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General Thermal Constriction
Parameter for Annular Contacts
on Circular Flux Tubes

M. Michael Yovanovich*
University of Waterloo, Waterloo, Ontario, Canada

‘ Introduction

IN a recent paper,' a general expression was obtained
for constriction resistances due to arbitrary flux
distributions over circular contact areas on a circular flux
tube. By means of the general expression, special cases such as
the isothermal and constant flux boundary condition could be
evaluated. This paper extends that mathematical development
to the more general case of an annular contact area supplying
heat to a coaxial circular flux tube.

Problem Statement and Solution

An annular contact area of radii ¢, b (g < b) is situated on
the end of a solid circular cylinder of radius ¢ (Fig. 1). The
long cylinder, whose thermal conductivity is &, is perfectly in-
sulated except for the annular contact area where the flux is
prescribed. For the analysis to follow, a circular cylinder
coordinate system (7, 2) is chosen, and the origin is placed on
the axis of the cylinder.

Since there is steady heat flow through the cylinder, the
governing equation is

(12—7'+_1-ﬂ'+32-_7-'_0
ar? roar  az? 1)

and the boundary conditions are

z=0, 0sr<a, aT/3z=0 (2a)
a<r<b, —~k(3T/32) =f(r) 2b)
b<rs=sc, aT/dz=0 20)
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Fig. 1 Aannular contact on a circular heat flux tube.

Z—oo, O=rsc, ~k(8T/3z) =Q/xc? 3)
r=0, z=0, aT/3r=0 by symmetry 4)
r=c, z20, aT/ar=0 )

In Eq. (3), Q is the total heat flow rate through the cylinder.
Following the method of solution in Ref. 1, we immediately
write the temperature distribution as

-Qz = N
= — —And A
T= =5 +C0+§lc,e Jo(Anr) ©)
It can be shown that Eq. (6) satisfies the differential
equation, as weil as the boundary conditions given by Egs. (3)
and (4). If we choose (A\,c¢) to be the roots of J, (A\,c) =0,
then Eq. (5) will be satisfied as well. The coefficients C, and
C, will be obtained next.
The average temperature in any section z is defined as
1
T()=—
T

[4
> SaT 2xrdr 0]

After substitution of Eq. (6) into Eq (7), one obtains '

il %
T(z)= el +Co @®)

It is evident that, when z=0, T (0)=C,. Thus, C, is the
average temperature of the contact plane. The difference be-
tween the average temperature of the contact plane and the
average temperature of some arbitrary plane z=¢ where
> >c, is simply

T(0) - T(0) = Ot/ kxc? )

The temperature drop given in Eq. (9) is due to uniform heat
flow through a right circular cylinder of length ¢, flow area
xc?, and thermal conductivity k. If this temperature. drop is
divided by Q, we have the cylinder resistance R, = ¢/ kxc?.
The average temperature of the contact area is defined as

-
T x(b?=a?)

b
T. S T 2xrdr (10)

After substitution of Eq. (6) into Eq. (10), one obtains

~ 2

= b
T.=Cy+ Gz_-—az—) ”=IC,,SarJD()\,,I')dI‘ 8y

The integral in Eq. (11) can be evaluated using the properties
of Bessel functions, > and Eq. (11) becomes
2 3 C,
—_— ALY A,
BT E, 3 ()1 (0,b)

—(X"U)J,(A"G)l (12)

T’(. = Co +

We see from Eq. (12) that the average temperature of the an-
nular contact is equal to the average temperature of the con-
tact plane plus a difference given by the infinite series. This
difference, as will be shown, is a manifestation of the con-
striction resistance.
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The temperature drop from the average contact area tem-
perature to the average temperature in some arbitrary plane
z="{is assumed to be due to the constriction resistance and the
cylinder resistance. Thus,

TC—T(Z=()=QR,=Q(R0+R¢) (13)

where R, is defined as the constriction resistance due to the
annular contact area.
By means of Eqgs. (8) and (12), Eq. (13) yields

2 = C
= —— P - (A J )\"
Ra Q(bz_aZ) "E.l X,Z, l (xnb)Jl(Anb) (x a) l( azll4)

for the constriction resistance, which is dependent upon the
coefficients C,. These coefficients can be determined by con-
sidering the boundary conditions given by Eq. (2).

According to Eq. (6), along z=0 we have

aT Q =
—= A X\, 1
= et *_,Z,.:, Cedado (Aar) 1%

Multiplying Eq. (15) through by 7 Jo(\,,7) dr and integrating
with respect to 7 from 0 to ¢, we obtain

¢ c
go-gr.]o(xmr)dr= —Q— So rlo{(Apr)dar

9z kxc?
+3,Can So rlo(Aar)Jo (Amr)dr (16)
n=m/

Utilizing the orthogonal properties of Bessel functions, it can
be shown that the first integral on the right-hand side of Eq.
(16) is zero at both limits because J,(0) =0 and J; (A\,¢) =0
by Eq. (5). The second integral is zero when m » n; otherwise
we have

Y2 (Ca/Rn) (Mr€) 7 T§(Nne) amn

when m=n.

Since the integral on the left-hand side is zero over the
ranges 0<r<a and b<rsc, we have for the coefficients the
following relationship:

2\, S"

aT
C,= m‘; - rJo (N r)dr (18)

a 932

The coefficients are clearly a function of the temperature
gradient (flux distribution) over the annular contact area.
Upon substitution of Eq. (18) into Eq. (14), we have the
relation between the constriction resistance and the tem-
perature gradient over the contact area.

If we write

- (3T/3z) =xf(r) _ 19

where « is some constant, it can be shown that
b
x=Q/2‘ka rf(r)dr 20)

Before proceeding with the determination of the expression
for the dimensionless constriction resistance, it is ad-
vantageous to define some dimensionless geometric ratios:

e=a/b, 0<e<l (21a)

a=b/c, O<a<l (21b)
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Thus it can be shown that
Ab=N,ca=ad, (22a)

A@=\,C ea=aeb, (22b)

‘vhere 8, =\,c, theroots of J, (4,) =0.

If we further define R, =kbR, and u=r/b, then we can
show that

R.= (2/7) =

nm{

)
(l-e’)g‘ uf(u)du

!

J,(aeé,))
—""'} .uf(u)Ja(&é,u)du 23

J,(aa,){l—e YACN
87J3(84)

is the general expression for the thermal constriction
resistance due to an annuiar contact area with an arbitrary
flux distribution over the contact area. R often is called the
constriction parameter and is defined as y,.

Equation (23) is valid for any axially symmetric flux
distribution and can be evaluated analytically or numerically.
For the case of a uniform heat flux, f(u) = 1, we obtain

!
S‘uf(u)du=‘/‘z(l—ez) (24)

t
S uf(u)Jo(ad,u)du= -——1-—2 [ (ady) ] (ady)
€ (06,)

' ' ~(aedy ), (aed,) | @5
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With Egs. (24) and (25), Eq. (23) becomes

o Ji(ab,) {1 -2 )

JI (06,,)
6275(5,)

_ (4/7)
T (1€h)? &2

(26)

in agreement with the analysis of Yip.* In his dissertation,
Yip presents a plot of ¥, for various values of ¢ and a. It can
be seen that the general expression developed here reduces 0
the general expression valid for a circular contact area'! when
¢ is set equal to zero.

Conclusions

A general annular constriction parameter valid for axially
symmetric flux distributions has been derived from first
principles. In the limiting case of a circular contact, the
general expression developed here reduces to one developed
previously. The annular constriction parameter for the case of
uniform heat flux is seen to be a particular case of the general
case, and it was obtained with great ease from the general ex-
pression.
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