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THERMAL RESISTANCE OF ARBITRARILY SHAPED CONTACTS
M.M. Yovanovich, J.C. Thoﬁpson and K.J. Negus

University of Waterloo
Waterloo, Ontario, N2L 3Gl
Canada '

Summary

A novel analytical-numerical surface elgment method is
proposed for computing the centroidal and the average
temperature rise of single and multiple contact areas
subjected to uniform or distributed heat flux. Certain
geometric parameters for an arbitrary surface elemént are
developed using analytical solutions for right triangles. The
accuracy and efficiency of the method is demonstrated by the
computation of the centroidal temperature rise of single
arbitrary areas. Geometric parameters are also developed for
two interacting contact areas of arbitrary shape. These
parameters are used to determine the coanstriction resistance
of a set of identical contact spots. It is demonstrated that’
a continuous square contact area can be replaced by a finite
set of identical contact spots.

Introduction

In a wide range of fields, from the microelectronics to
the nuclear industry, the so-called thermal contact resistance
needs to be determined to evaluate the overall thermal perfor-
mance of systems. This contact resistance is defined as the
average temperature rise of the coantact area of the thermal
source divided by the total heat flow rate from the source.

Specifically one may encounter single or multiple thermal
contacts of simple or arbitrary geometries on the surface of a
half-space. The flux distribution over the contacts may be
uniform in one extreme or give a uniform contact temperature
in the other extreme. The proposed paper outlines how all of
the above mentioned problems can be resolved conveaiently and

economically by a common approach.



1073

THERMAL RESISTANCE OF ARBITRARILY SHAPED CONTACTS
Single Contact: Arbitrary Shape -

Consider a single planar contact of arbitrary shape
located on the surface of a semi-infinite half space as shown
in Fig. 1. The governing differential equation is

V3T = 0 (1)

subject to the boundary conditions

—k%I = q , uniform flux within contact region (2)
z
%I = 0 , insulated outside contact region (3)
z .
and T + 0 as ¥(x2 + y2 +2%) » e (4)
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Figure 1  Schematic of Arbitrary Contact Area

Superposition of the solution for a point. source subject
to (1), (2), (3) and (4) gives the temperature rise at any

point P on the plane z = 0 as

T=[ {2} dA (5

A21rkr

where r denotes the distance measured from P shown in Fig. 1.

For arbitrarily shaped contact areas, closed form solu-
tions of Eq. (5) generally cannot be obtained. Nevertheless,
if P lies outside the contact area, the temperature rise at P
may be calculated accurately by a conventional numerical iate-
gration scheme. However this is not possible if P is a point
within the contact area, since at this point r = o aand the
integrand is singular. This difficulty may be avoided by
considering separately the inner and outer discretized tri-
angular areas shown in Fig. 2. The inner triangular areas
have a common apex at P and the temperature rise there due to
each of these is given exactly by [1] '
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Figure 2 Discretization of Arbitrary Contact Area

tan [L + L -1 (4C) |
TIN = q—a— in { _,4 2 ‘ 8 } (6)
21k LA | -1 (BC
t - —_
an [4 +,2 _ (28)]

(a) (b)

Figure 3 Inmer Triangle Geometric Parameters

The outer triangles, each of which has one common side

with an inner trlangle, approximate the portion of the contact
area beteween its perlmeter and the inner trlangles. For each

outer triangle t:he temperature rise at P is glven exactly by
the infinite series (see Appendix).

TOUT-—q—— {i?‘Mﬂ',...} (7)
2tk R 2R '
where A, R, I, and IRR denote, respectively, the area, the
dlstance from P to the centroid of the outer trlangle, the
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polar second moment of area and the second moment of area with
respect to the line of length R, all as shown in Fig. 4.

Yi

X

A' !I:II‘RR

Al=[dA

=f(x%+ y2)dn
P®- » . N
X i o_f
RR'fyidA
Figure 4 Outer Triangle Geometric Parameters

/
/ . ) .
Summing the c¢ntributions from each triangle gives the
required temperat_ e rise at P. Thus

T, = I TIN T T oUT (8)
the superscrlpt denoting the contrlbutlon from the ith inner
and outer regiops.

The convepience, efficiency and accuracy of this tech-
nique for computations of the temperature rises and thermal
constriction fesistances will now be examined for the family
of areas within the hyperellipses
X7+ (D=1
a b

emi-circle. ~

and for a

Figure 5
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The boundary points by which the contact area was discre-
tized into inner and outer triangles were positioned such that
each ianer triangle had the same angle at the centroid.
Symmetry permitted consideration of just the first quadrant
for each shape. Fig. 5 shows the relative error of the cen-
troidal temperature (or centroidal constriction resistance)
versus the number of discretized inner-outer triangular
elements,

For all shapes considered, the error decreases rapidly as
the number of elements increases giving a more accurate

approximation of the true contact area. With only four
2lements the maximum error was generally much less than 0.2%,
except for the hyperellipse with n = 1/2 and the elongated
ellipse, (shapes for which the contact area is poorly
approximated with less than 8 elements).

In summary, with this method it is very simple to compute
precisely the centroidal temperature rise for virtually any
arbitrarily shaped contact area subjected to uniform flux.

Multiple Contacts: Arbitrary Shapes

Thermal contact resistance problems frequently involve
multiple contacts located close to one another on the surface
of a half-space. The temperature rise at the centroid of any
one of the contacts and/or the total comstriction resistance

of the set are often needed.

Centroidal Temperatures

For convenience, the centroidal temperature rise T; of
the ith contact is written as the sum of the contribution from
the flux on the ith contact, plus the contributions from all

other contacts,
N .
T =T34 + L Tij : (9)
j=1 ‘ ,
j#i
The first of these, T;;, can be calculated by the tech-
nique given in the previous section. Each Tij is given by
q. .j 213 - 31d
Tij =3 A + 2 3 RR+ cee } (10)
27k R.. R:.
1] 1]
where R;; is the distance between the centroids of the ith
and jth contacts, while AJ, 1] and 1Jgg denote,
respectively, the area, second polar moment of area and second
linear moment of areas for the jth contact.

Contact Resistance

In order to compute the total thermal contact resistance,
it is necessary to deal with average temperatures. As before
the self and mutual effects are separated giving
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- N :
Ty = Tyj + I Tyj (11)
j=1
i*i
where the (=) denotes an average value.

For thermal contact resistance problems, individual con-
tact spots would usually be modelled as circles or ellipses.
For these shapes the Tll have been determined [2] and no
further computation is necessary. For future computatioms, it
will be convenient to have Tj; expressed in the form

T.. = 3d ..
Tii = b 8ii (12)
As shown in Appendix I, TlJ is given exactly by
- qs N
1J = =1 gij (13)
k ) )
. j j i
j 217 - 31 j 2I 31
where gij = = [A~ + 9 3 RR + (&) (——-——;——&B)
27 Rij 2R?, Al 2R:.
1] 1]
T S
121~ - 15I 210 - 31 :
+ (—= RR) (—o— _RRB) + . (14)

5
2Ry 3 2A%
with A1, a*, 12, 15, 18z, Igg and R;j defined as previously
and shown in Fig. 6. Note that 8ij depends only on geometry.

veEi,j
A" = dA

Av
4 .fAv(x5 +y2)dA

24
I;R. fAv Yo

Figure 6 Geometric Parameters for Two Arbitrary Contact
Areas

For the full set of contacts, Eqs. (11), (12) and (13)
lead to a system of linear algebraic equations of the form

1 = [T ' )

Lio,) {a,} = (7} (1)
where [G;:] represents a matrix composed of the geometry
dependent g;; and gjj terms defined above.
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Note that Eq. (15), which was derived for the case of
uniform flux on each contact spot, may also be used for
isothermal or mixed boundary conditions if q; is simply

interpreted as the average flux on the jth spot.
For any of the above boundary conditions, the total con-

tact resistance of the system of contact spots is given by

L T;Al
R=1L1=_ZA (16)
Q =z q;At

the summation taken over all spots,

Constriction Resistance of an Arbitrarily Shaped Contact

Consider a singly connected contact area such as shown in
Fig. 7(a), and the system of discrete circular contacts shown
in Fig. 7(b) which cover the same apparent area as the single
contact. For a single arbitrary shape with arbitrary boundary
conditions, the constriction resistance would be difficult to
~ compute by conventional techniques. However, it is reasonable
to anticipate that the difference in constriction resistance
between the single contact and the discrete system will tend
to zero as the area covered by the latter system increases
towards that of the single contact. For the system of dig-
crete contacts, calculation of the-constriction resistance
involves only a straightforward systematic computation by the
technique described in the previous section.

perimeter of

-

continuous i apparent areq
contact e \
1 ®© ® 0o o o o b\
f ® ¢ o o 0 o o\
\ ¥
® o o 0 0 0 - .
e e oo o 4 ::t>_.dncreie
Ne e o eeaasl circular
\
\ /] contacts
® o o 0o o 8 o
~ 4
\‘\. i ./’/
\~ e
[ ]

{a) {b)

Figure 7 Approximation of Continuous Contact By Discrete
Contact Spots

For an example of this method, consider a square coatact
area as shown in Fig. 8. The apparent area has been discre-
tized by circular contacts and the total area of the circular
contacts is increased by uniformly increasing the number or
density of the contacts. Table 1 coptains the ratio of the
resistance of the discrete system, Rgppc,_galculated by (15)
and (16), to the theoretical resistance, Rrupo = 0-4732 [2]
as the number of contacts, N, and their percentage of the
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total appareant area, A%, increase. In_gddition, a simple
attempt to extrapolate the calculated Rgppc Was made by
fitting the latest 3 values of Rgapc to the model

-1 - =%
Co + C1 N°' + ¢ N2 = Reane (W) (17)

f 100 i

o—-0—-0--0--0--0 . .
— perimeter of continuous

| s

o o o N quare contact

| discrete circular
o O e o contacts, (r =2
uniform density)

100

Figure 8 Discretization of Square Contact Area

After determining the coefficients, an evaluation of Eq. (17)
at N = 625 (where the contact density is such that_the circles
touch each other tangentially) produces the value,Rpppp

which is also reported in Table 1 as a ratio of RTggo-

Note from these results that with a discrete system
covering approximately 1/4 of the total appareant area, the
resistance of the system is only 2.45% above that of the
continuous shape, and by using the simple extrapolation
discussed, the resistance of the continuous shape is predicted

to within 0.9%.

Table 1
% ~% ~% —%
N Area, % Roarc/Rmmo Reren’Rmeo
9 1.1 3.730 -
25 2.9 1.823 -
49 5.7 1.344 0.903
81 9.4 1.166 0.951
121 14.0 1.086 0.971
169 19.6 1.046 0.982
225 26.1 1.025 0.991
289 33.6 1.013 0.996
361 41.9 1.006 0.999
441 51.2 1.003 1.000
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Conclusions '

An original analytical-numerical method has been deve-
loped for accurate and efficient computation of centroidal and
average contact area temperature rise or resistance of arbi-
trary single or multiple areas. The method was used to deter-
mine the resistance of numerous geometries. It was also shown
that the method can be used to determine the resistance of a
single arbitrary area by means of a set of identical coamtact

spots.
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APPENDIX 1

For the two planar contacts shown in Fig. I-1, the temp-
erature rise at any point P on the ith contact due to a uni-

form flux qj on the jth contact is

T o= (1) [, dal (1-1)
r 21k Al o -

Figure I-1 Local Polar Coordinates on ith and jth Contact

Areas
By thezcosige lag
= +r7 - 2r, . -

o Py rJ ero coseJ (1-2)

Hence q 2 9
. . r. .
T, = (-3 (1 + —% -3 cosej)_ll2 dal (1-3)
2mkpg Al 05 Po

Since r < p,, the binomial theorem may be used to expand
the integrand, giving v
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. 3 . 2 2
q r r 3r% cos“f;
Tp = (75%3_) f (1 - —AE + 3 cosej + _—;l-——a—_l
° Al 2p5  Po 2pg
+ ...) dal (1-4)

Eq. (I-4) becomes
3 i
T, = ( ) dA” + (=) [ ; rs: cos6; dA:
: . f,3 75 cosoy dh;

2tkpo A Po
2 2 2
2r% - 3r% sin
+ [ P ] g %3y aad . (1-5)
A 205
Since '
[ . da) = Al [ r. cos®, dai =0 (I-6&7)
A Aj ]
[ r2aal =1 [ 12 sin%0 dad = 1J (1-8&9)
| o . ] RR

the temperature rise at P may conveniently be expressed in
terms of easily computable geometric terms,

: j j
213 - 31
. Qi Al +._J1_7;_J§3-+ cor] (1-10)
. 27k po 2p°

The average temperature rise on the ith contact is
Ty =L [ T, dal (1-11)
Al Al
Thus j J :
A 21, - 31 :
< Ay o [_J.+_.°____3__E*E+ ..] dat (1-12)
Al 2mk Al Po . 2pg4

Tij

The A7 and Ig are constant. In this derivation it is
assumed that IJRR can be treated as a constant evaluated

about the axis joining the centroids of the ith and jth con-
tacts., Then for the terms of the infinite series as shown in

(1-12), evaluation of Tij requires the integrals,
[, dal gnq g aal
1 Al

A Po 9(3)
These integrals are evaluated by making the substitution
o2 = R?, + r2 - 2r_ R, cost, (1-13)
) ij i i 1] i

expanding by the binomial theorem, and integrating as for
(1-6) through (I- 9), g1v1ng

i i i i i i
dA A 21 —31 dA A 121 -151
/ ;— = — ¢+ ,_SL?;JQR / {55t Q SARR (I-14&
A Po Rij 2Rij A Po Rij 2Rij 15)

Substitution of (I-14) and (I-15) into (I-12) gives the
average temperature in terms of readily computable quantities,
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- j i : i 1
- ; 21° - 31 j. 21 - 31
Tij = (qJ ) {Aq + -0 RR + (A) (—2¢ 5 RR)

2Tk Rjj 2R3 al 2R}
R SR
21 - 151 21) - 31
(e " TRR) (Co T RR) 4+ ... (1-16)
2R} ; 241

Nomenclature

o

= area

matrix of geometric coefficients
geometric coefficient

= polar second moment of area
radial second moment of area
thermal conductivity

number of contact spots

field point location

total heat flow

heat flow per unit area

(9]
P
o s
o

- 0Q
o P
[ S

0

3

*

non-dimensional comstriction resistance

distance between centroids of ith and jth contacts
= radial coordinate

temperature rise

= centroidal temperature rise

AELo OY 22w
]

-
.
] nu

HiHHR

average temperature rise
Cartesian coordinates

Greek Symbols

® = polar coordinate

T =pi

p = polar coordinate :

Po = distance from P to ceatroid of jth contact

2

v Laplacian operator
Subscripts and Superscripts

i,j = reference to ith and jth contacts




