections 922 [868, 992] 841 [804, 885] 918 [860, 993] 
Timeout proportion .001 [.00, .003] .001 [.00, .003] .001 [.00, .003]  

Speeded 
Hits and false alarms .60 [.55, .64] .77 [.72, .81] .20 [.16, .25] 
Response time (ms) for hits and correct rejections 590 [576, 602] 588 [576, 600] 580 [568, 593] 
Timeout proportion .11 [.09, .13] .09 [.07, .10] .10 [.08, .12] 

Note. Confidence intervals are bias-corrected accelerated bootstrap 95% confidence intervals using 10,000 replications. 
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Procedure for Experiment 2 were identical to those of Experiment 1. 

Results 

As in Experiment 1, hit rate and response times were each analyzed 
using a 2 (silent vs. aloud) × 2 (standard vs. speeded) repeated measures 
ANOVA; false alarm rate was analyzed with a (standard vs. speeded) 
repeated measures ANOVA. For each of hit rate, false alarm rate, and 
response time (for hits and correct rejections), we also conducted an 
analogous analysis considering block type order (standard first vs. 
speeded first) as a between-participants factor. Only the cases where 
order interacted with the other factors of interest are noted and are 
presented in Section I of the Supplementary Materials. These few in
teractions demonstrated that when the speeded block occurred first, this 
occasionally led to a smaller effect of speed compared to when the 
speeded block occurred second. However, in general, these instances did 
not qualitatively affect the results reported here. Note that the prereg
istration for Experiment 2 specified analyzing response time for false 
alarms specifically but we have deviated from that to, instead, report 
response time for correct rejections. 

We replaced data from 25 participants because their response rates 
were lower than the 60% minimum criterion and/or their recognition 
accuracy was at or below 50% on one of the recognition tests. Trials 
wherein participants did not provide responses (i.e., the deadline was 
reached before a response was provided) were removed before analysis 
(6% of total trials). Given the high proportion of participants needing 
replacement, we ran parallel analyses including the 25 excluded par
ticipants (i.e., N = 89). Results were consistent with those when 
excluding them (these results, which include the preregistered exclu
sions, are reported in square brackets following each of the analogous 
main results; see Section III of the Supplementary Materials for the ta
bles and figures accompanying these data), except for two minor de
viations from the analyses with N = 64 (see the sections titled Response 
time for hits and Exploratory). Means of hit rate, false alarm rate, and 
correct response time are presented in Table 2 as a function of experi
mental condition. Data and analyses code for Experiment 2 are available 
at osf.io/un5ca/. 

Hit rate 
The main effect of production was significant such that hit rate was 

significantly higher for items read aloud than for those read silently 
(aloud: .79 [.77]; silent: .65 [.63]), F(1, 63) = 100.90, p < .001, ηG

2 =

.16 [F(1, 88) = 126.48, p < .001, ηG
2 = .14], a typical production effect, 

d = 0.93 [0.82]. There was also a main effect of speeding such that hit 
rate was significantly higher in the standard condition than in the 
speeded condition (standard: .78 [.77]; speeded: .66 [.62]), F(1, 63) =
47.20, p < .001, ηG

2 = .12 [F(1, 88) = 65.87, p < .001, ηG
2 = .16]. 

Critically—and unlike in Experiment 1—the interaction between pro
duction and speeding was significant, such that the production effect 
was larger in the standard condition than in the speeded condition 
(standard: .17 [.19]; speeded: .11 [.09]), F(1, 63) = 5.82, p = .019, ηG

2 

= .01 [F(1, 88) = 19.57, p < .001, ηG
2 = .02]. The production effect was, 

however, significant in both conditions: standard, t(63) = 9.14, p < .001, 
d = 1.14 [t(88) = 11.43, p < .001, d = 1.21], and speeded, t(63) = 5.98, 
p < .001, d = 0.75 [t(88) = 4.94, p < .001, d = 0.52]. Mean hit rates by 
production and speed manipulation are presented in Fig. 2. 

False alarm rate 
False alarm rate was significantly lower in the standard condition 

than in the speeded condition (standard: .16 [.16]; speeded: .23 [.29]), F 
(1, 63) = 25.75, p < .001, ηG

2 = .08 [F(1, 88) = 45.70, p < .001, ηG
2 =

.14], a typical mirror effect. 

Response time for hits 
There was a significant main effect of production on response time 

for hits, such that response time was significantly faster for aloud items 
than for silent items (aloud: 712 ms [728 ms]; silent: 736 ms [760 ms]), 
F(1, 63) = 6.64, p = .012, ηG

2 = .01 [F(1, 88) = 16.09, p < .001, ηG
2 =

.01]. Not surprisingly, there was also a significant main effect of 
speeding on response time for hits such that response time was signifi
cantly slower in the standard condition compared with the speeded 
condition (standard: 882 ms [926 ms]; speeded: 566 ms [562 ms]), F(1, 
63) = 206.63, p < .001, ηG

2 = .55 [F(1, 88) = 246.09, p < .001, ηG
2 =

.54]. Although the pattern was similar to that in Experiment 1, in 
Experiment 2, the production effect in response time for hits did not 
differ significantly between the standard condition and the speeded 
condition (standard: − 40 ms; speeded: − 6 ms), F(1, 63) = 2.65, p =
.108, ηG

2 < .01. [When not excluding any participants (N = 89), the 
production effect in response time for hits was significantly different 
between the standard condition and the speeded condition (standard: 
− 59 ms; speeded: − 3 ms), F(1, 88) = 9.00, p = .004, ηG

2 = .01.] 

Response time for correct rejections 
For correct rejections, as expected, a standard versus speeded 

repeated measures ANOVA revealed that response time was significantly 
faster in the speeded condition than in the standard condition (standard: 

Table 2 
Experiment 2: Mean Hit Rate, False Alarm Rate, and Response time for Hits and Correct Rejections for Each Item by Condition (CI95 in Parentheses).   

Silent Aloud New 

Standard 
Hit and false alarm rate .69 [.64, .73] .86 [.83, .89] .16 [.14, .19] 
Response time (ms) for hits and correct rejections 902 [855, 959] 862 [821, 911] 945 [888, 1025] 
Timeout proportion .003 [.001, .006] .001 [0, .002] 0 [0, 0]  

Speeded 
Hit and false alarm rate .60 [.55, .64] .71 [.67, .75] .23 [.20, .27] 
Response time (ms) for hits and correct rejections 569 [556, 581] 563 [549, 574] 550 [537, 561] 
Timeout proportion .14 [.12, .16] .10 [.08, .11] .11 [.09, .13] 

Note. All confidence intervals are bias-corrected accelerated bootstrap 95% confidence intervals using 10,000 replications. 

Fig. 2. Experiment 2: Mean hit rate by item condition and by speed manipu
lation. Mean false alarm rates are in parentheses by speed manipulation. Error 
bars are bias-corrected accelerated bootstrap 95% confidence intervals using 
10,000 replications. 
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945 ms [999 ms]; speeded: 550 ms [541 ms]), F(1, 63) = 133.58, p <
.001, ηG

2 = .50 [F(1, 87) = 187.36, p < .001, ηG
2 = .51].5 No other ef

fects were significant. 

Exploratory 
As in Experiment 1, we analyzed the proportion of timeouts in the 

speeded condition (this analysis was not preregistered). Unlike in 
Experiment 1, the proportion of timeouts significantly differed across 
item types (silent: .14 [.16]; aloud: .10 [.13]; foil: .11 [.15]), F(2, 126) =
6.06, p = .003, ηG

2 = .04 [F(2, 176) = 4.18, p = .017, ηG
2 = .01]. Paired 

comparisons using t-tests revealed a significant difference between si
lent and aloud items, t(63) = 3.50, p = .001, d = 0.44 [t(88) = 3.03, p =
.003, d = 0.32], and between silent and foil items, t(63) = 2.15, p = .035, 
d = 0.27, but no difference between aloud and foil items, t(63) = 1.29, p 
= .201, d = 0.16 [t(88) = 1.84, p = .069, d = 0.20]. [In the analysis that 
did not exclude any poorly performing participants (N = 89), there was 
no significant difference between silent and foil items, t(88) = 0.99, p =
.324, d = 0.11.] 

Discussion 

As seen in Experiment 1, there were robust effects of production and 
of response speeding. Unlike in Experiment 1, however, Experiment 2 
found that speeded responding reduced the observed production effect 
as predicted. That is, when responding was speeded, the production 
effect was significantly smaller in hit rate (the pattern in RTs was similar 
but not significant). This is consistent with the idea that when 
responding was speeded, there was reduced opportunity for a time- 
consuming process to unfold and to support the emergence of a pro
duction effect. Interestingly, there nevertheless remained a reliable 
production effect for hit rate in the speeded condition. As noted, this 
effect might reflect the slower process running to completion even in the 
speeded condition, just less frequently, or it might reflect a contribution 
to the production effect that is relatively insensitive to the manipulation 
of retrieval time. 

Experiment 3 

The goal of Experiment 3 was to replicate and extend Experiment 2. 
We again used a speeded response deadline of 750 ms to investigate the 
effect of speeded responding on the production effect. In addition, we 
added a measure of guessing. The increased difficulty associated with 
the shorter deadline in the speeded condition likely leads individuals to 
“guess” more often in that condition especially given that, throughout 
our experiments, participants are told that guessing is better than not 
responding. This could cloud the interpretation of the interaction 
observed between speeded responding and the production effect 
because guesses would not be expected to yield a production effect. That 
is, the production effect might be smaller under speeded retrieval 
because speeded retrieval increases the propensity to guess (and 
guessing would not yield a production effect), rather than because 
speeding reduces the opportunity for a time intensive process to unfold. 

By attempting to identify guesses, we can begin to address this 
alternative account by focusing on responses reported not as guesses. If 
speeded responses still lead to a reduction of the production effect when 
guesses are excluded, then guessing is unlikely to be a complete expla
nation of the reduced production effect observed in the speeded condi
tion. Experiment 3 was preregistered at osf.io/k8nqt/. 

Method 

As in Experiment 2, data were analyzed from 64 undergraduate 

students from University of Waterloo taking part for course credit, with 
none having taken part in Experiments 1 or 2. Stimuli for Experiment 3 
were identical to those used in Experiments 1 and 2. The Procedure for 
Experiment 3 was identical to that of Experiment 2 with one key 
exception: During the recognition tests, after each individual response as 
to whether an item was old (“f”) or new (“j”), participants were 
prompted to answer yes (“y”) or no (“n”) to whether they felt that their 
previous response was a guess. Responding to subsequent guess prompts 
was not speeded but was to be completed within 3 s (considered ample 
time, e.g., Wammes et al., 2018). Due to the task-switching nature of this 
modification, we included a 500-ms interstimulus interval (ISI) between 
responding old/new to the presented item and the onset of the guess 
prompt, as well as a 1500-ms ISI between responding yes/no to the guess 
prompt and the onset of the subsequent trial. For consistency, partici
pants were still urged to favor responding (even if it meant guessing) 
over not responding. 

Results 

As in previous experiments, hit rate and response time (for hits and 
correct rejections) were each analyzed using a 2 (silent vs. aloud) × 2 
(standard vs. speeded) repeated measures ANOVA; false alarm rate was 
analyzed using a (standard vs. speeded) repeated measures ANOVA. We 
also conducted an analogous analysis considering block type order 
(standard first vs. speeded first) as a between-participants factor for each 
of hit rate, false alarm rate, and response time. Only cases where order 
interacted with the other factors of interest are noted in Section I of the 
Supplementary Materials. As in Experiment 2, when the speeded block 
occurred first, this occasionally led to a smaller effect of speed compared 
to when the speeded block occurred second. However, in general, these 
instances did not qualitatively affect the results. 

Data from 12 participants were replaced because either their 
response rates were lower than the 60% preregistered criterion (for 
Experiment 3, this criterion was specified at the condition level: 
standard-silent, standard-aloud, speeded-silent, speeded-aloud) or their 
recognition accuracy was at or below 50% on the recognition test. We 
updated the 60% minimum response criterion to apply at the condition 
level to prevent overly unbalanced observations within each condition, 
which could potentially occur with inclusion of individuals scoring 
perfectly on standard and/or aloud trials while having an inordinate 
number of timed out responses for silent and/or speeded trials. To 
remain consistent with Experiments 1 and 2, we ran parallel analyses 
which included the 12 participants (i.e., N = 76; available at osf.io/ 
un5ca/) and results were qualitatively the same (these results which 
include the preregistered exclusions are reported in square brackets 
following the analogous main results; see Section III of the Supple
mentary Materials for the tables and figures accompanying these data). 

Trials on which participants did not provide guess responses to the 
guess prompt (i.e., the deadline for the guess prompt was reached before 
responding) were removed before analyzing (7% of total trials). The 
majority of these removed trials (85%) were also trials wherein partic
ipants did not provide responses to the presented item (i.e., the deadline 
was reached before a response was provided). Although very infrequent, 
trials (0.26% of total trials with responses to guess prompts) wherein 
participants did not provide responses were also removed before 
analyzing. Note that, like in Experiment 2, the preregistration for 
Experiment 3 specified analyzing response time for false alarms but, 
again, we have deviated from that to report response time for correct 
rejections. 

For this experiment, we preregistered three sets of analyses analogous 
to those reported in Experiments 1 and 2. The first set of analyses include 
all data (aside from the exclusions outlined previously); these are 
described in tables/figures as “with guesses.” The second set of analyses 
are a subset of the first wherein only responses to targets explicitly re
ported by participants as not being guesses are included. Participants 
were removed from this subset if they had fewer than eight responses 

5 In the analysis with all participants, one participant had to be removed as 
they never made a correct rejection. 
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remaining in each condition (i.e., standard-silent, standard-aloud, 
speeded-silent, speeded-aloud) after removing guesses. From here on, 
such participants are referred to as participants with high guessing rates. 
This second set of data is described in tables/figures as “excluding 
guesses.” The final set of analyses are a subset of the first data set (i.e., 
guesses included), but with the 17 participants with high guessing rates 
also removed (23 of the 76 participants when no participants were 
excluded). The results of these final analyses were generally qualitatively 
similar to the results of the first data set and, as such, are not reported 
(though they are available at osf.io/un5ca/). A Greenhouse-Geisser 
correction was applied in the cases of a sphericity violation. Means of 
hit rate, false alarm rate, and response time are presented in Table 3 as a 
function of experimental condition. Data and analyses code for Experi
ment 3 are available at osf.io/un5ca/. 

Hit rate 
When guesses were included, there was a significant main effect of 

production such that hit rate was significantly higher for aloud items than 
for silent items (aloud: .78 [.75]; silent: .63 [.61]), F(1, 63) = 92.44, p <
.001, ηG

2 = .16 [F(1, 75) = 107.65, p < .001, ηG
2 = .14], a typical pro

duction effect, d = 0.81 [0.81]. There was also a main effect of speeding 
such that hit rate was significantly higher in the standard condition than 
in the speeded condition (standard: .74 [.73]; speeded: .66 [.63]), F(1, 
63) = 18.67, p < .001, ηG

2 = .05 [F(1, 75) = 31.98, p < .001, ηG
2 = .07]. 

Consistent with Experiment 2, the interaction between production and 
speeding was significant, F(1, 63) = 28.34, p < .001, ηG

2 = .05 [F(1, 75) =
35.66, p < .001, ηG

2 = .04], such that the production effect was signifi
cantly larger in the standard condition than in the speeded condition 
(standard: .22 [.22]; speeded: .06 [.07]). Still, there was a significant 
production effect in both conditions: standard, t(63) = 11.02, , p < .001, d 
= 1.38 [t(75) = 12.24, p < .001, d = 1.40], and speeded, t(63) = 3.42, p =
.001, d = 0.43 [t(75) = 3.63, p = .001, d = 0.42]. 

When excluding guesses and participants with high guessing rates, 
there remained a main effect of production such that hit rate was still 
significantly higher for items read aloud than for those read silently 
(aloud: .86 [.85]; silent: .72 [.71]), F(1, 46) =53.15, p < .001, ηG

2 = .15 [F 
(1, 52) =66.64, p < .001, ηG

2 = .14]. However, there was no main effect of 
speeding as hit rate did not differ significantly between the standard and 
speeded conditions (standard: .80 [.79]; speeded: .79 [.77]), F(1, 46) =
0.66, p = .422, ηG

2 < .01 [F(1, 52) = 1.76, p = .191, ηG
2 = .01]. The 

interaction between production and response speeding remained signif
icant, F(1, 46) = 9.39, p = .004, ηG

2 = .02 [F(1, 52) = 10.81, p = .002, ηG
2 

= .02], such that the production effect was smaller when responses were 
speeded (standard: .19 [.19]; speeded: .09 [.09]). As in the previous 

analyses, there were significant production effects in both conditions: 
standard, t(46) = 7.13, p < .001, d = 1.04 [t(52) = 7.97, p < .001, d =
1.09], and speeded, t(46) = 2.55, p = .014, d = 0.37 [t(52) = 3.11, p =
.003, d = 0.43]. Mean hit rates by production, speed manipulation, and 
whether guesses were included are presented in Fig. 3. 

False alarm rate 
When guesses were included, the false alarm rate was significantly 

lower in the standard condition than in the speeded condition (standard: 
.15 [.16]; speeded: .32 [.32]), F(1, 63) = 61.26, p < .001, ηG

2 = .24 [F(1, 
75) = 78.03, p < .001, ηG

2 = .24]. When guesses were excluded (as were 
participants with high guessing rates), the false alarm rate was still 
significantly lower in the standard condition than in the speeded con
dition (standard: .09 [.09]; speeded: .19 [.21]), F(1, 46) = 18.08, p <
.001, ηG

2 = .10 [F(1, 52) = 25.24, p < .001, ηG
2 = .12]. 

Response time for hits 
When guesses were included, there was a main effect of production 

on response times for hits such that response times for hits were 
significantly faster for aloud items than for silent items (aloud: 823 ms 
[830 ms]; silent: 855 ms [866 ms]), F(1, 63) = 10.18, p = .002, ηG

2 < .01 
[F(1, 75) = 14.70, p < .001, ηG

2 < .01]. Not surprisingly, there was also a 
main effect of speeding such that participants were also faster in the 
speeded condition than in the standard condition (standard: 1136 ms 
[1155 ms]; speeded: 543 ms [541 ms]), F(1, 63) = 211.94, p < .001, ηG

2 

= .61 [F(1, 75) = 230.30), p < .001, ηG
2 = .59]. These two effects 

Table 3 
Experiment 3: Mean Hit Rate, False Alarm Rate, and Response time for Hits and Correct Rejections for Each Item Type by Condition for Data With and Without Guesses 
(CI95 in Parentheses).   

Guesses Silent Aloud New 

Standard 
Hit and False alarm rate with .63 [.58, .67] .85 [.81, .88] .15 [.13, .18]  

without .71 [.65, .76] .90 [.85, .93] .09 [.07, .12] 
Response time (ms) for hits and correct rejections with 1170 [1092, 1254] 1101 [1028, 1186] 1148 [1066, 1236]  

without 1025 [967, 1085] 969 [910, 1041] 1028 [954, 1117] 
Timeout proportion with .01 [.01, .02] .01 [.01, .02] .01 [.01, .02]  

without 0 [0, − ] 0 [0, − ] 0 [0, − ] 
Guess proportion with .31 [.26, .35] .20 [.16, .24] .29 [.25, .34]  

Speeded 
Hit and False alarm rate with .62 [.58, .67] .70 [.65, .74] .32 [.27, .36]  

without .74 [.69, .79] .83 [.78, .87] .19 [.14, .26] 
Response time (ms) for hits and correct rejections with 541 [521, 558] 545 [528, 560] 542 [524, 557]  

without 551 [528, 568] 549 [533, 563] 552 [532, 568] 
Timeout proportion with .14 [.12, .17] .14 [.12, .16] .15 [.13, .18]  

without .02 [.01, .05] .01 [.003, .03] .02 [.01, .03] 
Guess proportion with .36 [.31, .41] .29 [.24, .34] .34 [.30, .39] 

Note. All confidence intervals are bias-corrected accelerated bootstrap 95% confidence intervals using 10,000 replications. 

Fig. 3. Experiment 3: Mean hit rate by item condition and by speed manipu
lation with mean false alarm rates in parentheses by speed manipulation, all by 
whether guesses were included or excluded. Error bars are bias-corrected 
accelerated bootstrap 95% confidence intervals using 10,000 replications. 
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interacted significantly such that the production effect in response time 
for hits was significantly smaller in the speeded condition than in the 
standard condition (standard: − 69 ms [− 74 ms]; speeded: 4 ms [3 ms]), 
F(1, 63) = 11.22, p = .001, ηG

2 = .01 [F(1, 75) = 16.75, p < .001, ηG
2 =

.01]. The production effect in response time for hits was significant in 
the standard condition, t(63) = 3.39, p = .001, d = 0.42 [t(75) = 4.23, p 
< .001, d = 0.49], but not in the speeded condition, t(63) = 0.75, p =
.454, d = 0.09 [t(75) = 0.49, p = .625, d = 0.06]. 

When guesses and high guessing rate participants were excluded, 
findings were consistent with the pattern observed when they were 
included. That is, there was a main effect of production on response 
times for hits such that response times were significantly faster for aloud 
items than for silent items (aloud: 759 ms [757 ms]; silent: 788 ms [788 
ms]), F(1, 46) = 6.36, p = .015, ηG

2 = .01 [F(1, 52) = 7.57, p = .001, ηG
2 

< .01]. There was also a main effect of speeding such that response times 
were longer in the standard condition than in the speeded condition 
(standard: 997 ms [1155 ms]; speeded: 550 ms [541 ms]), F(1, 46) =
206.68, p < .001, ηG

2 = .66 [F(1, 52) = 224.43, p < .001, ηG
2 = .64]. Also 

consistent with the previous findings, these effects significantly inter
acted, F(1, 46) = 5.18, p = .028, ηG

2 = .01 [F(1, 53) = 7.04, p = .010, ηG
2 

= .01], such that the production effect in response time was smaller in 
the speeded condition (standard: − 56 ms [-72 ms]; speeded: 2 ms [2 
ms]). The production effect in response time was significant only in the 
standard condition, t(46) = 2.48, p = .017, d = 0.36 [t(52) = 2.86, p =
.006, d = 0.392], and not in the speeded condition, t(46) = 0.29, p =
.777, d = 0.04 [t(52) = 0.10, p = .918, d = 0.01]. 

Response time for correct rejections 
When guesses were included, as expected, the response times for 

correct rejections were significantly faster when responses were speeded 
(standard: 1148 ms [1151 ms]; speeded: 542 ms [540 ms]), F(1, 63) =
194.90, p < .001, ηG

2 = .59 [F(1, 75) = 223.65, p < .001, ηG
2 = .58]. 

When guesses and high guessing rate participants were excluded, results 
were similar to the previous analysis: Response times for correct re
jections were significantly faster when responding was speeded than 
when it was not (standard: 1028 ms [1018 ms]; speeded: 552 ms [545 
ms]), F(1, 46) = 140.19, p < .001, ηG

2 = .57 [F(1, 52) = 154.52, p <
.001, ηG

2 = .56]. 

Exploratory 
As in the previous experiments, we analyzed the proportion of 

timeouts in the speeded condition. Consistent with Experiment 1, the 
proportion of timeouts did not differ among silent, aloud, and foil items 
(silent: .14 [.16]; aloud: .14 [.15]; foil: .15 [.17]), F(2, 126) = 0.54, p =
.583, ηG

2 < .01 [F(1.71, 127.94) = 0.62, p = .514, ηG
2 < .01], when 

including guesses. When guesses and high guess-rate participants were 
excluded, the proportion of timeouts did not differ among silent, aloud, 
and foil items (silent: .02 [.02]; aloud: .01 [.02]; foil: .02 [.01]), F(1.62, 
102.03) = 1.14, p = .316, ηG

2 = .01 [F(1.74, 128.46) = 0.28, p = .722, 
ηG

2 < .01], similar to when guesses were included, though these time
outs were very infrequent in comparison. 

We also analyzed the proportion of guesses using a 3 (silent vs. aloud 
vs. foil) × 2 (standard vs. speeded) repeated measures ANOVA. There 
was a main effect of item type (silent: .33 [.33]; aloud: .24 [.25]; foil: .32 
[.32]), F(1.52, 95.77) = 14.66, p < .001, ηG

2 = .04 [F(1.49, 111.69) =
13.63, p < .001, ηG

2 = .03]. Paired comparisons using t-tests revealed 
significant differences between silent and aloud items (silent: .33 [.33]; 
aloud: .24 [.25]), t(127) = 6.30, p < .001, d = 0.56 [t(151) = 6.16, p <
.001, d = 0.50], and between aloud and foil items (aloud: .24 [.25]; foil: 
.32 [.32]), t(127) = 4.22, p < .001, d = 0.37 [t(151) = 3.95, p < .001, d 
= 0.32], but not between silent and foil items (silent: .33 [.33]; foil: .32 
[.32]), t(127) = 0.86, p = .394, d = 0.08 [t(151) = 0.97, p = .333, d =
0.08]. There was also a main effect of speeding such that the proportion 
of guesses was significantly lower in the standard condition than in the 
speeded condition (standard: .27 [.26]; speed: .33 [.34]), F(1, 63) =
16.54, p < .001, ηG

2 = .03 [F(1, 75) = 24.40, p < .001, ηG
2 = .03]. There 

was no significant interaction between production and speed, F(2, 126) 
= 1.90, p = .154, ηG

2 < .01 [F(2, 150) = 2.62, p = .076, ηG
2 < .01]. 

Discussion 

The results of Experiment 3 are consistent with those of Experiment 
2, both when including responses reported as guesses and when 
excluding such responses. When including guesses, we observed a robust 
production effect. That is, as in Experiment 2, speeded responding 
significantly reduced the production effect. Moreover, in the speeded 
responding condition, the production effect remained for hit rate. In 
Experiment 3, we sought to reduce the potential influence of a higher 
guess rate in the speeded condition. Critically, however, when excluding 
responses reported as guesses, results were similar to those including 
them. Indeed, across hit rates, false alarm rates, and RT analyses, the 
results were qualitatively identical. Thus, there is little reason to suspect 
that the reduction of the production effect observed under speeded 
conditions is driven by a dilution due to increased guessing. While it is 
possible that participants are unable to accurately monitor and report 
their own guessing behaviour, the data show that guessing rates were 
indeed higher in the speeded condition and that the removal of guess 
trials generally increased performance, as would be expected. Finally, it 
is worth noting that the interactions between the production and 
retrieval speed manipulations are characterized as “removable” because 
they can be eliminated using a monotonic transformation (Bogartz & 
Wackwitz, 1970; Loftus, 1978; Wagenmakers et al., 2012). We discuss 
this issue further in Section IV of the Supplementary materials. 

Modelling the production effect 

Empirical work on the production effect has accumulated rapidly, 
however theoretical accounts have remained largely verbal in nature 
(the exception being Jamieson et al., 2016; also see MacLeod, Pottruff, 
Forrin, & Masson, 2012 for other modelling approaches). This is 
disappointing given how robust the production effect has proven to be 
(as is the case for potentially related phenomena, e.g., drawing effect, 
enactment effect, generation effect; MacLeod et al., 2010; Wammes, 
Meade, & Fernandes, 2018). This robustness suggests that the phe
nomenon is capturing an attribute of memory well worth attempting to 
integrate into existing computational approaches to memory. To this 
end, we next attempt to implement a version of the Forrin et al. (2012) 
account into one such computational framework. Following this, and for 
comparison, we also implement a version of another popular account of 
the production effect based on “strength.” 

The current modelling framework 

The current modelling is situated in the Retrieving Effectively from 
Memory framework (REM; Shiffrin & Steyvers, 1997), a computational 
model of recognition memory. REM was originally developed (at least 
partially) in response to the inability of prevailing global memory 
models to account for the memory advantage of low-frequency words 
(Bowers & Davis, 2012) and borrowed elements from various extant 
models including SAM (e.g., Raaijmakers & Shiffrin, 1981) and 
MINERVA2 (e.g., Hintzman, 1984; 1986). REM has been successful in 
accounting for a large assortment of memory phenomena including, but 
not limited to, the word-frequency effect (Malmberg & Murnane, 2002), 
feature frequency effects (Malmberg, Steyvers, Stevens, & Shiffrin, 
2002), effects of repetition and similarity (Malmberg, Holden, & Shif
frin, 2004), list-strength and spacing effects (Ensor, Surprenant, & 
Neath, 2020; Osth et al., 2018), intentional forgetting (Lehman & 
Malmberg, 2011), retrieval-induced forgetting (Verde, 2013), source 
memory (Osth et al., 2018), output interference and judgments of fre
quency (Annis & Malmberg, 2013). 

To model the account of Forrin et al., we adapted REM.1, the version 
of REM most often implemented to model recognition, in addition to 
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being its most simple instantiation (Ensor et al., 2020, Shiffrin & 
Steyvers, 1997). In REM.1, memory is treated as a collection of traces 
(or, traditionally, images) each represented as a vector of feature values, 
such that knowledge about a feature is denoted with a positive integer 
while absence of knowledge about a feature is represented by a value of 
zero. In general, the number of features, w, is set to 20. The specific 
feature values are drawn from a geometric distribution with parameter 
g. At study, features from studied items are stored into memory with 
probability u. If the feature information (i.e., its value) is stored, then it 
is accurately copied with probability c, otherwise, a different value is 
drawn from the geometric distribution for that feature. If no information 
is copied, then the assigned value of that feature is zero. 

Modelling retrieval during a recognition test involves “presenting” a 
probe (either a target or a foil) to all traces stored in “memory.” All of the 
feature values of the probe and each trace are aligned to compare their 
similarities and differences. A likelihood ratio, λ , incorporating the 
Bayes rule, is computed for each stored trace by dividing the probability 
of observing the similarities and differences between the probe and trace 
if the probe was a target by the probability of observing the similarities 
and differences if the probe was a foil. For each trace stored in memory, 
M is the set of feature positions in the vector wherein the nonzero feature 
values match that of the probe (i.e., the features within the trace and 
probe are compared based on aligning their analogous feature positions) 
and Q is the set of feature positions wherein the nonzero feature values 
mismatch the probe. Pkm(i) is the probability that a feature value i would 
occur in feature position k if the trace derived from the probe and the 
feature value was stored accurately. Pkq(i) is the probability that the 
feature value i would be stored in feature position k if the trace derived 
from the probe and the feature value was stored inaccurately. Finally, 
Pkd(i) is the probability that feature value i would occur in position k 
provided that the trace did not derive from the probe. Then, the likeli
hood ratio for any trace stored in memory is the following: 

λ =
∏

k∈M

[
Pkm(i)
Pkd(i)

]
∏

k∈Q

[
Pkq(i)
Pkd(i)

]

Based on the overall average of the likelihood ratios (λs) computed 
from each probe-trace comparison, REM computes the average odds that 
the probe is “old” over “new.” Typically, a decision of “old” is reached if 
the average odds that the probe is a target exceed 1 (see Shiffrin & 
Steyvers 1997 for expanded formulas). The following equation is the 
calculation for odds, Φ, such that λj is the likelihood ratio computed for 

each stored trace, j, and wherein n is the total number of stored traces in 
memory compared to the probe: 

Φ =
1
n
∑n

j=1
λj  

Adapting REM.1 to the Forrin et al. (2012) account 

Our adaptation to REM.1 is based on what we consider the central 
idea in the Forrin et al. (2012) account—that engaging in production 
leads to the storage (at study/encoding) and use (at test/retrieval) of 
production-associated features (see also Jamieson et al., 2016). These 
production-associated features might, for example, consist of the 
motoric or perceptual information generated through the act of pro
duction (Forrin et al., 2012, Jamieson et al., 2016). In the adapted 
model, we represent production-associated information with an addi
tional set of features—10 features beyond the 20 base features—for to- 
be-remembered items produced at study, with these production- 
associated features containing values (i.e., they are filled in); items not 
produced at study do not contain such features. Thus, on average, pro
duction at study/encoding leads to the storage of additional 
information. 

The account by Forrin et al. (2012) also suggests that these 
production-associated features are used at test (e.g., “Do I remember 
saying this aloud?”). In the current model, we represent the use of 
production-associated features at test by including production- 
associated features in the probe vectors that are presented to memory 
at test. Thus, memory is probed with both the base features (e.g., lexical 
and semantic features) and the features representing the information 
related to the production of the item. Note that all probe vectors, 
regardless of condition (produced target, silent target, foil), could 
include production-associated features. This captures the assumption 
that participants do not know whether the item was studied prior to this 
information being used. 

The presence and use of production-associated features should yield 
a production effect (i.e., proportion of “yes” responses for produced 
targets > silent targets). This is because items produced at study have a 
greater number of opportunities for a feature match at test (i.e., there are 
more feature positions with non-zero values on average). As a result, 
assuming that features are encoded accurately, the computed likelihood 
that a probe is a target will tend to be higher for probes representing 
items that were produced at study. It is important to note that the feature 

Fig. 4. Visual depiction of how a given Target item vector, wherein each letter represents the corresponding feature position within the vector, is represented in 
“memory” depending on if it was produced at study, case (i), or not, cases (ii) and (iii). Production-associated features are underlined in the relevant case of (ii). Note 
the lack of functional difference between (ii) and (iii) as explained in text. 

M.O. Kelly et al.                                                                                                                                                                                                                                



Journal of Memory and Language 123 (2022) 104299

10

locations reserved for production-associated information do not apply to 
the memory traces representing items not produced at study. Specifically, 
the vectors across item type are virtually/functionally equal, except that 
the vectors representing traces of items not produced at study did not 
contain production-associated features (i.e., to increase the model pro
cessing speed, these feature positions were not included in these vec
tors); this is functionally equivalent to adding ten additional 0 s to 
vectors representing silent traces. Fig. 4 below demonstrates this idea 
visually. 

In REM.1, for the traces of items not produced at study, this leads to 
their production-associated features contributing nothing (no increase, 
nor decrease) to the computed likelihood that a probe is a target or foil. 

Finally, we attempted to capture the idea that the use of production- 
associated features at retrieval takes additional time (and may well be 
subject to other contextual influences). Although REM.1 does not 
include a mechanism to model the passage of time at retrieval, we 
approximated the effect of restricting retrieval time by varying the 
number of probe features available. This approach is similar to earlier 
work modelling the time course of retrieval and can be conceptualized 
as responses being required prior to the complete processing of the test 
stimulus under speeded retrieval conditions (such as in the current 
procedure or in signal-response methods; Brockdorff & Lamberts, 2000; 
Cox & Shiffrin, 2017; Lamberts, 2002). In REM.1, having fewer features 
in the stimulus probe will, on average, leave fewer opportunities for 
matching features between the probe and the trace. Consequently, the 
overall probability that the probe is a target will be reduced compared to 
what would transpire if all of the features in the probe were available at 
retrieval, all else being equal. Critically, to capture the idea that some 

features would be less likely to contribute under limited retrieval time, 
we classified all features as either “fast” or “slow” and, importantly, all 
production associated features as “slow.” Thus, in simulating the influ
ence of restricting retrieval time, we first made “slow” features un
available followed by making “fast” features unavailable in the probe. 
This is clearly a simplification (e.g., it need not be all production- 
associated features), but as noted in the Introduction and as the 
empirical data presented here support, this assumption appears to rest 
on solid ground. 

Simulations 
Where possible, we set parameters to values considered conventional 

based on previous investigations using REM. We set each item to have 20 
base features, 10 of which we considered “fast” and 10 of which we 
considered “slow”. Because we had no principled basis for selecting a 
given number of production-associated features for produced items 
short of approximating the qualitative patterns in empirical data, we set 
the number of production-associated features to 10.6 For each type of 
feature (faster base, slower base, and production-associated), we set c to 
.70, g to .40, and u to .28. The odds criterion was set to 1, the number of 
produced targets and silent targets to 20 each, and the number of foils to 

Fig. 5. Production-associated features account in REM: Hit rate as a function of production with false alarm rates and the production effect in hit rate, all as a 
function of the proportion of probe features available. Error bars are ± the standard deviation. 

6 Note that although we have opted to set the number of production- 
associated features to 10, the same qualitative pattern emerges when varying 
the number of features per feature type (e.g., 5) and the proportion of features 
available in the probe. Consistently, as the number of production-associated 
features increases, so does the resulting production effect, all else being equal. 
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40 (these numbers correspond to those used in the present empirical 
work). 

To model the probability that the “slow” features and production- 
associated features are used at test, we varied the availability of these 
features, incrementally reducing their availability by one feature per 
simulation set. That is, to simulate results under “full” retrieval time, all 
features were available. To simulate decreasing time available at 
retrieval, in each step, we removed one additional feature. The first 
features to be removed were the “slow” base features and production- 
associated features, followed by the “fast” base features. Whenever an 
odd number of features was made unavailable, half of the simulations 
had one more “slow” feature removed than production-associated fea
tures and the other half of the simulations had the reverse. We ran a total 
of 1000 simulations at each of the 30 increments of feature availability, 
for a total of 30,000 simulations. Simulations were coded in Python 2. 
For reproducibility, all simulations (including those for the strength- 
based model to follow) were conducted with the numpy random seed 
set to 1 (seed did not influence any qualitative findings throughout). The 
code for the model is available at osf.io/un5ca/. 

Simulation results & discussion 
Mean proportions of items classed as “old” as a function of item type 

(produced target vs. silent target vs. foil) and the production effect in hit 
rate are presented in Fig. 5, all as a function of the availability of features 
in the probe. As is clear in Fig. 5, when production-associated features 
are available in the probe, there is a production effect such that the hit 
rate for items produced at study is higher than that for items not pro
duced at study. In addition, as feature availability increases, the pro
duction effect in hit rate increases. If we consider the present empirical 
manipulation of speeding retrieval as a manipulation of the availability 
of features contributing to the recognition decision (such that “slow” 
and production-associated features take longer), then this generally 
follows the pattern of results in the reported experiments. Similarly, 
under speeded recognition instructions, the hit rate for items not pro
duced at study also reduces, while the false alarm rate increases. As seen 
in Fig. 5, these patterns qualitatively match those in the observed 
participant data. 

The results of the present simulation suggest that an instantiation of 
the Forrin et al. (2012) account in REM can capture at least the basic 
production effect and, with additional assumptions (i.e., that the prob
ability of using “slow” features increases when more time is available 
and that production-associated features are such features), the experi
mental results reported here. It is important to note that the simulation 
demonstrates, as expected based on the Forrin et al. account, that if 
production-associated features are not used, then there would be no 
production effect (i.e., when only “fast” base features are available). This 
should not be interpreted as the model predicting no production effect 
under the retrieval speed manipulation used in the present experiments. 
The latter would require the additional assumption that our deadline 
(800 ms in Experiment 1; 750 ms in Experiments 2 and 3) provided no 
opportunity for the use of production-associated features across all of the 
participants. This would be a strong assumption. What is more impor
tant, in our view, is that the pattern in the simulations qualitatively 
matches the empirical pattern. That is, the less the retrieval context 
permits use of the production-associated features, the smaller the pro
duction effect should be and, we suggest, speeding retrieval represents 
once such manipulation that would have such an effect on the retrieval 
context. Critically, speeding retrieval time, as implemented in the pre
sent computational account, shows that the reduction to the predicted 
effect is largely due to reducing performance of produced items. This is 
consistent with the empirical findings. We discuss the model further in 
the General Discussion. But first, we examine an alternative strength- 
based account. 

Adapting REM.1 to a strength-based account 

One way to model a strength-based explanation of the production 
effect in REM is by manipulating the likelihood that a feature is stored 
into the trace, u. For example, Shiffrin and Steyvers (1997) suggested 
that u be set to .28 to represent “weak” encoding and to .40 for “strong” 
encoding. Similarly, Jamieson et al. (2016) implemented a strength- 
based mechanism in their MINERVA2 model of the production effect 
using encoding quality—the probability that a feature is copied accu
rately from the study item to the memory trace. In REM.1, having a 
higher value of the strength parameter, u, for items produced at study 
leads to a higher proportion of features that are accurately copied into 
memory for each to-be-remembered item. This leads to produced items 
having more matching features than items not produced, on average, 
upon comparing the probes and memory traces, and ultimately this 
contributes to a higher computed likelihood that a test probe is ‘old’ 
when it is indeed ‘old.’ Of course, there might exist alternative means of 
implementing a strength-based account. 

Simulation 
To investigate a strength-based account in the present model, we 

introduced two changes to the model implemented earlier: (1) There 
were no production-associated features stored into memory and hence 
no use of them at retrieval, and (2) as suggested by Shiffrin and Steyvers 
(1997), we varied u based on whether an item was in the produced 
condition (u = .40) or the silent condition (u = .28). Again, we removed 
one feature per increment as an approximation of the time available at 
retrieval (note that in the model of the strength-based account, “fast” 
and “slow” feature classifications have no material impact). We ran 
1000 simulations across the 20 increments for 20,000 simulations in 
total. 

Simulation results & discussion 
Mean proportion of items determined as “old” as a function of item 

type (produced target vs. silent target vs. foil) and the production effect 
in hit rate are presented in Fig. 6, all as a function of the proportion of 
features available in the probe at retrieval. As is clear in Fig. 6, a 
strength-based account in REM.1 also results in a production effect. 
Interestingly, again if we consider the present empirical manipulation of 
speeding retrieval as a manipulation of the availability of features 
contributing to the recognition decision, this model also captures the 
reported pattern such that as feature availability increases, the pro
duction effect in hit rate increases. While the overall pattern is the same, 
the form is quite different from that produced in the model using our 
implementation of the Forrin et al. (2012) mechanism. The strength- 
based model captures this pattern because the “weaker” silent items 
hit the floor before the “stronger” produced items and as the latter items 
approach the floor the production effect decreases. This difference in 
how the production effect is influenced by feature availability across the 
two models likely reflects the fact that, in the strength model, the u or 
“strength” parameter in REM provides proportional increases in the 
likelihood that a feature is stored. As such, its manipulation contributes 
a relatively more constant influence as the number of features contrib
uting to the recognition decision decreases (i.e., as feature availability 
decreases) compared to having production-associated features in the 
probe drive the production effect. 

As noted above, both the model inspired by Forrin et al. (2012) and a 
basic strength account generate a production effect and capture the 
general pattern relating reducing time at retrieval and the production 
effect (if we assume that speeding influences the number of probe fea
tures available). While there may appear to be some qualitative differ
ences between the results of each model type (e.g., in the strength model 
simulations, it is not until unproduced performance is near the floor that 
there are substantive reductions in the magnitude of the production 
effect), taken at face value, the modelling of the present work demon
strates both accounts remain plausible and there is clearly more to be 
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done in terms modelling the production effect. Future work may further 
distinguish between the proposed accounts perhaps with use of quan
titative model fits and comparisons. 

General Discussion 

In the current investigation, we examined a prediction of the account 
of the production effect described by Forrin et al. (2012). Specifically, if 
the production effect arises from the use at the time of test of additional 
production-associated features created at the time of study, we reasoned 
that such a process would take time and, therefore, under a condition of 
limited time to respond, the production effect should be reduced. To test 
this prediction, we examined the effect of a response deadline on the 
magnitude of the production effect. Across three preregistered experi
ments, speeded responding reduced the size of the production effect 
(though not significantly in Experiment 1). In addition, in Experiment 3, 
we found that speeded responding reduced the magnitude of the pro
duction effect even when controlling for self-reported guessing. This 
reduction to the production effect was, as anticipated, due to a larger 
effect of speeding on the performance of produced items relative to 
unproduced items. 

In all three experiments, we observed robust production effects in hit 
rate even in the speeded condition. There are (at least) two viable ac
counts of this effect: (1) the time-taking process occurred often enough 
to generate a production effect, even under speeded conditions or (2) 
this effect reflects a contribution to the production effect due to a process 
that is not slower (e.g., strength). Of course, both (1) and (2) could be 
true (i.e., they are not mutually exclusive). Regardless of how this effect 
is to be explained, the observation (i.e., a robust production effect even 

under speeded retrieval) provides an important new constraint on ac
counts of the production effect. 

Modelling 

In addition to testing a prediction based on an extant account of the 
production effect and providing a new empirical constraint on theories 
of it, we also developed versions of both the Forrin et al. (2012) account 
and a strength account of the production effect using the REM compu
tational framework. To represent restricting retrieval time in the 
models, we manipulated the number of probe features available such 
that less retrieval time is approximated by fewer features available in the 
probe. Both models produced the basic production effect, such that 
items produced at study resulted in higher hit rates than did items not 
produced at study. In addition, our manipulation of retrieval time pro
duced the predicted pattern (i.e., decreased hit rates and increased false 
alarm rate). In implementing Forrin et al.’s account in REM, the model 
produced results in line with the qualitative results of the current ex
periments. That is, the production effect was smaller when our repre
sentation of retrieval time was more restricted. This success reflects the 
idea that the “additional” features associated with production are the 
types of features that take longer to contribute to the recognition deci
sion, thus a manipulation of retrieval time has a direct effect on the 
magnitude of the production effect. In the introduction we detailed 
various reasons why this might be the case. Research exploring this idea 
further would be valuable for understanding the production effect and 
related phenomenon (e.g., drawing effect; Wammes et al., 2018) and the 
dynamics of recognition decisions more broadly (e.g., Cox & Shiffrin, 
2017). 

Fig. 6. Strength-based account in REM: Hit rate as a function of production with false alarm rates and the production effect in hit rate, all as a function of the 
proportion of probe features available. Error bars are ± the standard deviation. 
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The strength-based model also yielded a production effect. This 
production effect was also modulated by the availability of features in 
the probe, particularly once most probe features were unavailable. Thus, 
this model does seem to be able to capture key elements of the findings 
here—and does so in a different way than in the model inspired by the 
Forrin et al. (2012) account, as discussed above. The latter differences 
might provide one means of adjudicating between the two accounts. 

As previously noted, the present computational modelling effort is 
not the first attempt to model the production effect. Jamieson et al. 
(2016) also implemented a version of the Forrin et al. (2012) account, in 
their case in MINERVA2, so it is instructive to contrast these efforts. In 
comparing our model to theirs, both models represent the encoding of 
additional production-associated features at study as additional (on 
average) filled-in features of the stored traces of items produced at 
study. We have reported simulations featuring 10 additional features 
whereas they focused on simulations with five additional features. 
However, Jamieson et al. also reported a simulation varying the number 
of production-associated features as a means of simulating the differ
ences found across different production types. Specifically, they 
compared the production effect when 3 additional production- 
associated features were used versus when 5 additional production- 
associated features were used to capture, respectively, the difference 
between whispering and saying produced items aloud. Importantly, in 
both models, the greater the number of production-associated features, 
the greater the magnitude of the production effect, at least within the 
values used. 

Although the implementation of the encoding of production- 
associated features is similar across our REM.1 variant model and 
Jamieson et al.’s (2016) MINERVA2 model, how these features are used 
differs. In our simulation, probes presented at test (sometimes) included 
production-associated features, regardless of whether the probe was a 
produced target or otherwise. That is, the production-associated features 
were used to probe memory (in addition to the base features). Jamieson 
et al. (2016) used a different approach. Specifically, they made use of the 
deblurring process in MINERVA2, wherein an iterative retrieval process 
takes place. In their model, the initial probing of memory does not 
include production-associated features. However, memory is probed 
multiple times, such that the probes used at each iteration derive from 
the retrieval results of the previous comparison between probe and 
trace. This results in production-associated information being included 
in the probe only when memory has already been probed at least once 
already. Thus, in the Jamieson et al. (2016) implementation, the 
production-associated features emerge from memory to contribute to 
the recognition decision rather than being placed there by the modeller, 
as in the current implementation. While the theoretical insight is similar, 
in this respect, the former model appears preferable. 

In an attempt to develop our own simulations in the Jamieson et al. 
model (2016; and in our earlier work), we initially tried to use the 
number of iterations of retrieval to represent the time spent in the act of 
retrieval. This was motivated by the idea that speeding retrieval would 
reduce the time to sample memory repeatedly (i.e., to engage in the it
erations required for iterative retrieval—or deblurring). This simulation 
captured the overall pattern such that the magnitude of the production 
effect increased as the number of iterations/ “time” increased. However, 
it also produced behavior inconsistent with the observed data. For 
example, the model predicted that false alarm rate would increase as 
more “time” became available for retrieval (i.e., as number of iterations 
increased) but this was not the case in our data. Moreover, it predicted 
that the increase in the production effect as number of iterations/ “time” 
increased would be driven by increased confusion between silent items 
and foils, with the produced hit rate remaining stable. This, too, was not 
the case in our data; to the contrary, it was hit rate for the produced 

items that was differentially influenced. That being said, these issues 
were specific to our particular adaptation of the model by Jamieson et al. 
(2016), not their original model.7 There likely are other ways to 
implement the time available at retrieval within MINERVA2, including 
by having the number of available probe features depend on retrieval 
condition (i.e., speeded vs. standard), similar to what we have presented 
in the current instantiation of REM.1. Future computational work 
comparing these two different approaches to implementing the Forrin 
et al. (2012) account would be valuable. 

Response time 

While not the focus of the present investigation, in the
standard condition of each experiment, response times for hits were 
always faster for items studied aloud than for items studied silently. This 
effect of production on response times has been reported previously but 
has received little scrutiny. The repeated demonstration of this effect 
here and the current demonstration that the production effect in 
recognition performance appears sensitive to the amount of time 
available at retrieval both suggest that greater attention paid to this 
observation might benefit theory. Indeed, in an exploratory analysis of 
the standard condition across all the experiments here, we found that the 
increase in hit rate when items were produced was positively correlated 
with the decrease in response time when items were produced, r = -.23, 
p = .003. Thus, the two phenomena appear moderately correlated. 

While current theoretical accounts of the production effect in 
recognition performance (including the ones considered here) do not 
articulate in enough detail how production might influence response 
time in recognition, we suspect that such consideration would be valu
able in advancing our understanding of how the act of production in
fluences memory. Indeed, it might be worth considering the influence of 
production on response time to reflect a benchmark phenomenon for 
accounts of the production effect to explain. One particularly fruitful 
avenue in this direction would be to develop a computational model that 
jointly simulates both recognition accuracy and response time. Recent 
efforts that have adopted this approach with other phenomena have 
yielded important new insights (e.g., Cox & Shiffrin, 2017; Rae et al., 
2014). 

Conclusion 

In the present investigation, we have provided evidence from three 
preregistered experiments which generally support the idea that part, 
but possibly not all, of the benefit of production is sensitive to the time 
available at retrieval. We also examined two computational accounts of 
the production effect and its interaction with the time available at 
retrieval—one based on the storage, during study/encoding, and use, 
during testing, of production associated features and another based on 
encoding strength. Both models could capture the basic empirical pat
terns. Future empirical and computational work distinguishing between 
and further developing these accounts promises a deeper understanding 
of how more elaborative forms of encoding, such as production, result in 
improvement in memory. 
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