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A Physical Approach to the Finite
Difference Solution of the Conduction
Equation in Orthogonal Curvilinear

Coordinates

G. E. SCHNEIDER A. B. STRONG

ABSTRACT

A unified approach to the numerical solution of
the transient heat conduction equation is presented.
By formulating the numerical description of the heat
conduction problem in a gemeral orthogonal curvi-
linear coordinate system, advantages similar to
those experienced in analytic solutions become avail-
able to the numerical analyst. Generalized finite
difference coefficients are obtained by imposing
a physical balance of the rates of heat flow, stor-
age and generation on discrete curvilinear control
volumes distributed spatially throughout the sol-
ution domain. This development is complemented by
consideration of boundary condition application in
general orthogonal coordinates which then permits
the complete numerical description of conduction
problems in any orthogonal coordinate system. Two
references cited illustrate its successful usage on
practical problems. The generalized derivation
presented here has been shown to provide substantial
flexibility, accuracy and economy of finite differ-
ence solutions when appropriate selection of the
coordinate system is made.

NOMENCLATURE
A area
B;, B, constants, given by equation (27a)

and (27b)
Ci, C3, C3, Cy, finite difference (f.d.) coefficients,

Css Ces C, equation (4)

Cp specific heat

D constant term in f.d. equation
e internal energy per unit volume

metric or Lamé coefficients, equations
(2) and (3)

81, 82, B3, 8

h convective heat tramsfer coefficient
1, 3, k nodal indices for f.d. discretization
P heat generation rate per unit volume
q heat flow rate per unit area

Q heat flow rate

R thermal resistance

[ length in curvilinear space

t time

T temperature

M. M. YOVANOVICH

Ts surface temperature on boundary

Tf fluid temperature at convective boundary

u), uy, uj generalized orthogonal curvilinear coordin-
ates

v volume

X, ¥, 2 coordinates in cartesian frame

4 inter-nodal spacing for accompanying
arguments, equation (8)

A increment in the accompanying argument
thermal conductivity

[} density

INTRODUCTION

The advent of space exploration, nuclear power
utilization, and measures for energy conservation has
led to a vast number of complex heat conduction pro-
blems requiring solution. In addition to the in-
creased number of engineering problems requiring at-
tention, high accuracy is often demanded of the re-
sultant solution, thus compounding the problem. The
complex nature of the problem, which may be due to
one or more of boundary conditions, geometry, or prop-
erty variations, often excludes the possibility of
finding an exact analytical solution. Thus the ther-
mal designer often resorts to numerical methods to
obtain & solution.

The finite difference method is a numerical sol-
ution precedure popular in the solution of heat trans-
fer problems [1-6]. In this method, a spatial dis-
cretization process leads to a system of simultaneous
algebraic equations which must be solved to determine
the temperatures at discrete locations in the field,
the nodal values. Determination of the coefficients
multiplying the nodal temperatures in these algebraic
equations is of considerable concern since the degree
of spproximation implied in obtaining these coeffi-
cients directly influences the accuracy and stability
of the solution.

In the excellent work by Clausing [7], the three
conventional coordinate systems are treated and their
corresponding finite difference coefficients obtained.
The major limitation of this analysis, however, lies
in the restriction to the three conventional co-
ordinate systems. In fact, in his and other differ-
ence analyses [1-6], not only is the restriction to
the three conventional coordinate systems made, but
for each of the three, a completely independent de-
velopment has been required. Recently, a specialized
coordinate system was applied successfully in a finite



difference solution for a particular nonconventional
problem [8, 9]; the generality used in the deri-
vation of the coefficients provided one motivation
for the present paper.

In addition, since the resultant solution ac-
curacy is sensitive to the degree of spatial dis-
cretization, certain problems require that a great
many algebraic equations be simultaneously solved.
Even with the use of contemporary computational
facilities, however, the number of equations cannot
be indefinitely increased to obtain a prescribed ac-
curacy while keeping the problem solution economi-
cally feasible. This is of particular concern in
the analysis of mixed boundary value problems where
very large gradients are experienced near boundary
condition discontinuities. If one returns to an-
alytical methods for guidance in overcoming these
problems, it is noted that sometimes it is possible
to set up a system of coordinates 'more matural' to
the field of interest, in this case that of heat
conduction, whose coordinate surfaces conform to the
lines of flow and the potential surfaces [10]. 1Imn
the solution of many of these problems, the nature
of the resultant field is determined by the specifi-
cation of its behavior at its bounding surfaces, by
specifying the nature and position of its singular-
ities, or by a combination of these two influences.
The resultant field specification may often have a
simple and tractable form in terms of these 'natural'
coordinates [11] and thus the solution is easily ob-
tained.

While many multi-dimensional problems can be re-
duced to problems dependent upon a single curvilinear
coordinate, there still remains a wide variety of
problems which cannot, but for which the flow of heat
is predominantly unidirectional in nature. Where
possible, analytic solutions to these problems are
preferable to numerical solutions since the effect
of various solution parameters can immediately be
evaluated by examination of the functional form of
the solution. Unfortunately, however, the scope of
problems which lend themselves to such analytic sol-
utions, whether approximate or exact, is limited to
those having relatively simple problem specifici-
cations. The vast majority of two— and three-
dimensional problems in conduction heat transfer
have no known analytic solution due to irregular
boundary geomerries and/or imconvenient boundary
conditions.

Convinced that advantages similar to those
available when using the most appropriate coordinate
system in an analytical solution are possible when
performing 8 numerical solution, it is apparent that
the need exists to examine the application of numeri-
cal solution techniques to general orthogonal curvi-
linear coordinate systems. This need has been sat-
isfied in part by the work of Schneider, Strong and
Yovanovich [12] in which generalized finite differ-
ence coefficients were obtained through a Taylor
series approximation to the heat conduction equation.
It is the aim of this work to recast the above form-
ulation using an elemental heat balance to provide a
generalized development of the finite difference co-
efficients. This will be done from physical consid-
erations for use with any orthogonal curvilinear co-
ordinate system in the numerical description of the
heat conduction equation, by applying the first law
of thermodynamics to a control volume centered about
the current node of interest. Evaluation of the
pertinent heat flow, storage, and generation rates
will lead to expressions for the associated finite
difference coefficients for use in numerical sol-

utions. Successful application of these results is
discussed in references [8] and [9].

It should be noted that in their work in recir-
culating convective flows a somewhat different ap-
proach was tasken by Gosman et al [14] in that the
finite difference procedure was formulated in gener-
alized orthogonal coordinates. The starting point by
these authors however was the integral form of the
equations of motion which represents a significant
difference from that of the present contribution.

PRELIMINARY REMARKS

In a general orthogonal curvilinear coordinate
system, (u;, u;, uz), the heat conduction equation
can be written as [10].

_3_{1_'_/5_?2_]4.L[L_/§3_T_]+
duil g1 Ay dup L gy dup

3 rase AT ”
du3zlL g3 duz.

2 -
+ P /g Yy g pCp T) )

where the metric coefficients relating the curvilinear
system to the cartesian frame are defined by

_f 3x 2 3 2 3z -
gi=<mﬁ) +<§t) *(;T)* 1=1,2,3 (@
i
and

g = B2-82'83 (3)

The finite difference method is concerned with
the approximation of equation (1) for use in a num-
erical computational scheme and reduces the problem
from that of finding solutions to equation (1) to
that of solving a system of simultaneous equatioms
of the form

€Ty et € Taan, e 08 Ty, O T gk
+ -
+ Cg Ti,j,k—l + Cg Ti,j,k+1 + CB Ti,j.k D 0
%)

where the subscripts refer to locations within the
discretized spatial domain. The constant term D
contains information regarding the heat generation

as well as temperatures from the time planes preced-
ing the one under consideration. Equation (4) can be
written once for each location of the discretized
spatial domain yielding a system of simultaneous eq-
uations which require solution. In general, the co-
efficients of equation (4) must also be allowed to
vary from location to location in the field. It is
the basic problem, then, for any finite difference
analysis to determine the coefficients and constants
appearing in equation (4) for use with the particular
coordinate system under consideration. .in'analysis
is presented herein which examines this prcblem in 2
general fashion so that the results are applicable
for any orthogonal coordinate system provided the as-
sociated metric coefficients are known. This is done
by examining a finite volume element and applying the
first law of thermodynamics.

GENERAL CONSIDERATIONS

Figure 1 illustrates a typical volume element in
a general orthogonal curvilinear coordinate system
having coordinate directions uj, uz and uj.
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Fig. 1. Typical volume element in

curvilinear coordinates

The physical dimensions of the volume element are re-
lated to the variation in the coordinate value
through the metric coefficients by the relation [10]

ds, = v’g_;dui, i=1,2,3 (5)

Using (5), area elements are given by

i, 3, k=1, 2, 3
1¢3¢k

where the convention has been used that the direction
associated with the area element be normal to the
plane in which it lies. Similarly, the element of
volume is determined from

(6)

dv = /g duj dup duj ¢))

To faciliate the finite difference analysis for
systems having non-uniform grid sizing, a nomen-
clature will be introduced. Considering the one-
dimensional network shown in Figure 2, the control
volume width surrounding nnde u, is characterized by
Au, where u, is a generalized o%thogonal curvilinear
co%rdinate; the nodal spacing is denoted by 6&_(u,)
and § (u,) for the spacing between nodes u,_, end u

and ug and Ui respectively.

The 6's of figure 2 are related to the A's by
the relation

i‘
6_(u1) -

—L 2, 5wy - H— ®

S+(u;) :

|

| N
.. ' .. ' 3
i-1 | | | i+l
l I
' |
t-172 1+l/2
Fig. 2. Definition of spatial discretization

nomenclature

Extension of this nomenclature to other coordinate
directions is taken directly but it should be noted
that Au, and 61(“1) correspond to changes in the orth-
ogonal Coordinate u, and may not reflect directly the
physical distances 1nvolves.

CONTROL VOLUME ENERGY BALANCE

A finite difference representation of the heat
conduction equation can be determined by examination
of a finite control volume and applying the first law
of thermodynamics. In words, an energy balance ap-
plied to a control volume (C.V.) as shown in figure

3 can be stated as

[Net rate of heat conduction into C.V.] +

[Rate of heat generation within C.V.] =

[Rate of change of internal energy within
c.V.] 9)

Referring to the figure this can be written

Qos, g,k ™ Qs g,k T U, -a,k 7 UL ae,k

* Qiyj)k";f - Qi,j,k‘”} + {:f)v‘ P 4v
=2 I T av
3t c.v. *Cp (10)
.(i.i.k’”
Qi,j.k+172

Qi_1r2,j.k
' ® j .(irj*l'k)
(i-1,j.k) Qi je1/2.x
Qi -2 x Qiv1/2.j.k
(i,j-l,k.) .(i+|,j,k)
Qij.x-1/2
®(i,j.k-1)
Fig. 3. Internodal heat flow rates

An evaluation of each term of the above equation
(10) is given below:

1) Conduction

Considering a typical conductive heat transfer
rate, for the y - direction we can write

U3, Y g0 an
1+

In equation (11) above the local flux on the sur-

face Ai+% is given by

- A 3T
= 2L 12
qi+!5j,k Jé_l— du) a2

i+



vhere the unknown derivative, 3T/3u., must be ap-
proximated. Using & first central ﬁifference
quotient, we write

T -T
ﬂ— - i+lljlk inj)k 2
duy 8, (uy) +0 [65(up)] 13)

s

Using (13) and neglecting the terms of order
Gi(“l) and higher, equation (11) can be written

U3(k+%) Uz(j+%)

- P/
Qg 1,k J '[ g1 ]
uz (k) uy (3-%) 14
T -7
[li+1,4,k ~ 1,1,k
h 6+(u1) } du, duj (14)

havigg multiplied both numerator and denominator
by vg; to obtain the term in the square brackets.
Under the assumption that the gradient of eq-
uation (13) is uniform over the area A , the
integration of equation (14) can be ca%??ed out
in full. Further, defining a resistance in the
usual fashion,

- Ti,j,k - Ti+1,j,k

Ri+%’j’k z Qi+k,j,k (15)
We can write
-1 du, du
. " caA JE7 2 3
R ' = ! (16)
1+]5»j vk_‘ J I L g1 J 6, (u)
ugz us i+;5 + !

where the limits of integration are those indi-
cated in equation (14). Expressions similar to
equation (16) can be written for each of the
three coordinate directions, in both the positive
and negative directions.

Internal Heat Generation

This term is easily determine to be exactly

{U3(k+%) uy ()  uy (i)
[ ro :
c.V. uz(k-%) uy(3-¥%) u;(i-%)
P /g du; dup duy | an

Internal Energy

The last term of equation (10) involves the time
derivatives of temperature. A central difference
or forward difference approximation here requires
an input of temperatures taken from a time-plane
in the future, whose values are not yet known.
Moreover, these are not of concern in the sol-
ution of the current time-plane temperatures.
Therefore, unless a fully implicit forward dif-
ference solution with respect to time is attempted
which is not considered practical with present
computational storage requirement limitations,
for present purposes the best approximation to
time derivatives is considered to be the implicit
backward difference quotient. The rate of change

of internal energy is thus apprcximated by

T - T
de 1,1,k i,1,k
3t [ 2t ] J J J pCp/E duj du; dujy

u3z Uz uy
(18)

Using equations (14), (16), (17) and (18) in the
energy. balance (10) and comparing with equation
(4

[ +C +C3 T

Ti-1,5,k T4, 4,k 1,1-1,k

+C, T +.Cs + Cg

1,4+1,k Ty, 5.k-1 Ty, 5, k+1

+C Ti,j,k+D-0 (4)

leads to the definitions

©,2" J “ksﬁ

u3 uy i¥

o | IR

u3z uy hEZ ]

c = J J fk [E.
556 i 83 .
k

dl.lz dU3
6;’ (Ul)

dul dU3
8_(u2)

19)
duy duz
8. (u3)

uy u2
-

-
Cs T

-

[D c Jg' i
Cn + JJJ L-——ﬁz——_ du, du, du3J

c.v.

6
nEI

N

p C_ T -
and D = m [P+ —RLlk’ 2 ay au, du

AT
c.v.

which are the desired coefficients. The expres-
sions above are valid for every nodal location
and control volume within the spatial domain of
the problem provided the surfaces of the control
volume do not contact physical boundaries of the
real system. These coefficients can easily be
evaluated for the common orthogonal curvilinear
coordinate systems [13]). These control volumes
require special treatment and are discussed below.

BOUNDARY CONDITION APPLICATION

The considerations required for boundary nodes

having the various types of boundary conditions will
be illustrated here by example.
ing of Clausing [7], the nodes will be located at the
center of the control volume and the grid arranged so
that where the physical boundaries follow the coordin-
ate surfaces, the control volume boundaries will be
made coincident with the physical boundaries.

Following the reason-

1) Adiabatic Boundaries

As an example of an adiabatic boundary consider
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j Qivi1/2,j.k
y
:
Qij-vax
Vg
Y ,
r,
L Qi,j+172,x
A .
]
Qi.i/2,j,x
Fig. 4. Adiabatic boundary

the control volume of figure 4. This boundary con-
dition is perhaps the simplest to apply. From the
figure Qi 4=,k = 0. The most direct method of ob-
taining this ;ssignment is to set C3 = 0 for all such
boundary nodes. This is the only change required
since by definition of Cs

T 6 pC J§? ]
C =- I C_ + m [——J’—— du; dup dugl (20)
s in=l m At J
’ c.v.
the influence of C3; is felt on CS by a change in the
summation of the coefficients.

2. Specified Flux Boundary

Since the physical approach taken here 1s based
on a control volume energy balance, this condition
is also easily incorporated. For a flux distribution
as shown in figure 5, the total heat flow rate enter-
ing the control volume through the surface can be
determined by direct integration

Qi-k,j,k = f J q dA (21)
AA

Qit1/2,jk

Qi-172,j,k

Fig. 5. Flux prescribed boundary

It should be noted that the terms of equation (21)
are not dependent on the nodal temperatures associ-
ated with this control volume. Indeed, this term is
really a rate of energy addition independent of the
temperature field and as such 'represents a heat
source'. In our finite difference equations for
these control volumes this is represented by

pC T°
D= JJJ [P +—'Z‘;L—}£du1 duy duj
c.V.

+U

For these control volumes, then, equation (22) will
account for the heat flow across the surface at the
boundary and to include the conductive heat transfer
expressed through the coefficient C, would be a redun-
dant specification. Hence we must also make the as-
signment

q (uy, u3) vg; g3 du, duj (22)

cC; = 0

for these control volumes.

(23)

3) Specified Temperature Boundary

The expression of the heat flow rate crossing a
temperature specified boundary typified by that of
figure 6 can be handled in a manner similar to that of
an internal control volume. Where the differential of
temperature with respect to u) was formerly approxim-
ated by a central difference quotient about (i#s,3,k),
the best estimate now available will be a first for-
ward difference. Carrying this modification through
the analysis leads to the simple modification of Cy to

du, du
- k /g1 2 dus
C2 I J [ g | duy/2 (24)
u3 uy 1+

which resembles its former value. The appropriate re-
placement for T for use with this C, is Ts, ,
i+1,3,k 3.k

the boundary surface temperature at (j,k).

Qis1/2,j,k

1'Sj'k

Qi,j+172.x

Qi-1/2,jx

Fig. 6. Temperature prescribed boundary



4) Convective Boundary

This boundary condition presents the most dif-
ficulty to our analysis but when examined once, can
be applied easily thereafter using the results. Con-
sider the control volume of figure 7. The heat flow
rate Qi—%.j,k can be expressed for a uniform grid by

Qi gk ™ 201 [Toy,5 " L 25

Fig. 7.

Convective boundary

This same heat flow rate can also be given by

. - T - ,/
%, 5,k [fj,k Tsj.k] ” [» % e ) duz duy
AA i-%
(26)
where Tf is the fluid temperature adjacent to the

boundary at (3,k).

Defining two new coefficients B1
and B2 by

Bl - 2C1 (273)

and

B, = H [b JQ'E;]HS du, duj

(27p)

the surface temperature, Ts Kk
ing the simultaneous equatiéhs (25) and (26), and 1is

re, = tadk 772 T (28)
i,k B) + By
from which
B,
T. -7 - —— -
[sj’k injvk] Bl + B2 [Tfjtk Ti-j-k] (29)

Using equations (25) and (29) the heat transfer rate
crossing this control volume surface can be determ—
ined from

B, B,

QUoa 4,k = By + By [Tfj.k Ty gl (30)

, can be found by solv-

It can be seen, then, that account of the con-
vective boundary heat transfer can be made by assign-
ing C; a new value for these control volumes, given
by

B) B,

(By + By)

where the appropriate value to be used for T
i-1,3,k
is Tfj X
L]

1

DISCUSSION AND CONCLUSIONS

General expressions for the coefficients in the
finite difference representation of the heat conduc-
tion equation have been derived in this work. It is
now possible, knowing the metric coefficlents for a
coordinate system, to quickly determine the corres-—
ponding finite difference coefficients.

The physical approach 1s appropriate for use in
curvilinear systems since the heat flow areas are
evaluated at the location of interest and as such
are exact areas. Since rapidly changing cross-
gectional area is a trait common to many of the non-
conventional coordinate systems, the accurate account
of this effect will be instrumental in reducing the
number of nodal points required to achieve a pre-
scribed accuracy.

The expressions of equation (19) appear complex
and the obvious question must be answered as to
whether their use is warranted in preference to the
relatively simple form obtained for the conventional
systems. However, in consideration of present sol-
ution techniques a single computation of each co-
efficient for each nodal location in the field will
represent in general a small cost when compared to
the cost of solution. A single computation of each
coefficient will suffice since they can be effectively
stored in a matrix having few zero elements. In con-
sideration of the advantage possible by their use in
compatible problems, use of the expressions of eq-
uvation (19) after integration is certainly warranted.

The results of this paper have been used suc-
cessfully by Strong, Schneider and Yovanovich [8] in
the solution of steady-state heat transfer from a
circular disk conducting heat to a semi-infinite body.
A variety of arbitrary disk heat flux distributions
were examined and the results reported, The extremely
short computing times reported in all cases certainly
support the hypothesis of this work, that considerable
advantages can be gained by employing curvilinear co-
ordinates where appropriate in the solution of heat
conduction problems.

The results presented herein have also been used
successfully by Schneider, Strong and Yovanovich [9]
in their examination of the same geometry for trans-
ient heat flow. The analysis considered several disk
flux distributions (also the isothermal disk) for
which a complete transient solution was sought. The
success of this application also supports the claim
to utility of the results of this work.

In conclusion, computational time and effort for
a finite difference heat conduction analysis can be
greatly reduced without sacrificing solution accuracy
by utilizing the 'most natural' coordinate system for
the particular problem of interest. By combining num-
erical methods with the most appropriate coordinate
system, many problems posing great difficulty to both
the theoretician and the numerical analyst can be at-
tacked with greater ease. It has been the object in
this work to provide the means by which these gains
can be achieved. In providing general expressions




for the finite difference coefficients for any ortho-
gonal curvilinear coordinate system, the engineer and
researcher can quickly assemble a solution program to
most efficiently analyze his particular problem. In
addition the generalized results are now available

so that as new coordinate systems become available
their associated finite difference coefficients can
be determined with a minimum of effort. This gen-
eralization will undoubtedly be invaluable to re-
searchers in the future.
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