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Abstract J0(°)’J1(') = Bessel functions of the first kind o
of order zero and one .
Expressions are developed for the temperature

rise and the heat flux vector at an arbitrary field i,J = field and source point indices
point due to distributed volumetric, surface and
line heat sources utilizing the integral form of KO(-) = modified Bessel function of the =
the solution to Laplace's equation. The applica- second kind of grder zero
tion of the integral solution to the problem of -
thermal constriction resistance of contact areas of K(+) = complete elliptic integral of the
arbitrary shape subjected to the boundary condition first kind
of the first, second or third kind is considered. -
The importance of influence coefficients in the k = thermal conductivity
efficient and accurate numerical solution of ther-
mal constriction problems using the Surface Element L = length ’W
Method is discussed. A list of Lasic three- .
dimensional solutions for several important geomet- m = source strength per unit length -
ric source areas is presented for future reference.
m(3) = source strength per unit length
Nomenclature P = field point location; perimeter
A * position; area Pn(cose) = Legendre polynomial of order n -
31:33,34 = unit vectors Q = heat flow rate; total source strength .
r.\a = rectangular side q = source strength per unit area '
e * position q(3) = source strength per unit area
B(-) = complete elliptic integral Rc 2 constriction resistance N
b = rectangular side r = radial coordinate =
¢ * position r = field point position vector -
iJ * influence coefficient s = source point position vector
] = position T = temperature rise -
o(-) = complete elliptic integral T(?) = temperature rise at field point ’W
d]’dZ'd3 * distances Tf = external source temperature .
E(-) = complete elliptic integral of the =
second kind Ts source temperature u
F(+) = incomplete elliptic integral of the t = dummy variable
first kind v = volume —
Gij = geometric coefficient w = dummy variable b
h = contact conductance or film :
coefficient Xs¥s2 = Cartesian coordinates )
Io(-) = modified Bessel function of the first Greek Symbols
kind of order zero -
8 = dummy variable
Professor, Associate Fellow AJAA ¢ = perpendicular in right triangle @
+Graduate Research Assistant & = source point coordinate -
Reieased (0 ALAA (0 pubilsh in sl forms,
1 \




n = source point coordinate
8 = polar coordinate; dummy variable
3 = modulus of complete elliptic
integrals
u = argument of Legendre polynomials
& = source pofnt coordinate
b .= pi
o = volumetric source strength; polar
coordinate
o(3) = volumetric source strength
9 = effective ring radius
Q = right triangle influence parameter
W, ) = vertex angle of right triangle
Vz = Laplacian operator
Introduction

During the past several years Yovanovich and
his co-workers [1-7] have demonstrated that the
Surface Element Method (SEM) or the Boundary
Integral Equations Method (BIEM) are practical and
efficient methods for obtaining numerical soiutions
to Laplace's equation. By means of these methods
they determined the thermal constriction resistances
of singly- and doubly-connected, planar contact
areas of arbitrary shape on insulated, {sotropic
half-spaces. Isothermal contacts [7] as well as
contacts subjected to a uniform flux distribution
[1-5] have been considered. Recently Martin [6]
has shown how the SEM can be applied to singly-
and doubly-connected, planar contact areas subjected
to the boundary condition of the third kind. He has
demonstrated that numerical solutions for the
boundary condition of the third kind will yield
under certain conditions the-two limiting cases:
boundary condition of the first and second kinds.
The numerical solutions have been found to be
efficient and very accurate (errors less than 1%
when compared with known exact solutions).

These techniques as applied to thermal con-
striction problems are based upon the intagral form
of the solution to Laplace's equation:

2 2 2
21« 21,37, & (2)
[T A
The solution can be written as [8-12]
() = g [ QB (2)
A Ir - s|

where T(F) {s the temperature excess related to
some arbitrary ambient refer ence temperature, k is
the thermal conductivity of the {sotropic conduct-
or, q(s) is the heat flux distribution over the
contact area of interest. The positign vector to
the arbitrary field point (x,y,z) is ¥ while the
position vector to an arbitrary source point (€,n,z)
is denoted by s. These position vectors are

defined as

r= xs] + yEz + 233 (3)
S = Eay *na, + g3, {4)
where 31, 32 and 33 are unit vectors.

The distance between an arbitrary source point

(£,n,2) and a field point (x,y,z) as depicted in
Figure 1 is

IF - 3] =/ (x-5)° + (y-n)° + (2-0)° (s)

In its simplest form the SEM when applied to
thermal constriction probiems consists of dividing
the contact area into a finite number, N, of
surface elements, A4, over each of which the heat
flux, g4, is assumeé to be uniform. The centroid
of a typical surface element is designated by .
coordinates (x4,y4,24) and by the position vector Tj
from the origin. The temperzture excess Ty {or
simply temperature rise if the reference temperature
is taken to be zero) at the centroid of the typical
surface element Ay is

T..._L.M a(3)dA
i 2K
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Equation (6) can be conveniently expressed in
the following manner:

L
131,]

where Cij 94 represents the temperature rise at the
point (xj,yi,zj) due to the surface element Aj.

C-j represents the temperature rise at the centroid
o} Ay due to thermal sources of unit strength
distributed over the surface element A.. The in-
fluence coefficients Ci' are known; théy consist of
the integrals in Equatxgn {6).

Equation (7) can be written in more compact
form using matrix notation:

c-;j QJ (7)

{1} = [C] {q} (8)

For boundary conditions of the second kind, Equation
(8) can be solved directly for T. because:q; is
known. For boundary conditions 3 the firs% kind,
T, is known and Equation (8) must be solved for gj.
In matrix form we have

(q} = [V (M 9)

where [C]" is the inverse matrix of [C].




For contact areas subjected to the boundary
sondition of the third kind the solution to Equation
(1) can be expressed as

e v = || r@0m - ren == oo
~ A

where h(g) is the thermal contact conductance {(or
heat transfer coefficient in convective problems),
and T¢ {s the external source temperature.

For uniform Tf and uniform h over each surface

element Martin [6] has shown that the temperature
rise at any point (xj,yj,zj) is given by

T o dA
| * o 321 3(Te=Tg5) ﬂ T‘i‘" (11)
3 |f1‘5|

where T.; 1s the temperature of the surface element
Aj over which the external source {s applied.

Using matrix notation Equation (11) becomes

L6 {Te-Td = (T} (12)
where
dA,
21
GU:Z—T‘;JJ I—}?—.i’T-skcij (13)
Aj i

The geometric coefficients Gjj are related to the
previously discussed influence coefficients Cij by
means of Equation (13).

, Solving Equation (12) for the unknown contact
_area temperature rise Tg we obtain

e + & [xj] (T} = [6] (Tp) (14)
or simply
(6'] {1} = (Tg} (15)

In Equation (14) [I] {s the identity matrix. Martin
[6] has demonstrated that the general solution for
the boundary condition of the third kind, Equations
(11) and (14) reduces to the salution for the
boundary condition of the fi rst Kind when k/h - 0
and reduces to the solution for the boundary
condition of the second kind when k/h - =,

The thermal constriction resistance [1-7]

R ¢ average contact temperature rise
¢ - total heat fiow rate

) N N
RSV (16)

For boundary conditions of the first kind, Tj in
Equation (16) 1s known and the unknown qj must be
determined by means of Equation (9). On”the other
hand for boundary conditions of the second kind,

. q4 in Equation (16) is known and the unknown Ty can
bg determined by Equation (8).

When the boundary condition of the third kind
is specified, both T, and a3 in Equation (16) are

unknown. The surface temperature Ti is determined
by means of Equation (14) and q; is determined from
qj =.h(Tf-T1). In all cases the efficient and
accurate solutfons will depend upon analytical or
numerical evaluation of the geometric and influence
coefficients Gij and Cij respectively.

The influence coefficients appear in integral
solutions of Laplace’s equation in several different
physical areas: Newtonian potential [8,11,16],
electrostatics [9,10,12,19-21] and elastostatics
[11,18] for example. Some special cases have been
E?nsidﬁred as examples in mathematical treatises

3-16].

The purpose of this paper is to compile a list
of influence coefficients, noting their character-
istics, and their applicability to a variety of
thermal problems. This 1ist should be useful to the
thermal analyst who is interested in solving thermal
constriction problems as they appear in several
technological areas.

Influence Coefficients for Point Sources

Point Source

The temperature rise at an arbitrary point
(x,y,z) due to a thermal source of strength dQ
located at (§,n,z) as shown in Figure 1 is given by

4Tl'kT(;) = Td-g_-ﬁ (n
F -3

where the position vectors r and $ are defined by
Equations {3) and (4). It can be shawn that
Equation (17) {is the solution to Equation (1).

FIELD POINT
(1-sz)
lr-;l
SOURCE POINT
4Q
3 (€. 7.0)
Ky
y
0

Fig. 1. Field point - source point schematic.




Multiple Point Sources

Next consider the set of point sources de
located at (&£j,n4,Zj) with position vectors s as
shown {n Figure The total temperature riSe at
the ffeld point (x,y,z) due to n point sources is
obtained by the superposition of the effects of the

individual point sources acting alone. Therefore,
- dQ dQ dqQ dq
AKT(F) = —— * —2— + — 44—
tr-sql [resy|  res,) Ir-s, |
n dq
-3 =+ (18)
j=1 }r-sjl

When the point sources can be modelled as a uniform
flux qg e?itted by a differential area dAj,
n

Equati 18) becomes
n  2q, dA;
T(Xa.V;Z) = z'l_k ':%_J' (]9)
j=1 ‘r'sjl

The ' factor of 2 in Equation (19) appears because
heat is emitted from both sides of the differential
area.
solution, Equation (2), was developed for contact
areas situated on half-spaces.

I

FIELD PONT

(x, Y.2 )
7. SOURCE POINTS

40, (&8,

4Q, (£5.7,.82)

40 (€q. 7,80

Fig. 2. Fleld point - multiple source point

schematic.

Distributed Sources

We next consider the temperature rise due to
an arbitrary volumetric distribution of thermal
sources p as depicted in Figure 3. The volume V
can be approximated as the sum of n cubes; the
typical cube has volume AV and source density Pj-
The temperature rise at the arbitrary point
(x,y:2) can be expressed as

" p; AV
ankT(F) = 1m § (20)
e 4=l |5 |
av 0 J

This was taken into account when the integral

FIELD POINT
(x,y,2) v

av

~

|

8 p VOLUMETRIC SOURCE
DISTRIBUTION

Fig. 3. Field point - volumetric source

point configuration.

where 3; is the position vector from the common

origin to the typical volume element. In the limit
the summation becomes a volume integral; therefore,
ankT(F) = ” J' ois) dv (21)
¥ fr - sl

In Cartesian coordinates Equation (21) becomes

_P(Ln:;) dE dn dz (22)
V Ax-€)° + (y-n)® + (2-0)°

The integrand i{s a function of six variables
(x,¥,2) and £,n,z). Integration eliminates the
dummy variables (&,n,z), therefore the temperature
rise {s a function of (x,y,z) only.

AnkT(x,y,2) =

Flux Distribution

The spatial flux distribution q is often of
interest to the thermal analyst. It may be deter-
mined at any point (x,y,z) by means of Fourier's
rate equation

q=-kgrad T = -k 9T (23)

Substitution of Equation (21) into Equation (23)
yields

3(F) = v [4—1’;[ !U -fllg%] (24)

Using Leibnitz's rule for the differentiation of
an integral we obtain




M = - L fffv[——ESEJ—J av (25)

MR AT IN
_2G) T .oy o
s ] o(3) v[‘; = J (26)

[t can be shown that

v[{ 1 . (F-3)

Fo3l -0

(27)

Combining Equations (26) and (27) with Equation (25)
gives for the flux vector

3 . %F J![ c(?fé?--gfgdv (28)

Using Cartesian coordinates the three flux com-
ponents may be written as

=1 pl&,n,z)(x-£)dE dn dg
q,(x,y,2) 1= (29)
x o ( ﬂ [(x-8)2r(y-n)2+(2-c)? 12

(x,y,2) =

[(x-€)2+(y-n)?+(z-2)2]3/2

1 D(E.ﬂ»f;)(Y‘n)dE dﬂ d; 30
ay L [ij (30)

i 0 n 2-%)dE d dC
q,(x,y,2) = 7= ()
z 4n f{f [(x-£)“+(y-n)*+(z-2)¢]Y

v0 methods are available for obtaining the flux
gistribution: 1) calculate the temperature rise by
means of Equation (22), then determine the flux by
means of Fourier's rate equation; 2) calculate the
flux directly by means of Equation (28).

Influence Coefficients for Distributed Sources

Surface and Line Sources

For analytical and computational purposes we
may regard surface source distributions and line
source distributions as special cases of volume
source distributions.

For example the volume source distribution,
Equation (21), reduces to the surface source distri-
bution

4rkT(F) = H SI@—ET- (32)
re-s

where q(?) is the surface strength per unit area;
and to the line source distribution

ankT(F) « [ DL (33)
2 |Y‘ - Sl

where m(3) {s the line source strength per unit
length.

% These concepts will be used to develop addition-
al solutions in the subsequent sections.

Uniform Finite Line Source

Consider a finfte line source of length 2a,
strength m watts/unit length and the total
strength {s Q = 2ma watts. By means of Equation
(33) the temperature rise at any field point (p,z),
Figure 4, 1is
g=+a

—dc

c=Ia #bz + (z-c)2

(z+a) +r
= n !
8m ka (z-a) *ry

1
T(ps2) = ¢ ° %;

(34)

where ry and r2 are the distances from the ends of
the finite line source to the point (p,z). The
isothermal surfaces are confocal rotational
{prolate) ellipsoids.

The heat flux components can be determined by
means of Fourier's rate equation. Thus

aT . 1 .
qz 2 -k E §%—5’3’ (smo.z - S'“IQ1)
=2 j—- —] - —-1
8ra (rz " (35)
and
) S I | -
q * k 35 " B3 b (cosa‘ cosaz) (36)

The {sothermal surfaces have semi-major and
minor axes b and ¢ respectively, Figure 4. Also

as -¢~ . If we select the point M on the
isothermal ellipsoidal surface where z=0, ry=rp=b,
then

a9 o, b*a
T gma 5

42 2
Q n b+ =< (37)
8k /gz-cz b -v bz-cz

Fig. 4. Finfte line source temperature rise

field configuration.

¢




The influence coefficient for a finite line source
can be determined from Equation (37).

Uniform Circular Ring Scurce

Consider the case of a total source strength
Q uniformly distributed over a circular ring of
radius a. The line source strength is m = Q/2wa
watts per unit length. Using Equation (33) the
temperature rise at an arbitrary field point (p,2),
Figure 5, is therefore

2T
T(ps2) = gop w] 3§£
¥=0

y=21

L ady.
4wk

=0 /(p-acosw)2+(asinw)2+z2

(38)

The following transformation:
cosy = Zsinzt -1, dy = -2 dt

reduces Equation (38) to the following integral:

n/2
T(D,Z) = EQ'F . g' ] dt
" " Y(pta)® + 2 /ﬁ - Kzsin t
TR K(x) (39)

4(p+a)z + 22

where K(x) is the complete elliptic integral of
the first kind of modulus x where

2 . 4pa

K > (40)
(pta) + 2z
Along the axis p = 0, k2 = 0 and K(0) = 7/2;
therefore,
S B |
T{0,2) y= (41)

e

This result can be obtained directly by a simple
integration of Equation (38).

In the plane of the ring source z = 0, the
temperature rise is

2 1
Tpio) * g * &+ o
2. 4oa/(p+a)2.

K(x) (42)

where x
Alternate expressions are available [9,12,16]

for the temperature rise at any field point (r,8)
where 2 = r cos8, p = r sind and u = cos8, Figure 6,

T(r) = gl [1 - B0 + 33 Brte-.0)]
(43)

FIELD POINT
T(p,2)
|
l
]
i r
. \\\\
I ¥
| g SOURCE POINT
2
: % dQ=mady =557 ady
X
Fig. 5. Circular ring source configuration.
z)
/—-\\\T(r’a) r<a
/ 8 \ f<wr2
L | -
0] a P
z |
T(r,8) r>a
27T~
/ 8 \
[ 1 -
0 a P

Fig. 6.

and circular sources.

Inner and outer field points for ring




for r < a, or

Tre) = g [2 - JBP00 + FHE% -
\ (a4)

for r > a. Pa(u), P4lu), etc. are the aven order
Legendre polynomials. [t can be seen from Equation
(44) that when a/r = 0, T(r,s) = Q/4mkr independent
of 8; the ring appears to be a point source of
strength Q located at the origin.

Other alternate expressions are presented in
the text by Budak et al {14],

T(e,z) = _zr—gj' Ko(ma)lo(mo)cosmz dw forp<a
) (4s)

~n

T(p,2) = ;:” 1,(wa)K (wo)cosuz dy for p > a
0

(46)
where I$(-) and Ky(+) are modified Bessel functions

of the tirst and second kind, respectively, of
order zero.

Uniform Source Distribution Qver a Circular Area

Suppose that heat is supplied uniformly over
the circular area 0 < p < a in the plane z = 0.
The total source strength Q = q 2raé results in a
t[:emierature rise at the field point P{p,z) which is
17

T owlz|
& T(p,2) = 9%[ e Jo(wo) Jy(wa) % (47)
]

where J,(+) and Jy(+) are Bessel functions of the
first k?nd of order zero and unity, and w is a
dummy variable.

Along the axis p = 0, |z| > 0, the temperature
rise can be determined directly by means of the
following double integration:

2r a
4mkT(0,2) = 2q L £ g do d8
o+ 2z

-4wq[/az+zz-z] (48)

In the contact plane 2z = 0, the temperature
rise for internal points 0 < p < a s given [1]:

Te) = 2 9 Ex) (49)

where E{-) {s the complete elliptic integral of the
second kind,
/2

E(x) = - x© sin“t dt | (50)

i pf modulus < = p/a and 0 < x < 1.

External to the contact area, the temperature
rise is [1]

T(e) = £ % < 5(x) (s1)

where < = a/p < 1, and
B(x) = K(x) - D(x) and D(x) = [K(x) - E{x)IA?
(52)
In Equations (52), K{+) and E{+) are compiete
elliptic integrals of the first and second kind
respectively. B(-) is also a complete elliptic
integral, B8(1) = 1 and 8(0) = n/4.

Martin [6] has developed the following poly-
nomial approximation for B{x):

B(x) = 0.7854 + 0.1072x> + 0.081749¢)-8154

+ 0.020619¢*8-47  (53)

with a2 maximum error of 0.10% when ¢ = 1.

For arbitrary field points (p,2z) or (r,8),
Figure 6, where p = r sin8, z = r cos8, we have
[12,16]

T(r,0) = & nglAz,,(%)z"" Poneglcose)  (54)

for r > a, and

T(r,8) = 9% [‘ - (-;-) cosd + nz‘l A2n(£)2" PZn(cose)J

(55)
for r < a. In both equations we have
Rt
han * ()™ P (s6
Aomey = 0

It is seen from an examination of Equation (48) and
Equation (51) with Equation (53) that the tempera-
ture rise produced by a circular area with uniform-
ly distributed sources approaches 99% of the point
source temperature rise T = Q/4nkr within 1.5
diameters.

Uniform Source Distribution Over a Circular Annulus

Consider the circular annulus having radii a, b
with a < b lying in the z = 0 plane F}gure 7. The
total source strength is Q = g Zn(bé- ). By means
of Equation. (32) using polar coordinates (p,9,z),
the temperature r'lsg at any point P(p,z) is [6]

T(p,2) = 1_2'. IB_K(EM__ (57)
a /fp*e)z ' 2

where K(:) is the compiete elliptic fntegral of the
first kind with modulus

K2 = (—-‘lg-@-—z (58)

p*8)° + 2

‘»,

piren o




and 8 is a dummy variable. 1) rc<a

A closed form expression for the integral in S _r S ry2n
Equation (57) is presently not available. One can T(r,0) EE 1 - pcosg + nzl AZn(Eﬁ PZn(Cose)
however obtafn expressions for the temperature rise
along the axis and in the plane of the annulus

by means of the superposition principle. Yovanovich - 3% [1 - § cos8 + } AZn(g—)2n PZn(coseﬂ
E]] superposed a uniformly distributed source . na}
+q over 0 < p < b) and a uniformly distributed sink (63)

(-q over 0 < p < a <b) to give the circular
annulus solution. He obtained for the temperature

rise along the axis p =0, z > 0 2) a<r<b
( T(r,0) = 3% 1 - L coso + E A (r)Zn P, (cosa)
To,2) = & [/tz+zz VAN zz] (59) - 5 L (87 P
. v 2n-1
and for points in the contact plane z = 0, he gave -8 7oA B P, _,(cos8) (64)
three expressions: SE a1 20T 2n-2
1) O0<p<cac<h 3) r>b
b ¥ by2n-1
T(o) = 2R ER) - 2R () (60) (@) = F T Apn @7 Py p(cose)
a v 3y2n-]
2) ac<egh - L Ao (R Py plcas) (65)
(o) = 2R E@) - 28« 5(x) (81)

Martin [6] has shown that the temperature rise
at any point P(p,z) can be computed with an error
) p>b less than 1% when the circular annulus is replaced by
- an equivalent ring source. The strength per unit

length of the ring 1s obtained from
L2abgb 202 a
Te) = SR 28 - 2R 2 (62) ) 2
Q = 2mem = q 2r(b“-a“) (66)
~— where E(+) and B(+) are complete elliptic integrals
ﬁﬁw\ defined by Equations (50) and (52) respectively. If the effective ring radius is chosen to be
h Alternate expressions for the temperature rise )
at an arbitrary point P(p,2) or P(r,8), Figure §, p = (a+h)/2 (67)

can be obtained by the superposition of the circular

source solutions, Equations (54)-(56). The region Then the strength per unit length becomes
above or below a circular annulus can be separated

into three zones corresponding to r<a, a<r<b

and r > b. The temperature rise within each zone m= Z(b-a)q (68)

::: be developed from Equations (54)-(56). They When these equations are substituted into Equation
(39), we obtain the following equivalent ring
expression:

: T(o,2) = Lp=a) /E— € K(x) (60)

where the modulus of K(-) is defined as

2, _45p
8 .48 T T e 2 (70)

l I The difference between the exact solution

given by Equations (57) and 258§ and the approximate
5] a b P solution given by Equations (69) and (70) will be
less than 1% provided the arbitrary point does not
1ie within the volume (2a-b) < p < (2b-a),
0 < z < 3(b-a) adjacent to the circuluar annulus.

Uniform Source Distribution Over a Right Triangular
Area

Flg. 7. Circular annulus source configuration. Suppose 2 uniform heat source is distributed
over the right triangle with vertices A(0,0),
B(s,0) and C(4,8tanu,) with the vertex angle at A




denoted by wg and the perpendicular from A to B
designated §. The trianguiar area lies in the

z = 0 plane and has the total strength Q = qéltanu,.

The temperature rise at the point P(0,0,z)
cated directly above the vertex A is obtained
om

Yo P

T(0,0,2) = 7% [ f 2p do d8 (1)

T gk
" 0 0 /Qz + z2

where o_ = §/cos8. The first integration with
respect to o gitss

0
T(0,0,z) = E%f { i /62*22-22 sinze EB%% -2 wo}

(72)

Yovanovich [22] has obtained the following closed
form expression for Equation (72):

"A +:2coszmo + sinmo]
in
/1+;§coszuo - sinmJ

0

2rkT 1]
qs 7

21 ;sinwi
+ ¢ sin F—-—-—-—i =T oy (73)
- + g~

with ¢ = 2/8. The function on the right hand side
of Equation (73) is defined to be Q(Z,w ),
therefore Equation (73) can be written ad

T = 35 alz.w,) (74)

"/ nen z = 0, the omega function reduces to the
" following equivalent expressions:

W
Q(O,wo) = on tan(g- + —g)

1 1+ sinuo
i Ul wears

= Flugs1) (75)

where F(w_,1) is the incomplete elliptic integral
of the fifst kind of unit modulus,
o

Flug,1) = !—"-9—- (76)

/i-sinze

If wg < 85° and ¢ > P/§ where the perimeter
P of the triangular area is

P =61+ tanw, + /i + tanzwo ] (77)

the exact expression, Equation (73), can be
approximated by

2mkT _ A, 1.5 tanw, (78)
q3 r T

% °ﬁ+9c2+tanwo

where A is the area of the triangle and r, is the
distance from the centroid of the triangle to the
field point (0,0,z). The error is less than 1.0%
provided wy < 85° and ¢ > P/S.

By the superposition principle, Equation (74)
can be used to obtain the temperature rise at
points which are located directly above any vertex
of any arbitrary triangular area.

Uniform Source Distribution Over a Rectangular Area

A rectangular area lying in the first quadrant
(x >0, y > 0) has corners located at A(xy,¥1),
B(x2,y71)» C(x2.¥2), D(xy,y2) with a uniform surface

- source density q. The temperature rise at the

field point P(0,0,z) is obtained by means of
Equation (32) where the integration is taken over
both faces of the rectangle. Thus,

[ yy #/x3 + y§5 + 25 ]
T (9,0,2) = x, 2] L2100
_y2+/x‘z+y2!+z 1
- /2 2 7 -
. my2+ x2+y2+z
2 /2 2 b4
I R AT

-

Xy + /&5 + y? + zz°
X +A2+y2+zz.
X2 2N

g
Tttt

- -~

Xy ¥y

2 /x?+y$+zz 1

'l»'y1 n

+ Z arc tan

XZ yz

o 4 x§+yZ+z.2 b

+ 2 arc tan

X1 Y

¢x1+y2+z

- z arc tan [
Z

2., 24,2

Xy ¥ B
- z arc tan [ 2 1 (79)
4 /X% + y] + 2 -

When the field point lies in the plane of the
rectangle, Equation (79) becomes

ERELREN
y2+‘x$+y2-

Vg + A+ 5]
= xy tn |t

+

2k T -
—q (0,0,0) = X] n

3
+
=

1




-

X +A2+yz'

+ A 1 1
y,lgn—-—__
z*/"z*’z

Gty
+ Y2 n
x1 + /x] +y22.

For the field point at the center of the
rectangular area with sides a = (xp-xy),
b = (y2-y1), Equation (80) reduces to

X

-

(80)

Zﬂ:T = an (b + /A% + b )+ b 2n (d + va" + b )
-b+ /3% + b -a+/a°+b
(81)

An alternate expression can be developed for
Equation (81) using the right trianguiar area
solution, Equation (74) with ¢ = 0. By symmetry
the;e are two sets of four identical triangles
wit

Sa = --b- =b = <
6] 7 tan 3 62 ) tan
Superposing solutions we obtain for the temperature
rise at the centroid of the rectangular area (axb),

T
q

1
y (82)

= aQ(0,tan") g) + bﬂ(O.tan'] %) (83)

which is equivalent to Equation (81).

For the field point which lies directly above
the vertex A, Kellogg [8] gives the following
simple expression for the temperature rise:

2mkT | a+d b+ dy ab
3 b &n dz +an d, -~ Z arc tan zd3
(84)

with z = PA, dy = PB, dy = PC and dy = PD.

The temperature fields produced by a square
source and a circular source having the same total
area are similar for field points which are not
too close to the source. For example a 2 by 2
square source will raise the temperature of a field
point which lies in the plane of the source at a
distance of 2 units from the centroid,

kKT 2 0.1652
q/A

where A {s the area of the square.

(85)

A circular source of radius a = 2//7 will
raise the temperature of the same field point,
according to Equation (51) with « = 1/,

KT . 0.1664
qrA
The difference between the square source and the

equivalent circular source is less than 1% for the
relatively near field point considered above. For

(86)

field points whose distance from the centroid of
the square source rg is equal to or greater than
the square root of the area (one side only), i.e.,
ro/ VR > 1, its temperature rise can be computed
with negliaible error using Equations (51) and (53)
for an equivalent circular source.

Uniform Source Distribution Over An Infinite Strip

Consider an infinite strip of width -a <x<a,
lying in the y 2 0 plane with uniform surface
density q. The temperature rise at any point P(x,y)
can be obtained by means of the following integral:

a ™
2q J dE dz
-3 - »/(X-E)2 +y° s g

4mkT(x,y)

-—

-2q f tn /(x-g)% + yz dg

(87)
-a

A second integration yields [14]

M = 23 - 23 ]
3 a -y arc tanbryba-

- 11—”"‘ anly? + (a-x)2]

-0 g e @] (a8)

Summary and Conclusions

Several basic integral solutions of Laplace's
eguation for point sources and distributed sources
have been considered. Expressions for the tempera-
ture rise at arbitrary field points due to a finite
line source, a circular ring source, a circular
source, a circular annular source, a rectangular
source and a right tr{angular source have been
developed. .Alternate expressions are also present-
ed for certain geometries. Temperature rise
expressions along the axis and in the plane of the
source are also developed and discussed.

The fundamental solutions presented in this
paper form the basis of the Surface Element Method
which is an efficient and accurate numerical
technique for the solution of Laplace's equation
with complex boundary conditions. Martin [6] has
demonstrated the power of this numerical method
when applied to certain important thermal constrict-
fon problems such as singly- and doubly-connetted,
planar contact areas subjected to the boundary
condition of the third kind with uniform and non-
uniform contact conductance. In his solutions he
employed several of the basfc solutions given here.
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