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Abstract

A general solution for the thermal constriction resis-
tance due to a flux applied over a circular portion of the
upper surface of a compound disk is presented. The disk con-
sists of two layers having different conductivities. Heat
flow to a prescribed outer edge temperature and/or through a
film coefficient over the lower surface to an ambient temper-—
ature is considered. The solution is derived with due
consideration given to the compatibility required at the
interface between the two materials. The results are pre-
sented in analytic form and encompass a wide variety of
thermal and geometric parameters.

Nomenclature

= contact radius
= coefficient in series

e
i

Biot modulus, Bi = he/kj

a
A
B = coefficient in series
B
c disk radius

ch = hyperbolic cosine

C coefficient in series

D coefficient, defined in Eqs. (31) and (32)
f = function, defined in text
F

h

coefficient in series
= heat transfer coefficient
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Jy = Bessel function of the first kind of order n
k = thermal conductivity

n = index in series summation

q = heat flux

Q = total heat flow rate

r = radial coordinate

Re = constriction resistance

Ry = total resistance

s = thickness of top layer

sh = hyperbolic sine

t = total thickness of disk

th = hyperbolic tangent, th = sh/ch

T = temperature

u = normalized dimension, u = r*/e

Yo = Bessel function of the second kind of order zero
z = axial coordinate

o = geometric parameter, o = t/c

y = geometric parameter, Yy = s/c

A = change in accompanying variable

¢ = geometric parameter, € = alc

« = conductivity ratio, x = ki/k2

A = eigenvalue

n = exponent of flux distribution

¢ = thermal parameter, defined by Eqs. (21) and (22)
y = thermal parameter, defined by Eq. (15)

Introduction

Modern aerospace technology often brings to the thermal
designer new complex systems with their associated thermal
problems which require novel solutions. The present paper
examines the problem of determining the thermal constriction
resistance due to a circular contact located on a finite,
cylindrical substrate. The analysis includes consideration
of substrates which are composed of two materials having
different thermal conductivities. Both components of the
substrate are geometrically represented as finite, concen-—
tric cylinders of equal radius, and perfect thermal contact
is assumed at the interface separating the two substrate
components. Solutions are presented for a wide range of
boundary condition specifications, and, therefore, the
analysis provides for great flexibility of application.

The thermal designer has been faced with the problem
for many years, 1-3 and analytical solutioms for the complete
problem have not been available to provide the necessary
assistance in thermal design. Applications of current
relevance include the use of a high-thermal-conductivity
coating to minimize thermal constriction resistance at
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mechanical joints as examined by Mikic,3 prediction of the
apparent thermal conductivity of aluminum—-coated microspheres
in microsphere superinsulations,4’5 and the determination of
the operating temperature of electronic devices mounted on
thermal spreader plates.l’2 The solutions presented in this
paper resolve many of the uncertainties existing within the
present state-of-the-art as it pertains to these applications.

Solutions have been presented previously for many ap-
plications of the single-component substrate problem. For the
two-dimensional planar applications, these include the
solutions of Oliveira and Forslund® and of Schneider et. al.?
For the two-dimensional axisymmetric applications to sub-
strates of large extent, the solutions of Yovanovich,8 Strong
et. al.,9 and Schneider et. al.10,11 5r¢ available. For the

axisymmetric, cylindrical problem, the solutions of Kennedyl
and of Yovanovichl? are recommended.

The availability of solutions is greatly diminished when
the complexity of a two-component substrate is added to the
problem. The electrical analog to the thermal problem was
examined by Simon et. al.,2 but limited results were pre-
sented. A model for the thermal problem was proposed sub-
sequently by Mikic and Carnasciali,3 but a rigorous evaluation
of the model was not possible because of the lack of an
analytical solution, of accurate numerical predictions, and
of extensive experimental results. In both cases, the ex-
tent of the cylindrical member was assumed to be infinite in
the axial direction.
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Fig. 1 Composite geometric characteristics.
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In view of this discussion, it is evident that addi-
tional solutions are required, particularly for the finite,
two—component substrate problem. The purpose of this paper
is to obtain general solutions to this problem for several
boundary condition specifications. Indeed, the axisymmetric
problems which have been investigated previously then become
1imiting cases of the solution presented in this paper. The
analysis considers the problem in which the heat flow enters
the composite cylinder through a circular contact region on
the end face of the cylinder and flows either radially out-
ward to a Dirichlet-specified outside diameter or longi-
tudinally to a Dirichlet-specified cylinder end. In the
latter case, a Robin condition also can be applied as the sec-
ond surface boundary condition. In all cases, the continuities
of temperature and of heat flux are enforced over the inter-
face separating the two materials of the composite substrate.

Problem Solution

Mathematical Statement of the Problem

The problem geometry for analysis purposes is the basic
element illustrated in Fig. 1. Axisymmetric heat flow is
considered, and a circular cylinder coordinate system is es-
tablished as shown in the figure.

The thermal problem considers the steady conduction of
heat within each of the two regions, denoted 1 and 2, with

no heat generated within either of the materials. Over the
plane defined by z = 0, the condition common to all aspects
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of the analysis (over the contact an axisymmetric flux
distribution will be prescribed) is that the remainder of this
surface is considered to be impervious to heat tramnsfer. Be-
cause of the axisymmetric nature of the problem, the center-
line condition given at r = 0 will be zero temperature
gradiant specification for all cases considered.

The remaining two boundaries will have their thermal
descriptions given in consideration of two distinct cases.
These are illustrated in Fig. 2 and are 1I) that for which
the outer radial boundary is assigned a specified temperature,
and II) that for which the outer radial boundary is insulated.
The boundary condition applied to the lower surface in the
axial direction will be a Robin condition relating the temper-
ature and its gradient at this boundary. The use of this
condition in two limiting cases can readily represent a tem-
perature-specified surface and an adiabatic surface at this
boundary.

The governing differential equation describing heat flow
for the thermal problem described previously is Laplace's
equation in two dimensions for each of the regions, respec-
tively. These are

- 2
T 8 T
129 1 1 _
r dr T or + 2 0 (1)
L 9z
- 2
T 3T
19 2 2 _
r or r or }'+ az2 0 (2)

The boundary conditions common to both problem cases consider-
ed are the following:

BTl
z=0; 0<r < a, —kl 5 q(r)
aTl
a<r«gec, —= =90 (3a)
0z
BTZ
z=¢t; 0<cr<gc, —k2 5 h(T2 - Tref) (3b)
aT 9T
= —--l'-=___2-=
r=0; 0<2z«<t, ™ . 0 (3¢)

The remaining boundary condition over r = ¢ is applied for
the particular case under comsideration:
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Case 1
T, = T, = T ref (4a)
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Case TI1

aTl BTZ
r=c¢c; 0<z<t, =—=—=0 (4b)
3r ar

In addition to the preceding boundary conditions, the contin-
uity of heat flux and of temperature at the interface deline-
ating the two substrate materials must be satisfied. These
are expressed mathematically as

z=s,0sr<c, T, =T, (5a)
3T aT

z=s8, 0<r<ec, k 1. k _2 (5b)
’ h =771 3z 2 3z

These equations also can be written in a nondimensionalized
form. Defining a nondimensional temperature excess ratio,
*

T i = (Ti - T ref)/ATo, i=1, 2 (6)

where AT, is a reference temperature difference whose magni-
tude will be of no consequence in the ensuing analysis. The
radial and longitudinal coordinates are normalized according to

= rle, z* = z/c (7)

The governing differential equations now can be written as

* 2 %

1 5 ", 9T 1 o T 1
% % |T x |t T < 0 (8a)
r oJr L or - 0z
* 2 %
-, T 7 3" T
%
Lo 21+ 22=o (8b)
r Jr L or - 9z*
with boundary conditions as given below:
BT*
* %
z =0; 0<r <e¢g, *l = - alr)c
AT k
0z o1l
aT*
%
esr <1, *l =0 (9a)
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z =a; 0 < r <1, = = — Bi TKZ (9b) —
oz
. _
% * oT 1 _
r =0; 0 <z < a = =0 (9¢c)
or _
Case 1 —
r =1,0¢z <a, T’1=T2=o (94d) _
Case 11 % * -
0T oT
X * _
r =1, 0 < 2z <a, *l = *2 =0 (9e)
or oY _
Finally, the compatibility conditions become —
% * * * B
z =vy,0<r <1, T 1= T 9 (10a)
* * -
% % oT 1 oT ) B
z =y,0<sr <1, « T = % (10b)
0z 9z

Analytical Solution

The general solution to the differential equations (8) is -
given by

% % %
T i = (Cl + sz ) (C3 + C4 ¢nr)

* % * * N
+ z [Ansh()\n z ) + Bn ch(An z )] [EnJo(Anr ) r
n=1 :
+FY (Ar §
RECKDY (11) .
§
for both materials (i = 1, 2). With the boundary conditions i
(9¢), this solution can be reduced to ?—
* * ® * * * ‘
= <+ —
T i Cl sz + nil [Ansh(knz ) + Bnch(knz )]Jo(Anr )y (12) %

since C4 and Fn must be zero for all cases, and C, and E, can

be absorbed by the constants Cy and Cp, and A, and B, a
respectively.

e |
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Application of the conditions (9d) establishes the eigen-
values for the two specific cases considered in this paper.
(In case I the constants C] and Cy also are determined.)

These are determined from the following relations:

Case I
J (1) =0, C, =C, =20 (13a)
o 'n

Case II
J, (A ) =0 (13b)
1''n

leading to two sets of eigenvalues. In applying the solutions
to be obtained below, the eigenvalues for the appropriate

case must be used. It is noted that, for these two condi-
tions, the eigenvalues obtained are independent of the parti-
cular temperature distribution, T; or Ty, under consideration.
This would not be true, however, if a Robin condition were
applied on the outer radial boundary.

Application of boundary condition (9b) to the distribu-—
tion T*, leads to

*
* (2) Biz
Ty =0 [l T+ aBi)]

(2)

+ L A (2)
n

[sh(xnz*) -y ch(xnz*)]Jo(xnr*) (14)

where
(2). chh(Ana) + Bi sh (Ana)

n Ansh(xna) + Bi ch (Ana)

v (15)

and where the superscript (2) is used to note the applica-
bility of the iuperscripted quantities to the temperature
distribution T", for region 2.

The coeff}cients in the expression for T*l are related
to those for T", though the compatibility requirements of
Eq. (10) which must be enforced at the interface defined by
z*¥ = y. Applying the temperature equality relations at .

z* = v results in the constraints
¢, Py, e ® {1 - o/ + aBo)
sn(x a4 ch(h B (P =4 P [sh(A_Y)
-9, P a1 (16)
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Applying the continuity of heat flux requirement along z = Y
results in the constraints

Kk C

2(1) - [—Cl(z)Bi/(l + 4Bi)]

(1) (1)

+
K ch(lny)An K sh(kny)Bn

= An(z)[ch(kny) - wn(z)sh(knY)] (17)

Equations (16) and (17) represent a system of equations from

which Cq (1) 1(2), and A (1) n(l) can be determined in
terms of Cq (2) and An(z) respectively. These relations are
found to be

(1) _ k-1 vBi (2)
¢y - _} e aBi)] ¢y (18a)
w _[_ 1 Bi (2)
€, I @ TF aBi)‘] ¢ (18b)
and
A, B = Haro o oy - v Psni ]
- shuy shOn - v Penir 1l a @ (19a)
L _ ()
B T o= 3ch(kny) [sh(A v) =¥ ""ch(A_v)]

(2) (2)
- - A A
(1/k) sh(A ¥) [eh(X v) =¥ """sh(A_¥)]} A (19b)
Using these expressions, the temperature distribution for
both regions can be written in a general form as

*
* o (2) B Biz _
T = [l (1 + aBi) ¢o]

h(x_v)
(1) % (2) iy
1 A 1@ - e sk 2D -y Y- ) 5.

k3 % n
ch(_z )] Jo <knr ) (20)

—

8

+

N 3

n
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where 1. Bi( *) '
_ (k= i(y - = . %
4o = O @ ¥ aBL) 0 sz =¥
(21)
¢O =0 ’ z > Y
and
_ ok -1 o (2) .
¢ — ) ch(knY) [ch(knv) v sh(kn*{)],
*
0 £z <Y
*
6 =0; 2z >Y (22)

forn =1, 2, 3, «c.:

The final set of comnstants, Cl(z) and An(z), must be
determined through application of the boundary condition over
the surface z* = 0. Applying this condition, Eq. (9a), leads
to the requirement that

(-Bi/k)  ~ (2) . - A (D _ %
(1 + aBi) Cl ol An xn(l ¢n) Joo\nr )

n=1
*
= i%LEElE.; 0 < r* < €
o 1
*
=0 i e<r <1 (23)

where Cl(z) = 0 for case I. Cl(z) for case II can be deter-
mined through multiplying Eq. (23) by r*dr* and integrating.
Noting that

A

n * % %
JO Knr Jo(xnr )d (knr ) = XnJl(Xn) =0

As a result of Eq. (13) for the case II problem, the constant
Cl(z) for this case can be determined to be

1
(2) _2¢ (1 +aBi) c kKK A
Cy 1 ATokl JO q(r )r dr (24)

The remaining A, are determined using the orthogonality pro-
perty of Bessel functions. Multiplying Eq. (24) by

% * * .
r*J,(Agr-)dr” and noting that
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l ) * \J 1,
w w w
J r J(r)J (A r)dr
o''n o'"m
o)
=0, A_# A
m n
_ 1 2 2 =
=35 [JO (Kn) + Jl (Kn)], Xm Xn (25)

for the case where the terms )\, are roots of either

Jo(xp) = 0 or Jy(A;) = 0 enables the explicit determination
of each of the A,. The expressions resulting from this pro-
cedure are given below:

(2) ~9 c Je * % * %
A = r q(r )J (A r ) dr (26)
n An(l - ¢n)fl(An) ATOk1 o o' n
where
£ = le(xn) (case I)
= JOZ(An) (case 1II) (27)

Using Eq. (26) in the temperature distribution of Eq. (20) and
rearranging leads to the solution of the general problem:

* 1 * *
T DO [Bi + (o0 -z ) + fz(K,Y,Z )J

o

+ 5 D [sh(_2) + £, (n,v,0)ch(A;z)] I (A r') (28)

n=1
where
* - * *
£,0,7,2) == D (y-2);5 052 <7
*
=0 sz >y (29)
2
¢nth(XnY) - wn( )
f.(n,y,a) = (30)
3 1-9¢
n
Do = 0 (case I)
€ % % % %
= 2K q (r )r dr (case 1II) (31)
o)

-2 je * k% k%
D = —m—m—— q (r)r J ()X r )dr 32
n Anfl(xn) o o n ( )
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and where

q* = q(r*)/qo; AT = c/k (33)

H
Ne]
o
=

g

where q, is the thermal flux at r = O.

Thermal Constriction Resistance

An expression for the thermal constriction of the compo-
site disk is derived in this section. This is performed by
beginning with the definition for the total thermal resistance:

RT = [T (source) - T (sink)]/Q (34)

For use in this expression, the total heat-flow rate Q is
given by

2 € % % % x
Q = 27 ¢ q q (r )r dr (35)
o

and thermal flux distributions over the contact are consider-
ed in the form

* % 2
¢ (r') =@ -u) (36)
*
where u = r /e, and where p is a parameter.

In the flux distribution of Eq. (36), three values of
the parameter u are of special interest: u = -%, 0, +4,
For the case where u = -%, the resulting distribution closely
approximates an isothermal contact for values of ¢ in the
range 0 < g < 0.3.12 This distribution has a maximum value
at the outer edge of the contact. The case where u = 0 cor-
responds to a uniform flux contact, and the case where
u = 4% leads to a distribution peaking over the center of the
contact and falling to zero at the contact edge.

In terms of the nondimensional temperature distribution,
the total resistance can be written as

—*
ATO T (source)
RT = (37)

€ * %
om 2 q J (1 - oY Mar
Q

From this expression, defining a nondimensional thermal re-

. * . .
sistance by Rq" = RTkla and employing the previously chosen
definition for AT,, the nondimensional resistance is given by

) €
RT* = (%;) Tk(sourceb//jo (1 - u2)u r*dr* (38)




CONSTRICTION RESISTANCE WITHIN A COMPOUND DISK 59

%
Evaluating T (source), the average temperature over the
contact, leads to

—%
T (source) = 2Do[%z-+ (a - v) +'%1

o 2an3(n,y,a)J1(Ans)r
+ ) (39)
n=1 nE )
Employing Eq. (39) in Eq. (38), the nondimensional total
resistance can be expressed as
) D_[1/Bi+(o-y+y/k] +'n§1 an3(n,v,a)J1(Ane)/(Ane)
R o= = :
T
’ [me/(2u + 2)] (40)

where the integral in the denominator of Eq. (38) has been
evaluated explicitly.

A constriction resistance now will be defined for the
two cases considered in this paper. For the case in which
the outer radial boundary is isothermal at T,..¢, the con-
striction resistance will be identified as the total resist-
ance, since in this case there is no single predominant
direction of heat flow. For the case in which the outer
radial boundary is insulated, however, the constriction re-
sistance will be defined by

* * *

= - 41
R, =Ry =R g (41)

where Ri p is the one-dimensional resistance which would be
realized if the entire heat-flow rate werg uniformly applied
over the upper surface corresponding to z = 0. This one-
dimensional resistance includes the two material resistances
and the film resistance and, for this case, represents the
true constriction effect due to the localized thermal flux
over the contact. For both cases, the nondimensional thermal
resistance is given by

) J ()\ E)
* 2w +1) 1 n”’
Rcf - TE *nil an3(n,y,a)r A€ (42)

The evaluation of D, for the flux distributions corresponding
to 4 = -%, 0, +% can be evaluated using the results of

Yovanovichl? and are presented in Table 1. It is noted here
that the approximate eigenvalues for the case under consider-
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Table 1 Specific evaluation of Dn

H D
n

—2681n(Ane)

2
An fl(kn)

—ZeJl(Ane)

2
Xn fl(xn)

- —2651n(%n€) 1 ) 1
: 2 2
An fl(kn) (Ane) (Ane)tan(Xne)

ation must be employed in the preceding expression as they
are determined from Eq. (13).

Summary and Conclusions

A general expression has been developed for determining
the thermal constriction resistance of circular contact
areas supplying heat to compound right circular cylinders.
The compound cylinder consists of two layers of material,
each having a different thermal conductivity. Steady, axi-
symmetric heat conduction is considered.

Two specific cases have been considered explicitly in
this paper. These are the cases in which the outer radial
boundary is isothermal and in which the outer radial boundary
is adiabatic. The nature of these two different cases is
reflected through the determination of the eigenvalues appro-
priate for each case, as provided by Eq. (13). The coeffi-
cients for the series solution have been presented for three
particular flux distributions. These flux distributions are
defined by q* = (1 - u2)H, where u = -%, 0, +% are the three
values considered. ‘

The problem examined in this paper is a multiparameter
problem including, in addition to q* and u, parameters Bi, K,
€, &, Y. Because of thée large number of geometric and
thermal parameters, tabular or graphical expressions have not
been presented in this paper. The results of interest in any
particular investigation, however, may be obtained readily by
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programming the expression given in Eq. (42) for summation _
on a digital computer. The generality and flexibility of

this expression render the solution obtained of great utility —
for use in thermal design.
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