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Abstract

A theoretical analysis is presented for ob-
taining a general expression for predicting thermal
constriction resistances of coaxial cylindrical con-
tacts as a function of arbitrary contact area heat
flux distributions. Another general expression is
developed for heat flux distributions proportional
to (1 - u2)u where u > -1. Three special cases:

u = -1/2, o and 1/2 are considered, and the results
are compared with those of Roess and Mikic. Approx-
imate expressions are given for evaluating the con-
striction resistance for the three special cases
when the contact areas are relatively small.

Nomenclature
a = contact area radius
b = heat flux tube radius
C° = average contact plane temperature, Eq. (12)
Cn = coefficients in temperature distributions,
Eq. (22)
Jv = Bessel function of the first kind of order v
K = scaling parameter, Eq. (&) ’
k = thermal conductivity
¢ = distance from the contact plane
Q = total heat flow rate
q, = heat flux (Q/ﬂbz)
R = thermal resistance
RC = constriction resistance
R: = dimensionless constriction resistance
(4a k Rc)
Rm = heat flux tube resistance, Eq. (15)
r = radial coordinates
r, = Roeis coefficients, Eq. (38), +=1, 3,5
T = temperature
T = average temperature, Eq. (10)
Tc = average contact area temperature, Eq. a3
u = dimensionless radial position (x/a)
z = axial coordinate

Greek Sngols

a = coefficient, Eq. (36)
g = coefficient, Eq. (36)
T = gamma function, Eq. (28)

radii ratio (a/b)
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Xn = geparation constants, Eq. (9)
T = pi

¢ = comstriction parameter, Eq. (28)

Subscripts

c = constriction
m = material
t = total

) Sugerscrigt

y = expoment, Eq: a3n

u = exponent on flux distribution, Eq. N
Introduction

The problem of thermal constricrion resist-
ance of symmetric, coaxial cylindrical comtacts,
Fig. la, has been examined by a aumber of investi~
gators 1,2), 1t can be demonstrated by means of
symmetry arguments that the boundary condition over
the contact area shown in Fig. la must be isother-
mal. Roess ) developed an approximate infinite
series expression of the constriction resistance for
the isothermal case by seeking a solution for the
equivalent case of a heat flux distribution which
varies as (1 - u2)'1/2 over the contact area, but is
zero outside the contact. Mikic(z) also obtained
another approximate infinite series expression for
the isothermal case by assuming the same heat flux
distribution, as well as an infinite series express-
jon for the case of uniform heat flux over the con~
tact area. These solutions are not valid for the
often encountered case of non-symmetric, coaxial
contacts shown in Figs. Ib and lc.
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Fig. 1 Typical symmetric and non-symmetric
contacts



Figure lb shows a system consisting of one
circular cylinder (waz) in perfect contact with a
larger circular cylinder (v62). The thermal con-
ductivity of both cylinders is the same. There
will be a constriction resistance associated with
the change in the heat flow area. The following
simple thought experiment will show that the solu-
tions for the boundary conditions considered by
Mikic(2) do not apply in this case.

It is obvious that steady, linear heat flow
in the smaller cylinder results in a uniform tem-
perature distribution independent of the radius,
and a uniform heat flux over the cross section of
the cylinder. For the larger cylinder, on the
other hand, a uniform heat flux over the contact
area corresponds to a contact area temperature
which is non-uniform. 1In fact, this temperature is
maximum at the center and decreases to the edge.
Thus a uniform heat flux will not be compatible for
the smaller and larger cylinders. A uniform tem-
perature over the contact area is the result of a
heat flux distribution which is minimum at the
center and increases to the edge. Thus a uniform
temperature over the contact area will not be com-
patible for the smaller and larger cylinders. It
is clear from these arguments that the actual heat
flux over the contact area lies between q =
constant and qa (1 =~ u2)=1/2,  Furthermore the tem-
perature of the contact area must be non-uniform.
For this reason we must seek solutions which are
different from those developed by Mikic(2),

Figure lc shows a smaller cylinder of one
material in elastic contact with a larger cylinder
of another substance. If the end of the smaller
cylinder is curved, the contact pressure will not
be uniform. It will be a maximum at the center,
decreasing to the edge of the comtact area. Under
this condition the microscopic constriction resis-
tance due to surface roughness will be a minimum
at the center and a maximum at the edge of the con-
tact. Thus the heat flux for a constant tempera-
ture drop will be inversely proportional to the
microscopic resistance. For the larger cylinder,
the macroscopic constriction resistance will have
to be determined for a heat flux distribution which
is maximum at the center and minimum or zero at the
edge. This is another reason for seeking a general
expression which predicts the thermal constriction
resistance of cylindrical coaxial contacts as a
function of the prescribed heat flux over the con=-
tact area. This paper deals with such an analysis.

Problem Statement and Solutions

Consider the steady flow of heat Q through a
long right circular heat flux tube of radius b
having uniform thermal conductivity k, Fig. 2. All
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Fig. 2 Contact area flux distributioas

the heat flowing through the tube enters it through
a circular contact area of radius a(a < b) located
on the centerline of the heat flux tube. The por-
tion of the end of the tube located outside the con-
tact area is taken to be perfectly insulated. The
lateral boundary of the tube is also assumed to be
impervious to heat transfer. At distances far from
the contact area the heat flows uniformly and che
temperature gradient along the tube length is con-
stant.

Ve wish to determine the temperature distri-
butions and the corresponding thermal constriction
resistances of the heat flux tube described in the
previous section as a function of the prescribed
heat flux distributions over the coantact area. All
other boundary conditions are unchanged.

Circular cylinder coordinates will be employed
in the solution of the thermal problem and the
origin of the coordinates (r,z) will be placed in
the center of the contact area. Since the problem
as stated is axially symmetric, the temperature will
depend upon the radial and axial positions only.

The solutions we seek must satisfy Laplace's
equation:
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r=250 z>0 — =20 (3)
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where q, = Q/wbz.

Boundary conditions (2) and (3) require that
the solutions be finite along the axis of the tube,
and that they yield zero heat flux at the tube
boundary. Boundary condition (4) relates the tem-
perature gradient in the axial direction over the
contact area as a function of the heat flux distri-
bution over that area. In Eq. (4), K is a scaling
parameter which depends upon the heat flux distri-
bution only. It can be shown that K= (u + 1) when

Fw) = (1 - ud)® Q)
In Eqs. (4) and (7), u = r/a and therefore
0 < u < 1. Boundary conditions (5) and (6) state

that the solutions must yield zero heat flux out-
side the contact area, as well as z uniform heat
flux far from the contact area. By means of separ-
ation of variables and superposition of solutions,
it can be shown that the following expression:(3)
q -]
T="2z4+C + ¢ C_ e
o n

nz .
X Jo (An r) (8)
n=1

satisfies the governing differential equation, Eq.
(1), as well as the boundary conditions given by
Eqs. (2) and (6). 1In Eq. (8), Iy (Xn r) is the



Bessel function of the first kind of zero order
whose argument is (Xn r).

The xn are the separation constants which can
be determined by means of Eq. (3). Taking the der-
jvative of Eq. (8) with respect to r and setting it
qual to zero whem r = b, it can be seen that An
ust be the roots of
Jl (kn b) = 0 9)
where Jy (Xn b) is the Bessel function of the first
kind of order one. The roots of Eg. (9) are tabu-
lated in mathematical handbooks (4» ) and are not
given here. It should be noted that the constraint
imposed by Eq. (9) upon the separation constants is
independent of the heat flux distribution over the
contact area and will be valid for all solutioms.

The coefficients C; appearing under the sum-
mation sign will be determined by means of Eqs. (4)
and (5) in a subsequent section.

Average Temperatures

Equation (8) gives the temperature at any t
and z in terms of C, and C,. An examination of Eq.
(8) shows that in any section of the heat flux tube
(z > 0), the temperature decreases monotonically
from the axis to the insulated boundary. The tem-
perature decreases monotonically with increasing z.
It is evident that the maximum temperature within
the heat flux tube occurs in the center of the con-
tact area. In fact the temperature of the contact
area is always a maximum r = Q and a minimum at
r = 3. The exception is the equivalent isothermal
case solved by both Roess 1) and Mikic(2),

that an average temperature in any plane z = % be
defined as follows:

b
T (z=12) = —li T 2rrdr
b o

(8) into Eq.

' For the subsequent analysis it is necessary

10

After substiturion of Eq. (10), per-

forming the integrations with respect to r and util-

{zing the results of Eq. (9), it can be shown that
q 2
o
k M Co
Obviously the average temperature im the contact
plane can be obtained by setting £ = 0 in Eq. (1),
yielding the interesting result:

T (z=2) =" (11)

T (z=0) = C° (12)

The average contact area temperature 1s de~
fined as

a
T = -3 [- T 2wrdr

ra !
<o

a3

Upon substitution of Eq. (8) into Eq. (13) with
z = 0, and performing the integration one obtains
for the average contact area temperature

o« C J (Xn a)

1
T =¢c +2 § =2
c o] a=1 (kn a)

(14)

' which is a function of Cg, the average contact
plane temperature, and the Cn'
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Fig. 3 Axial flux tube temperature
distribution

Constriction Resistance

Figure 3 shows a plot of the average tempera-=
tures as a function of z as well as the average con-
tact area temperature. The temperature difference
T(z=0) ~T (z=12) is due to the thermal resist-
ance of the heat flux tube itself and is obviously
given by

qoi
0% = %

(13

The temperature drop T, - T (z = 4) is due to the
thermal comstriction résistance and the thermal re-
sistance of the heat flux tube. If we assume that
these two resistances are additive, then we can
write

T -T (z=2) =QR, =Q R +R]

c (16)

Subtracting Eq. (15) from Eq. (16) gives the follow-
ing relationship:

Tc -T(z=0) =Q Rc an
Eq. (17) can be considered as the defining equation
of the thermal constriction resistance.

After substitution of Eqs. (12) and (14) in
Eq. (17), and dividing through by Q, we obtain the
following expression for the conmstriction resistance:

- 2 ; Cn Jl (xn a) (18)
c Q (A a)
n=1 n

Thus we see that it depends upon the coefficients
Ca which are functions of the heat flux distribu~
tion over the contact area.

Along z = 0 we have according to Eq. (8):

q o
-3T o
1z m + I Cn Xn Jo (An r)
n=1
Multiplying both sides of Eq. (19) by r J; (3, r) dr
and integrating with respect to r fromr = 0 to
r = b, we obtain

(19)

b -b
-3T -0
5z © Jo (Xm r) dr 7 b Jo (Am r).dr
o krb ‘o

(20)



The first term on the right hand side of Eq. (20)
is equal to zero because J; (xn b) and Jj (0) are
both zero.

Using the orthogonality propérty of Bessel
functions, the second term of Eq. (20) is equal to
zero whenever Am # Ans otherwise we have

c, o, »* 2 o v
3 (21)
n
We can now solve for Cn:
zxnz
C = 3T u J (A au) du
a (Ab)z Ab),j n
(22)

An alternate expression for C
of Eq. (4) into Eq. (22), is

after substitution

2 K b2 9, An 1
Cn = 25 u £(u)
k (Xn b). Jo (An b) o
x J (Xn b e u) du (23)

with ¢ = a/b and u = r/a.

The general expression for the dimensionless
constriction resistance defined as 4ak R = R can
be determined by substitution of Egq. (235 into Eq.
(18), with the total heat flow rate given by

-1
Q= 27Kb> 1, f u £(u) du (24)
o .
Therefore,
R* . 8 1 : Jl (X be)
c ™ 1 n;l 0\ 2 2 (A b)
u £(u) du n
[+]
1
x u f(u) 35 (X beu) du (25)

with che (A b) given by Eq. (9). This expression
is valdid for any continuous heat flux distribution
f(u) over the contact area. Eq. (25) has been
called the thermal constriction parameter Yo, and
it is clearly a function of the geometry of the
heat flux tube as well as the boundary condition
over the contact area.

Constriction Parameter wc for f(u) = (1 - uZ)u

Another general expression for the thermal
constriction parameter . defined by Eq. (25) can
be obtained for the case where the heat flux dis-
tribution f(u) is given by (1 - u2)" with u limiced
to values equal to or greater than minus one.

The integral outside the summation sign in
Eq. (25) yields(5)
1

u (1~ ud) qy = ?(_ulT-T)' (26)

o]

whereas the integral inside the summation sign
gives(

1
- Zu
J{’ u (1 - u") Jo (An b e u) du

o
u
- 27 T(p+1)
( be)u+l Ju+l (Xn be) @n
n
where T(u + 1) is the Gamma function and Ju+1
(k be) is the Bessel function of the first “kind
of order (u + 1. :
Substituting Eqs. (26) and (27) into Eq. (25)

results in another general expression for the dim-
ensionless constriction parameter: :

o

- 16 u 1
botw GFD TG QI

Jl (An be) J (Xn be)

u+1
2 u
I (Xn b) (Xn be)

(28)
3
O, b

Thus we see that v _ = y(u, Xn b, €) where u and

(An b) represent the influence of the boundary con-
ditions, while ¢ represents the effect of the geo-
metry or relative size of the contact area.

Special Cases of wc for u = - 1/2, 0, 1/2

Three particular cases will be considered to
illustrate the utility of Eq. (28).

I u=-1/2
When u = - 1/2, the heat flux distribution is

a minimum over the center of the contact area and
increases wilh increasing u. At the edge of the

contact area, the flux becomes unlimited. For this
case, Eq. (28) becomes
8 J3 1 >
v (u= = 1/2) = =vV21(1/2) (=) ¢
¢ T 3
n=l
Jl (An be) J1/2 (Xn be)
0332 0 b (0 bey /2 22
n o 'n n

A further simplification can be made to Eq. (29) if
we use the following

r(1/2) = /=

//5 sin (Xn be) (30)

J (A_ be) =
1/2 n T (Xn be)l/z

With Eq. (30), the constriction parameter reduces
to

o J (A be) sin(d_ be)
bow=-un =2 o L 5 o
o=l (A b) G, B

3L
IT u=20
When p = 0, the heat flux distribution is

constant over the entire contact area and for this
case Eq. (28) becomes



2
J (k be)

16 1 1
v, (=0 =-( ) £ 3 2

€ nsl ()
i’l u = 1/2

When u = 1/2, the heat flux distribution is a
maximum over the center of the contact area and de-
creases with increasing u to a value of zero at the

(32)

(A b)
n

edge of the contact area. For this case Eq. (28)
yields
24 3, 1, o
b, w= D 222G Q) L
n=1
Jl (kn be) J3/2 (Xn be)
o 32 o w o be)tl? .
n o 'n n °f

This expression can be simplified if we make use of
the ’Eollowing(5

r(3/2) = f%
(34)
5y,,00 = @/m0t/? (BEBE _ cog x]
Thus Eq. (33) takes the form:
® J. {A_ be) sin (A_ be)
s = =B D 1 At B
n=1 (Xn b) Jo (An b)
x {(——s - L - (35)
(kn be) (Xn be) tan (Xn be)

!alues of ¥, for these three cases have been com=-
uted and are presented in Table 1 along with the
values given by Roess corresponding to u = - 1/2.
~ The constriction parameter expressions, Egs.
(29), (32) and (35), converge quickly for 0.1 < ¢
< 0.8. For values of ¢ < 0.1, the convergence is
much slower and hundreds of terms must be evaluated
before convergence occurs(6) As ¢ - 0, thousands
of terms are required. For this reason, a numeri-
cal solution was obtained for the limiting case

of £ = 0. It was shown that ¢, =1, L. 0808 and
1.1252 for the three cases: u ‘e -1/2, 0 and 1/2,
respectively. For the very important range, 0 < ¢

< 0.1, an approximate expression can be developed

by assuming a linear relationship between ¥, and ¢.
Usiang the results of reference (7) for ¢ = 0 and the
values of ¥, for ¢ = 0.1 in Table 1, one can relate
to ¢ in the following manner:

wc = 1 (1 - Be) (36)

where the coefficients 2 and 8 are given in Table 2
for the particular values of u.

“'.C

Table 1 Some values of

e .10 .20 .30
v (p = -1/2) .8580 .7201 .5851
v (u = 0) .9397 .8008 .6649
' b (= 1/2) .9842 .8450 .7085
JC(Roess)(l) .8594 .7205 .5854

“c

The values of ¥ given by Eq. (36) differ by less
than 0.1% from those evaluated by means of Egs.
(29), (32) and (35).

For values of ¥, corresponding to ¢ < 0.3, it
is recommended that one use the following approxl—
mation:

b, = all - &)’ (37

where o and vy are given in Table 2. These values
of v differ by less than 1% from those evaluated by
means of Eqs. (29), (32) and (35).

Comparison with the Results of Other Investigators

The results of this paper will be compated
with those of Roess(l)and Mikic(2).

Roess in an extensive unpublished work deter-
mined the thermal constriction resistance for the
case p = -1/2. His analysis is highly mathematical
necessitating the use of contour integration, theory
of residues, theory of hypergeometric functioms,
elliptical integrals as well as the theory of
Bessel functions. He presented his results for this
particular case in the form of an infinite series:

1 3 5 7
Rc - TG {1 -~ TE F Tt +orge + e
9 11
+ rge + 1€ + ...} (38)
The coefficients r,, r,, rc, etc. are presented in
1 3 5
Table 3.

The product of 4ka R, or the thermal constric-
tion parameter given by Roess for various values of
¢ are also shown in Table 1. The agreement between
the values of Roess and those presented in this
paper is excellent over the range of ¢ running from
0.1 to 0.6. Roess did not give values of ¥ for
¢ > 0.6. It was also shown by Roess that when
e < 0.3, this heat flux distribution results in a
contact area temperature distribution which for all
practical purposes can be considered to be uniform.
He further determined that for ¢ = 0.4 and 0.5, the
temperature at the edge of the contact exceeded
that of the center by 3.86% and 9.90Z%, respectively.
For ¢ > 0.5, the temperature distribution is quite
non-uniform.

For ¢ < 0.1, the infinite series given by Eq.
(38) reduces to the first two terms because the re-
maining terms are negligibly small. It can be seen
that Roess' coefficient r; agrees Co within 1 part
in 141 with the value of & corresponding to u = -1/2
in Table 2.

Mikic(z) examined the two cases u = -1/2 and
0 and obtained expressions identical to Eqs. (29)
and (32) which were generated by means of the gen-

for u = - 1/2, 0, 1/2
.40 .50 .60 .70 .80
.4556 . 3341 L2231 L1262 .04819
.5337 . 4092 .2936 . 1895 .1008
.5763 L4500 .3316 L2234 .1284
.4558 . 3342 L2232 — _



Table 2 Values of a, 8, y for Eqs. (36) and 37

b -1/2 0 1/2
a 1 1.0808 1.1252
8 1.4197 1.4111 1.4098
v 1.5 1.35 1.30

Table 3 Roess Coefficients for Eq. (38)

1 T3 s Ty g 11

1.4093 0.2959 0.05254 .02105 0.01107 0.006312

eral expression, Eq. (28). The values of b, were
presented in graphical form for 0.1 < € < 0.6. He
had recommended in his thesis that the results cor-
responding to u = ~1/2 could be used to approximate
the isothermal case provided e < 0.6.

Summary and Conclusions

A general expression has been developed for
determining the thermal constriction resistance of
circular contact areas supplying heat to right cir-
cular cylinders as a function of the heat flux pre-
scribed over the contact area. A second general
expression was developed for heat flux distributions
given by (1 - u2)¥, Three special cases: u = -1/2,
0 and 1/2 were considered and compared with pub-
lished expressions. There was excellent agreement
between the expressions developed here and those of
Roess and Mikic. Equivalent expressions are pre-
gented to allow evaluation of the constriction para-
meter for values of ¢ < 0.1 as well as ¢ < 0.3, It
is recommended that further work be done to examine
the effect of u > 1/2, as well as the two narrow
ranges -1/2 < u < Q0 and 0 < u < 1/2.
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