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vale of radius ratio RI/R2 and the optical thickness 
R, - R, are given in Tabk 2 These results appear in 
excellent agwment with Monte. Carlo ro~ults of Perlmutter 
and HoweIl [3]. In fact in view of our results for parallel 
plates, we can assert that results reported in Table 2 are 
more accurate than results of Ref. 133. 

We note that for this case,,,Heaskt and Baldwin [12] give 
an approximate relation, 

1 

’ N 1 + $RR, log R2fR, 

The reaultx corresponding to this expression am given in 
Table 3, and appear to cornpart somewhat kss favorably 
with the results given in Table 2 
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NOMENCLATURE 

0, contact spot radius ; 
A, contour area radius ; 
h heat flux tube radius ; 
8 heat channel radius ; 
k, thermal conductivity, k = Zk,kJ(k, + k,); 

N, number of contact spots ; 
R, overall thermal contact resistance, [“C/w]. 

t ,Thi~ work was done in the Heat Transfer Laboratory, 
Department of Mechanical Enginaring Mamacbuaetta 
Institute of Technology, and was sponeored by the National 
Aeronautic and Space Administration under Contract 
No. Nas 7-100. 

Greek characters 
p, maldktribution factor (1 < fi c 1.4) ; 
Yt ratio L/B; 
f ratio a/b ; 
Jr, constriction factor defined by equations (2) and (3). 

subscripts 
1,2, metakland2; 
0, microscopic ; 
c, macroscopic ; 

Superscript 
T, factor based upon uniform temperature. 

INTBODUCTlON 
IN A RECENT article [l] the authors showed qualitatively 
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that the heat-transfer anomalies associated with stainless 
steel/aluminitmt interfaces depend upon the rouglmess and 
waviness of the contacting surfaces. They further showed 
that the mathematical models based upon (a) nominally, flat 
rough surfaces [2] or(b) smooth spherical caps [3] were not 
adequate in themselves to predict the overall resistance. 
They concluded that their test data showed clearly that a 
model must be developed which includes the e%cts of both 
surface roughness and waviness. This communication pre- 
sents the outlines of an overall constriction resistance 
theory developed by the author [4] and shows how it 
compares with the theories of Holm [S] and Krageltii [6]. 

Contact between rough wauy surfaces 
Worked metallic surfaas, whether turned, ground, or 

sandblasted, exhibit a random distribution of asperity 
heights about some mean surface passing through the 
asperities. The distribution of the asperities over the apparent 
area usually is not random, but exhibits a lay. The lay or 
predominaut direction of the asperities is called the surface 
waviness. It will depend upon the mechanical process: 
turning will produce a circular pattern, while grinding or 
milling will produce a linear pattern. 

Let us now consider the physical interaction of two 
spherical caps possessing substantial roughness. Initially 
the contact will be made at the few highest asperities located 
at the highest part of the spherical caps. As the load increases, 
these initial contact spots (assumed circular), also called 
microcontacts, increase in size, and newer and smaller spots 
begin to form. Upon increasing tbe load further, the tirst 
spots grow even larger, the second group of spots also 
increase in sixe! and still newer and smaller spots appear. 
The process is repeated with each increase of the load. 

We see from this simple description that the contact 
between rough, wavy surfaces will consist of a large number 
of discrete microcontacts which differ in sixe, frequency 
of occurrence and probably shape. The largest microcon- 
tacts are sparse, while the smallest are many, and also the 
largest can be an order of magnitude larger in sixe than the 
smallest. Furthermore, the contact spots are confined to a 
portion of the apparent area (projected area of solids), which 
is called the contour area, shown in Fig 1. The contour area 
is the projected area determined by the outer limits of the 
microcontacts. In the region of the interface beyond the 
contour area, there is no physical contact between the two 
surfaces. The contour area lying wholly within the apparent 
area can occupy a fraction or the entire portion of the 
apparent area depending upon the surface characteristics, 
the material properties, and the load on the interface. 

Overall constriction resistance 
In the absence of an interstitial fluid and negligible 

radiation heat transfer across the gaps, any heat flow across 
the interface will be confined to the microcontacts which 
define the contour area. Tbe overall constriction resistance 

--- __.- .-_. _.__ 
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u L\Contaur area 

FIG. I. Spherical contact model. 

is postulated to be the sum of the roughness resistance 
(pinching of the heat flow lines due to the contact spots) and 
the waviness resw (constriction of the heat flow lines 
due to the contour area). From symmetry about the contact 
plane we can express the overall constriction resistance as 

where the first term represents the cumulative microscopic 
or contact spot resistance, and the second term is the macro- 
scopic or contour area resistance. 

The microscopic resistance is based upon the following 
assumptions : 

1. There are N circular microcontacts of radii a, dis- 
tributed rather uniformly over a plane which is perpendicular 
to the heat flux vector at large distances from the plane. 

2. All the microcontacts are at the same uniform tem- 
perature. 

3. The temperature perturbation due to the pinching of 
the flow lines as heat enters and leaves the microcontacts 
occurs in a very thin volume on either side of the contact 
plane. 

4. Them is associated with each microcontact a circular 
cylindrical heat flux tube defined by the outer limits of the 
heat which flows through the microcontact. 

In particular, assumptions 2 and 4 lead to the microscopic 
constriction factor #f, and a us&l and accurate expression 
for it is [4, 71 

q,: = 1 - ;; = 1 - 1.28~ 

which is valid for each microcontact. A typical range of 
values off lies between 0 and 030. 

The maldistribution factor f& associated with each 
microcontact is a measure of its ability to conduct heat 
in the presence of a microcontact or an adiabatic wall. It 
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has been shown experimentally [4,8,9] that this factor can CONCLUDING REMARKS 
be important when there is a great deal of crowding of 
microcontacts. Although an analytical expression for /l, has 

Equation (1) is a general expression for the overall 

at present not been developed, it is sufficient to say that 
constriction resistance when all the heat flows through only 

values of j, lie between 1 and 1.4, and it seems to be indcpen- 
the microcontacts which lie in a plane comprising a fraction 

dent of the contact spot size. 
of the total apparent contact area. This equation has been 

The macroscopic term of equation (1) is based upon the 
verified by means of electrolytic analog experiments for a 

following assumptions : 
very large range of important geometric parameters for 
which agreement between theory and experiment was 

1. All the microcontacts of radii ai are distributed within excellent. 

a circular contour area of radius A. The microscopic resistance term of equation (1) was 

2. The radius A is at least an order of magnitude larger recently used [9] to predict the thermal contact resistance 

than the average distance between microcontacts. between nominally, flat rough r&aces in vacua. Agreement 

3. The contour area is concentric with the circular between theory and test was found to be quite good for a 

apparent area of radius B. fairly wide range of surface roughness and applied load. 

4. The macroscopic constriction resistance due to the 
The macroscopic resistance term of quation (1) had 

contour area is based upon a very thin isothermal disc of 
been used by Clausing [3] in the study of the thermal 

radius A supplying (or receiving) heat to a circular cylinder 
resistance between contacting smooth spherical caps in 

or radius B. 
vacua. He found good agreement between the theory and 
test data as long as the surfaces were very smooth and 

These assumptions permit one to determine the macrosco- applied loads less than a certain limit. The differences which 

pic constriction factor $,’ which can be written as [9]. Clausing observed can be attributed to the fact that all 

JI: = (1 - y)‘+ 
surfaces possess some roughness which becomes important 

(3) under certain conditions of loading, and, therefore, cannot 

for the entire range of the parameter y. be ignored. 

Various aspects of equation (1) have been clearly demon- The prediction of the overall thermal constriction 

strated by means of electrolytic analog experiments [4, 81. resistance as given by quation (1) has not been fully tested 

These experiments showed that equation (1) is valid for a for real contacting solids possessing substantial surface 

very large range of the pertinent geometric parameters roughness and waviness because, at present, the deforma- 

(a,, N, A). It was also noted that the maldistribution factor tion of such surfaces is only partially understood. Thus one 

/I, is practically unity for very small contact spots (c Q 01) cannot predict the geometric parameters which enter into 

and for distributions which appear uniform to the eye [9]. equation (1) from a knowledge of the geometric and physical 

When all me contact spots are assumed to be of equal characteristics of the contacting solids. 

sixe tci = ur = . . = aw) and uniformly distributed (8, = 1) 
over the contour area, equation (1) takes a simpler form 
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NOMENCLATURE 

A, dimensionless argument ; 
4 thermal diffusivity ; 

2 
specific heat ; 
density ; 

LE: 
error in time integral; 
thickness ; 

P. transfoRncd time; 
4. parameter in transformed equation ; 
6 time ; 
TI, time integral; 
u, transformed temperature; 
X, distance. 

Greek symbols 

2 
root of transcendantal equation ; 
dimensioaless ratio of conductances, &Ll/&L1; 

8, temperature; 
k thermal conductivity ; 
a, flux; 
A dimensionless ratio of heat capacity per unit area, 

dsCzLs/dtC&, i 
6. dimensionless ratio [A2d2C2/l,dlC,]f; 

Subscripts 
n, root index ; 
& ditrerentiation with respect to distance; 
t, differentiation with respect to time; 
1.2 layer number. 

1. INTRODUCTION 

THE T- ditTusivity of ceramic and organic insulating 
materials is most readily obtained from transknt linear heat 
llow through an infinite slab. The r&ve ease of fabricating 
the sampk in the form of a slab makes this emetry 

attractive. Plummer, Campbell and Comstock [l] developed 
a method based on a constant llux into a thick slab of 
material which was treated as a semi-inBnite solid. This 
method was further reBned by Harmathy [2] who also 
developed a pi&e heating scheme. Stare [3] used the 
constant flux method with samples of plastic assembled from 
multilayers of thin fii. In ail cases the finite samples were 
considered to be inBnitely thick during the time when 
measurements were. taken. Also, in each case the heat 
capacityoftbebeotawasshowntobeasmollfractioaof 
the heat capacity of the sample and was therefore not 
included in the analysis 

WhentheconstantfIuxinputmethodisusedwithalow 
density, low specific htat and low conductivity insulator such 
as foamed polyumthane, difhculties arise. The conductivities 
of many solid and foamed insulators are approximately 
proportional to their densities; hence, their difhisivities are 
similar. But the heat capacity per unit volume of the sample 
can vary widely since it depends upon density and specillc 
heat. Thus, for low demtity organic insulators the heat 
capacity of the heater may represent an appreciable fraction 
of the heat capacity of the sampk. Iasuch cases it is necmmry 
to treat the heater as a separate layer with its own thermal 
properties and to determine the diffusivity of the sample from 
an analysis of a double layer infinite slab model. 

2. THEORY 

The temperature distribution, e(x, t), within an infinite 
slab of thickness, L, is given by the solution of the oae 
dimensional equation of linear heat flow with specified 
boundary conditions. 

a6&, t) = f$(x, t) for 0 < x < L. (1) 


