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Abstract-The transient thermal responseof two semi-infinite bodies, initially at uniform but different tem- 
peratures, and which can communicate through a small circular contact area, is considered. The numerical 
solution procedure is formulated in oblate spheroidal coordinates. Full transient, numerical solutions are 
presented for materials combinations spanning the range of practical interest to thermal engineers. A 
correlation equation is presented which correlates the constriction resistance as a function of the Fourier 
modulus for the range of physical parameters considered. The correlation is within f7% which is 

considered adequate for engineering calculations, 

NOMENCLATURE 

a, contact radius; 

CP specific heat at constant pressure; 
C.V., control volume; 
Ct-_~t Cs. finite difference coefficients; 

constant term in finite difference equation; 
Fourier modulus, Fo = alt/a2; 
finite difference nodal indices; 
thermal conductivity; 
heat generation per unit volume and time; 
thermal heat flux; 
total heat flow rate; 
radial coordinate; 
thermal constriction resistance; 
steady-state thermal constriction resistance; 
time; 
temperature; 
temperature evaluated at the ‘old’ time plane; 
volume; 
independent time variable, defined in text; 
axial coordinate. 

Greek symbols 

4 thermal diffusivity; 

a, harmonic mean diffusivity, 
a = 2cliUZ/(txl +LYz); 

I-, contact area; 

A, denotes increment of the accompanying 
arg~ent ; 

?, 6 oblate spheroidal coordinates; 

P. mass density. 

Subscripts 

l, 2, referring to body one or two; 
a, based on harmonic mean di~usivity. 

INTRODUCTION 

WHEN predicting the thermal resistance to heat transfer 
across lightly loaded joints placed in a vacuum environ- 
ment, the thermal designer must be concerned with 

accounting for the effect of the microcontact areas It is 
commonly assumed that the microcontact areas are 
circular in cross-section, and uniformly distributed over 
the apparent contact area. The validity of this assump 
tion, of course, is dependent on such factors as the 
overall surface geometry and the loading state of the 
members. For lightly loaded joints, it is further assumed 
that the contact size is small when compared to typical 
contact-to-contact spacings or to the thickness of the 
contacting solids. Cons~uently the problem is reduced 
to the examination of a single contact area which can be 
considered to be located on the common boundary 
between two adjacent half-spaces. This is depicted 
schematically in Fig. 1. Outside of the contact area, on 
the boundaries of the two half-spaces, it is assumed that 
no heat transfer occurs, the radiative communication 
between the two bodies being neglected. 

The steady-state problem has been previously 
analysed by several authors [l-6], each of whom 
examined the situation where the contact area is located 
on a single half-space and the boundary conditions are 
applied over the entire contact plane, including the 
contact area. In a recent paper [7], Schneider et al. 
examined the transient problem in a similar fashion, by 

FIG. 1. Single contact formed between two bodies. 
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considering a single half-space and applying various 
boundary conditions directly over the contact area. 
This is consistent with previous investigations of the 
transient problem [8-171. 

Consideration of the complete transient behavior, 
where the two contacting half-spaces are continuously 
allowed to communicate with each other through their 
mutual contact area, adds additional complication to 
the problem as a result of the differing thermal pro- 
perties ofthe two contacting bodies. This is the situation 
ofpractical import, however, since only with completely 
mutual thermal communication between the two con- 
tacting bodies will any real process occur. Certain 
limiting cases will undoubtedly permit the isolation 
of the two bodies for analysis purposes, but in general 
this is not the case. 

The purpose of this work, therefore, is to examine the 
complete transient thermal behavior of a system in 
which two bodies, having different temperatures and 
thermal properties, come into contact, thermally com- 
municating through a small circular contact area. 

MATHEMATICAL STATEMENT OF THE PROBLEM 

Problem statement 
We consider the thermal constriction resistance to 

transient heat conduction which occurs when two semi- 
infinite bodies, initially at uniform but different tem- 
peratures are brought into contact. The two bodies 
are allowed to communicate thermally through a small 
circular contact area, with the remaining surface of the 
contact plane of the two half-spaces assumed to be 
perfectly insulated for all time. Far from the contact 
area, deep within each of the two bodies, the tempera- 
ture remains constant at its initial value. 

When the temperature field has been determined at 
any time plane in the solution, the total instantaneous 
heat-transfer rate through the contact can be calculated. 
The instantaneous thermal constriction resistance can 
then be defined as the temperature difference between 
the two bodies, evaluated far from the contact, divided 
by the instantaneous total heat flow rate. 

DifSerential equation and boundary conditions 
Following the arguments presented in [6] and [7], 

the problem is formulatea mathematically using the 
oblate spheroidal coordinate system. The problem 
geometry and coordinate system are illustrated in Fig. 
2. The oblate spheroidal coordinates readily accom- 
modate the boundary condition discontinuity which 
exists over the contact plane. In Fig. 2, q, and O1 are 
the oblate spheroidal coordinates within body one, and 
v12 and O2 those within body two. 

The transformation which relates the oblate 
spheroidal coordinates to the circular cylinder co- 
ordinate system is given by [ 181 

r = acoshqsin0 

z = asinhqcos0 (I) 

with axi-symmetric heat transfer considered. The 
governingdifferentialequations describing the transient 
heat flow within the two bodies can then be written in 

z2 
, t _ ~82 ‘CONST 

*I 
8, = CONST. 

FIG. 2. Problem geometry and coordinate systems. 

terms of the oblate spheroidal coordinates, r] and 0. 
These equations are [ 181 

1 

(cosh’q, -sin20,) 

+cos8,~ =g (2) 
1 1 

valid within body one, and 

+coso2$ =zg (3) 
2 1 

which is valid within body two. The Fourier modulus, 
_ Fo, is defined by 

Fo = ult/a2. (4) 

The initial boundary conditions are given by 

6) Fo = 0,O G q1 i CO, 0 s o1 G n/2, TV = 1 

(ii) Fo = 40 G q2 G ~0 d o2 G 1~12, ~~ = o 

(iii) Fo > 0, ql = CO, 0 G O1 G ~12, TV = 1 

(iv) Fo > 0, r12 = m~, 0 G o2 G 7112, ~~ = o 

(v) Fo > 0,O < q1 < co, O1 = O,g = 0 
1 

(vi) Fo > 0,O < q2 G co, O2 = 0, - = o 
30, 

(vii) Fo > 0,O < q1 d CQ O1 = 42, f$ = 0 
1 

(viii) Fo > 90 < q2 G 00, O2 = ~12, $ = 0 
2 

(9 

(ix) Fo > 0, q1 = q2 = 0,O < 

-k2 dT =--_- 
k, an2 

(x) Fo > 0, nl = q2 = 0,O G < n/2, T1 = T2 
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where ni and n2 are the respective outward normal unit 
vectors to body one and body two over the contact 
area. In the above, the temperatures far from the contact 
within bodies one and two have been taken for con- 
venience as 1 and 0 respectively. 

Clearly, from examination of equations (2) and (3) 
and the boundary conditions (5), the solution will be a 
function of the three parameters, in addition to its 
spatial dependence, 

T = T(k11k2,a1/a2, Fo). (6) 

Thermal constriction resistance 
The thermal constriction resistance, by our previous 

definition, can be expressed mathematically by 

R = [W/t = a3)--T(112 = a)] 
c 

s 
qdr 

r 

where I is the contact area, assumed constant with 
time. The significance of this latter assumption is to 
restrict the analysis to situations in which the differen- 
tial thermal stresses developed at the interface do not 
substantially alter the contact cross-section as the 
thermal field changes with time. Using equation (7), 
then, it can be shown that for a circular contact the 
expression for the thermal constriction resistance 
becomes 

1 
K= 

2xa 
s I 

‘I2 kl 2 sin0 de 
0 VI=0 

-1 
= 

2na n’2k2% 
s I 

(8) 

atl 
ke de 

0 2 v*=o 

where the temperature solution on either side of the 
interface can be used, as indicated, for evaluation. 

SOLUTION 

Coordinate selection 
It is evident from inspection of equations (2) and (3) 

with boundary conditions (5) and considering the 
previous work which considered only a single half- 
space [7-171, that an analytic solution to the problem 
will not likely be possible using the currently available 
methods. Consequently, a numerical solution was 
sought to describe the thermal behavior of the problem. 
The finite difference method is used in this analysis. 

Following a line of reasoning which led to the 
analyticformulationofthe problem in oblate spheroidal 
coordinates, this coordinate system will also be used in 
the numerical formulation of the problem. The argu- 
ments suggesting the use ofthis coordinate system in the 
numerical solution of the problem have been presented 
in detail in references [6] and [7] and will not be 
repeated here. Because of the conformability of the co- 
ordinate system to the anticipated thermal field 
behavior, it can more readily accommodate the flow 
field distortion near the boundary condition discon- 
tinuity on the contact plane than can other, more 

conventional coordinate systems. This flow field 
accommodation leads to a reduced absolute truncation 
error in the vicinity of the discontinuity. The expanding 
nature of the coordinate system as one moves away 
from the generating disk is also a feature to be desired 
in the analysis of the present problem. 

A general formulation of the hnite difference repre- 
sentation of the heat-conduction equation in general 
orthogonal curvilinear coordinates has been presented 
by Schneider et al. [19] using a Taylor series expansion 
of the temperature field to approximate the governing 
differential equation, and by the same authors [20] 
wherein an energy balance is applied to a control 
volume of finite size, and the resultant energy balance 
approximated using finite differences. The latter 
approach is adopted here owing to the greater physical 
interpretation that can be given the resultant finite 
difference coefficients and to the conservative nature of 
the formulation. The results of [20] will be used directly 
in this work. 

Finite deference equation and boundary conditions 
The discretized spatial domain is illustrated in Fig. 3 

for one of the half-spaces. Considerations similar to 
those which will be discussed in the following section, 
will apply equally well to the other half-space, and for 
convenience the subscripts 1 and 2 will be dropped for 
purposes of this discussion. 

0 

“i--d 
7’0 

FIG. 3. Discretization of the solution domain. 

With an arbitrary control volume centered about a 
point in space characterized by the notation (i,j), Fig. 
3, i and j shall be used to indicate the finite discretiza- 
tion of space in the q and 0 directions respectively. 
For uniform spacing in each direction independently, 
successive nodes in the P) and 0 directions are incre- 
mented by amounts Aq and A8 respectively. These 
increments do not represent the physical distances 
separating adjacent nodes but merely the change in the 
coordinate value between these nodes. 

The energy balance for this control volume, having 
total source strength PAV, and centered about node 
(i,j) can be written for the axisymmetric situation 
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considered here as 

Qi-t,j-Qi+tJ +Qi,j-+-Qi,j+*+PAV 
d 

=-ISI at 
pc, TdV. (9) 

C.V. 

Adopting the results of [20], the finite difference 
approximation of equation (9) can be written in the 
form 

where after some manipulation and division by 
common factors, the coefficients can be reduced to 

Ci = l/(Aq)’ - tanh qi/2Aq 

Cz = l/(Aq)’ + tanh qJ2Aq 

C3 = l/(A~)’ - Wt ~j/2A~ 

C4 = l/(66)’ + COt $j/2A@ 
(11) 

D = (COsh2~i-sin20j)~j/AFo 

PAV 
+ 

2nka cash vi sin Bi AqAB 

n=1 

Since the time base normalization has been based on 
body one, i.e. Fo = tilt/a*, when applying the above 
equations to body two, the Fourier modulus should be 
replaced by the product, {~2/~~)~o. Similarly for the 
source term (not required here) the appropriate value 
for the thermal conductivity must be used. The super- 
script o has been used to denote quantities which are 
evaluated at the immediately preceding time. 

The boundary condition application in the finite 
difference solution for the adiabatic and isothermal 
boundaries has been discussed fully in two previous 
papers by the present authors [6, 71 and will not be 
repeated here. The application is straightforward. As in 
these previous examinations, a value of q A 8.5 was 
taken to be the numerical equivalent of q = co. This has 
been verified by the previous numerical results and can 
be supine from theoretical considerations. The 
remaining boundary condition, that of flux continuity 
across the interface was incorporated through the use of 
one-sided differences adjacent to the interface. These 
one-sided differences, when multiplied by the cor- 
responding thermal conductivity and control volume 
interfa~al surface area yield interfacial heat flow rates 
for each of the bodies. The resultant interfacial heat 
flow rates are equated for all control volumes adjacent 
to the contact area to provide incorporation of the final 
boundary condition. 

N~erical solution 
In the numerical solutions obtained for the transient 

thermal response of the two half-spaces which come 
into contact over a circular contact area, a grid arrange- 
ment was selected which has 20 spatial increments in the 
q-direction and 10 spatial increments in the e-direction 
within each of the bodies. Experience with both the 

steady-state solution of the single body problem [6] 
and the transient solution of the single body problem 
[7] has indicated that the spatial truncation error in- 
herent in this grid arrangement will be less than 2%. 

The tridiagonal matrix algorithm was applied on a 
line-by-line basis throughout the discretized spatial 
domain to effect the field solutions. Successive over- 
relaxation was used with a relaxation factor of 1.5 at 
each time step in the solution. Experience with the 
steady-state solution of the single body problem has 
indicated extremely rapid and stable convergence 
characteristics when this method is used [6]. 

An estimate of the time-dependent error is difficult to 
establish for this problem, because at present no 
analytic solutions are available for comparison. To 
minimize the propagation of time-dependent errors, 
therefore, a check was incorporated into the solution 
algorithm. The excellent agreement obtained between 
the asymptotic steady-state results and the steady-state 
analytic solution suggests that this check was successful 
in preventing the propagation of significant time- 
dependent errors. 

The check was arranged such that for each time sub- 
interval considered, a tentative solution was obtained 
for the ‘new’ Fourier modulus. This sub-interval was 
then halved and a new estimate obtained for the new 
Fourier modulus through the use of an intermediate 
time plane. If the two solutions thus obtained agreed 
favorably, the latter one was accepted as the solution for 
the new time plane. If, conversely, an unacceptable 
agreement was obtained, the latter solution was main- 
tained for comparison purposes with the solution 
resulting from a further halving of the time scale 
increment. This procedure was repeated until an accept- 
able agreement was obtained and the most recent solu- 
tion was accepted as the solution for the time plane of 
interest. The criterion used for solution acceptance was 
that the maximum difference in temperature at any 
point in the field between the most recent two trial 
solutions be less than 5.0% when normalized with 
respect to the change in temperature occurring at that 
location between the two time planes under considera- 
tion. 

RESULTS 

Numerical results 
A finite difference program was written to solve the 

algebraic equations resulting from the finite difference 
fo~ulation presented earlier in this paper. Solutions 
were obtained for five material combinations of 
practical interest to the engineering community. These 
material combinations are: (1) copper/stainless steel 
(304), (2) copper/glass, (3) copper/steel, (4) steel/glass, 
and (5) identical materials on both sides of the contact 
plane. As will be seen, these combinations are sufi%ent 
to describe a practical range of material comb~ation~ 
scanning the range of thermal conductivity ratios given 
by 1 < k,/kz < 370 and the range of thermal diffusivity 
ratios given by 1 < xl/a2 < 220. The materials com- 
binations and the pertinent thermal properties used in 
the investigation are presented in Table 1. 
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Materials 

(Mat’l)1/(Mat’l)2 

Identical materials 
Copper/steel 
Steel/glass 
Copper/KS. 304 
Copper/glass 

Table 1 

k(WlmK) a x lo5 (m2/s) 

ki kz Wz al a2 al/a2 

N/A WA 1.0 N/A WA 1.0 
381 43 8.86 13.2 1.36 9.70 
43 0.87 49.4 1.36 0.06 22.7 

381 15.6 24.4 13.2 0.49 26.9 
381 1.03 370 13.2 0.06 220.0 

Consistently throughout the investigation, the 
normalization contained within the Fourier modulus, 
Fo = ult/a2, was chosen to correspond to the material 
having the larger thermal diffusivity. This was done 
because the field within the high thermal diffusivity 
material will develop more quickly than that in the 
lower diffusivity material. Since all solutions for in- 
creasing time depend on the preceding solutions, it is 
important that the initial field development be ade- 
quately described. This motivation prompted the 
normalization with respect to the high diffusivity 
material. 

The thermal resistance as a function of the Fourier 
modulus, normalized as described above, is presented in 
Fig. 4 for the five materials combinations considered in 
this paper. For the case of identical materials the 
diffusivity was assumed to be unity since here a direct 
scaling relationship exists to apply the results to 
materials having a thermal diffusivity different from 
unity. The ordinate of Fig. 4 is the ratio of the transient 
thermal resistance of the system at a given value of the 
Fourier modulus, Fo, divided by the steady-state value 
of the resistance, Rc_. The steady-state value of the 
resistance is given by 

&,s=&+&. (12) 
1 2 

This result, based on an isothermal condition over the 
disk at steady-state, can be determined using analytic 
arguments, and moreover is supported by the steady- 
state asymptote of the numerical solution. 

I.0 LEOEND 

0 COPPER/ STAINLESS STEEL 

A COFI’ER /GLASS 

0.8 D COPPER/STEEL 

The numerical solutions yield asymptotic long time 
solutions which agree to within 1% of the analytic 
values without exception. As a comment on the error 
control used in the generation of the numerical results 
we note here the accuracy of the steady-state solution, 
the fact that the solution satisfies the initial condition 
that RJR,,, + 0 for Fo --) 0, and thirdly the monotonic 
smoothness of the intermediate solution. As noted 
earlier the anticipated error of solution due to spatial 
truncation is less than 2%. The maximum expected 
time-dependent error of 5% ofthe maximum inter-time- 
plane change (this maximum change being approxi- 
mately 15% of the steady-state value) yields a value of 
approximately 0.75% of the steady-state solution. 
Adding these two influences, it is expected that the 
solution error will be less than 3% of the steady-state 
solution. Noting that the time-dependent error will be 
cumulative in nature, and that the steady-state solution 
agreement is within l%, it is concluded that the inter- 
mediate error in the resistance at any Fourier modulus 
will not exceed the 1% of the steady-state value. 

Examination of Fig. 4 does not, unfortunately, allow 
immediate interpolation to material combinations that 
have not been considered in this work. This is due to the 
normalization of the time dependence with respect to 
the single thermal diffusivity, ai, even though this was 
convenient for performing the numerical solution. It 
was found that while the use of the harmonic mean 
dilfusivity considerably narrowed the variation between 
solutions, an appreciable separation of solutions re- 
mained. This separation can be reduced to within 

+ STEEL/GLASS 

0.6 

e 
0.1 FOURIER MODULUS 

IS BASED ON UmER 

DIFFUSIVITY MllTERlAL 

t &I I I I I I I I I 
0.01 04 I.0 IO 100 1000 10cx3o loooo0 

Fo 

FIG. 4. Constriction resistance vs Fourier modulus based on 
low diffusivity material. 
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acceptable limits through the introduction of a para- suitably describes the numerical data throughout the 
meter, X, defined by range lo- 4 ,< X < co. The maximum error of the corre- 

X = t[l +J(a2/a,)]Fof; a2 < a1 (13) 
lation with the data is 7% occurring for a value of 
X = 0.097. The correlation equation results are also 

where the thermal diffusivity used in the determination presented in Fig. 5. It is felt that the above correlation 
of Fo, is equation (15) will be of considerable utility in applying 

ala2 OS-2 __, 
L I 

the results of this work. 

al+a2 
(14) 

DISCUSSION AND CONCLUSIONS 

Through the use of the time variable, X, all of the The complete transient solution for two semi-infinite 
solutions collapse to essentially a single curve. bodies, initially at uniform but different temperatures, 

1.0 - LEGEND ,.. 

/+dY 

. +a- 

0 COPPER/STAINLESS STEEL 

A COPPER/ GLASS 

08 - 0 COPPER I STEEL 

+ STEEL /GLASS 

-CORRELATION k 

66 - 
/$ 

k 
0.4 - 

/ 
P 

0.2 - / H#Dobn-@ 

01 
OCroOl 0.001 0.01 0.1 I.0 IO 100 1000 10000 

X 
FIG. 5. Constriction resistance vs the correlation parameter X. 

The parameter X was determined primarily by 

inspection of the numerical solutions and as a result 
contains no rigorous physical or mathematical founda- 
tion. The many orders of magnitude of variation in the 
timedependence which can be removed through its use, 

however, certainly attaches significant utility to this 
combination of the thermal diffusivities and warrants 
its use as a correlation parameter. Further, the restric- 

tion that a2 be less than aI, as implied in equation (13), 
poses absolutely no restriction on the material combi- 
nations which may be considered since the designation 

of a1 and a2 to either of the contacting bodies is 

arbitrary, and consequently a2 can always be chosen to 
satisfy this requirement. The numerical results of 
RJR,* plotted as a function of the correlation para- 
meter X are presented in Fig. 5 for all of the material 
combinations considered. 

Correlation 
A correlation was sought which would adequately 

describe the thermal characteristics presented in Fig. 5 
in order to be of direct application in thermal analysis. 
The correlation will consider the range of variation of X 
that is indicated in Fig. 5. 

The hyperbolic tangent functional behavior was 
chosen for use in the correlation as a result of the close 
similarity of the numerical results to the characteristics 
of this function. It was found that the correlation 
equation 

RJR,_ = 0.43 tanh CO.37 ln(4X)] + 0.57 (15) 

coming into thermal contact over a small circular con- 
tact region has been formulated and solved numerically. 
The solution is presented in terms of a transient thermal 
constriction resistance, defined in the text of this paper. 

To the best of the present authors’ knowledge, this 
is the first analysis directed at the analysis of the 

complete, composite problem, where the materials on 
each side of the contact area are not identical. For this 

reason, comparison with other solutions is not possible. 
The comparisons which can be made are for the steady- 
state asymptotic value of the present solution and for 
the transient behavior of the case for which the 

materials on each side of the interface are identical. In 
both cases the comparison fully supports the results of 
the present solutions. The ‘S-curve’ characteristics 
observed in the previous, single body transient solution 

[7] are also observed in the present solutions. 
The thermal resistance, in general depends upon 

three parameters, the conductivity ratio, the thermal 
diffusivity ratio, and a Fourier modulus representing 
the time dependence. It was found, however, that the 
influence of the conductivity ratio can be embodied 
within a dimensionless dependent variable by nor- 
malizing the thermal constriction resistance with 
respect to the steady-state value, which depends upon 
the thermal conductivities of the two materials. 

Further examination of the numerical results 
revealed that the influence of the thermal diffusivity 
ratio for the two materials can be accommodated for 
engineering purposes by the introduction of a new 
independent variable, which explicitly contains the two 
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thermal diffusivities. The property combination em- 
ployed in this new independent variable does not have 
rigorous physical or mathematical foundations but 
nevertheless is useful as a correlation parameter. Indeed, 
by normalizing the solution in the above-mentions 
fashion, the thermal constriction resistance becomes 
dependent upon a single independent variable, irrespeo 
tive of the materials combination considered. This is 
supported by the five cases of practical interest which 
were examined in this work, with the thermal conducti- 
vity ratio ranging from unity to 370 and the thermal 
diffusivity ratio ranging from unity to 220. The situa- 
tions for which the diffusivity ratio is less than unity 
are easily accommodated by merely changing the 
reference material to that on the opposite side of the 
interface. 

Based on these normalized numerical results, a 
simple correlation equation was obtained to determine 
the thermal constriction resistance over the range of the 
independent variable 10m4 < X < co. The maximum 
error ofcorrelation of the numerical data is 7%. It is felt 
that this will be adequate for engineering analysis. 

The finite difference solution procedure made use of 
the oblate spheroidal coordinate system as the basis for 
modelling the heat flow. In this system the steady-state, 
isothermal disk, single body problem becomes one- 
dimensional. Although this is not the case for transient 
heat flow, the coordinate system is ‘quasi-natural’ and 
considerable savings can be realized through its use. 
This is reflected in the numerical solution of the 
problem by a decrease in the computations time 
required for solution, In addition, the coordinate 
system can naturally account for the discontinuity of 
heat flow occurring at the disk outer edge and will 
ultimately lead to a smaller truncation error since the 
coordinate system follows more naturally the heat Aow 
near this dis~ntinu~ty. The solution time required for 
the complete transient solutions was less than 1Omi.n of 
IBM 360/75 computational time per solution. 
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REPONSE THERMIQUE TRANSITOIRE POUR DEUX CORPS EN COMMUNICATION 
PAR UNE PETITE AIRE CIR&JLAIRE DE CONTACT 

RCum&-On considere la reponse thermique transitoire de deux corps semi-infinis, initialement a des 
temperatures di!T&entes et uniformes, en communication a travers une petite aire circulaire de contact. 
La solution numcrique est formulee en coordonnees sphcriques. Elle est presentee pour des combinaisons 
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de matCriaux dans le domaine d’inttrr&t pratique pour les thermiciens. Une kquation est proposee pour 
la rtsistance de striction, fonction du module de Fourier dans le domaine consid& des parametres 
physiques. La dispersion infkrieure i +7x, est consid&e comme bonne pour les calculs d’ing&&rie. 

DIE THERMISCHE UBERGANGSFUNKTION FUR ZWEI KORPER, 
DIE AN EINER KLEINEN, KREISFORMIGEN KONTAKTFLACHE MITEINANDER 

IN BERUHRUNG STEHEN 

Zusammenfassung-Es wird die thermische Ubergangsfunktion fiir zwei halbunendliche KGrper mit 
einheitlicher, jedoch verschiedener Anfangstemperatur betrachtet; die beiden Kiirper beriihren sich an 
einer kleinen, kreisflirmigen Kontaktfliiche. Das numerische LGsungsschema wird in abgeflachten 
Kugelkoordinaten formuliert. Vollstandige numerische LGsungen fiir das ubergangsverhalten werden fiir 
solche Materialkombinationen wiedergegeben, die von praktischem Interesse fiir den Ingenieur sind. Fiir 
den betrachteten Bereich der physikalischen Parameter wird eine Korrelationsgleichung fiir den Kon- 
traktionswiderstand in Abhtingigkeit von der Fourier-Zahl angegeben. Mit einer Fehlergrenze von + 7% 

kann diese Korrelation als ausreichend genau fiir Ingenieurberechnungen angesehen werden. 

I-IEPEXOfiHbIR TEI-IJIOBOm I-IPOIJECC AJIJI ABYX TEJI, 
WMEIOq&IX HEEOJIbIIIYZO KPYrOBYIO OFJIAm KOHTAKTA 

Ammlprmn- PaccMaTpHsaeTcs nepexommfi Ten.noBofi r~pouecc itm m3yx nonyorpaHmeImbIx 

TwIClIOcTOIMHMMH, HO He O~EHaKOBbmm TeMnepaTypaMH,m.feIoIImx Ee60mmyh~1 ~pyro~y~o 06- 

nacrb K0HTaKTa.%wIeHiioe pememie (POpMyJIHpyeTCII B cneqm.nbHbIx CfjepmecKHx KOOpNIfaTaX. 

~pHBOlVlTCK nonme pemem 3anaw nJIK pa3mmmx co¶eTamitf MaTepHanOB, rIpeJ.wTaBnJnoIuHx 

IlpaPTH'iecKH8 HIiTepeC NISI lWIJYOTeXHEiKOB. &WCTaBJleHbI KOp~JIKJJEiOHHbIe 3aBHCEMOCTA LVIK 

COlIpOTHBJIeHHI CKWI'HEO KBK @IymCUHK MOnyJfSi @ypbe JIJIK pSZCMaTpHBaeMOr0 ilHan830Ha napa- 

MeTpOB. ~OI'pelllHOCTb COCTaBJIReT 2*7x, 'IT0 BIlOJIHe COOTBeTCTByeT HHmeHepHbIM paC'leTaM. 


