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Abstract

An approximate but accurate solution has been
obtained for the "long-time" temperature rise at
the vertex of a right-triangle subjected to uniform
flux during transient heat conduction into a semi-
infinite solid. For "short-times" the temperature
rise 1s determined from a sector of equal vertex
angle and contact area. A criterion has been
developed to determine the crossover from short to
long time. Arbitrary contact shapes are discre-
tized by combinations of these macro~surface
elements to find the transient temperature rise at
their common vertex. Excellent agreement is
observed with the analvtic solution for the circle,
especially when the square root of the actual con-
tact area is used to non-dimensionalize temperature
and time. By means of an unique method of extra-
polation, Very accurate results are obtained for
ellipses, rectangles and various other shapes over
a wide range of dimensionless time.

Nomenclature
aomenc.atire

a = radius of sector; seni-major axis of
elliptical contact; half-width of rect-
angular contact

total contact area

&

error~causing area
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= length of a side of a triangle; semi-minor
axis of elliprical contact; half-width of
rectangular contact

c = length of a side of a triangle

Fo = Fourier Modulus

Fo = transitional Fourier Modulus for "short-

time" to "long-time' changeover

thermal conductivity

= chord length

= number of triangular elements

= initial number of equal-angle elements

=
i

o

heat flux over contact
polar coordinate

time

= temperature rise

= centroidal temperature rise
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= dimensionless temperature rise
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Symbols

= thermal diffusivity

length of perpendicular of a right-triangle
= error in T*

polar coordinate

= polar coordinate

= vertex angle of a triangle or sector
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Introduction

In many aerospace and industrial applications
the temperature rise at a given point within a
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closed shape is required for a planar area with
uniform flux. If a steady-state condition has been
reached, then a surface element method developed by
Yovanovich, Thompson and Negus([1] can be utilized.
However, for planar areas subjected to uniform flux
for some specified time, the problem becomes more
complex.

One example of this type of problem is the
thermal loading of microchips found in modern compu-
ters. These microchips, which can have thermal
contacts of many different shapes, switch on and
off continually at very short intervals. Another
example is a machine tool contacting a work piece;
in this case, there exists a rectangular thermal
contact. Another example from the field of tri-
bology, is a ball making contact with an inner or
outer race; this creates an elliptical thermal
contact. Also from tribology is the example of two
rough surfaces moving relative to each other to
produce elliptical contacts on a microscopic scale.

Unfortunately, even for relatively simple con-
tacts such as ellipses and rectangles, solutions by
analytical methods are extremely complex and solu-
tions by numerical integration methods are very
expensive.

The paper discusses the development and
application of a right-triangular, transient, sur-
face element to the determination of the transient
temperature rise at arbitrary points located within
arbitrary, planar contacts which are subjected to a
uniform heat flux.

Short~time and long-time analytical expressions
will be developed for the right-triangular, macro-
element. A criterion will be given for the deter-
mination of short-time for the right-triangular
element.

The paper discusses the unique method of em-
ploying the square root of the contact area to non-
dimensionalize the temperature and time.

Temperature Rise at Vertex of a Right Triangle

For the problem illustrated in Fig. 1, the
diffusion of heat from a point source qdA into a
semi-infinite body or half-space with T=0 initially
and an adiabatic surface, it has been shown that
the incremental temperature rise T after some time
t is given by 2]

T = %g%z erfe (,/2/4t) e

where k is the thermal conductivity of the body and
« the thermal diffusivity.

If a uniform flux is precribed over a right-
triangular contact area such as Fig. 2, the result-
ing temperature rise at the vertex is

Long-Time Solution

“/cosh _
j erfc (r/2/7t) drdy (2)
° .

By assuming that t is 'large’ then the argu-
ment of the complementary error function becomes
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and thus the complementary error function can be
written as a series expansion [3] giving

w  (%/cos*
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After evaluating these integrals[4] the temp-
erature rise is

=~.g_'; ‘:’:_
T -k L¢2n(tan G+ 2)

——— tan
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where Fo = ac/éz, The Fourier modulus or dimension-
less time.

The first term of equation (4) is exactly the
steady-state result of Yovanovich{5]. The addi-
tional terms represent a "correction" from the
steady-state result. Note that the error asso-
ciated with equation (4) increases with decreasing
'time' or Fo and with increasing angle w because
the series expansion of the complementary error
function becomes invalid over some part of the

v T—=00s (p22)V2 —o
z

Fig. 1 Point source on adiabatic surface of a
semi-infinite body

Fig. 2 Area integration of a right-triangle

right-criangle's contact area,

Short-Time Solurion

If it is assumed that the uniform flux over
the right~triangular contact area has been applied
only for a 'short' period of tine, then it is
reasonable to expect that the temperature rise at
the vertex will be fairly insensitive to the de-
talls of the far boundary of the contact area,
Thus for 'short' time only the temperature rise at
the vertex of a right-triangle and a secror with
the same vertex angle . and contact area should be
approximately identical. By equating the areas of
the sector and right~triangle shown in Fig, 3 then

2
% ‘az - % % tanw (5a)
or
a _;vka:u (Sb)

For the sector the temperature rise at the
vertex is given by

W a
T [ J erfc (r/2/at) drds (6)
[¢} [=]

These integraticns can be evaluated in closed
form to give [2]

T = E%E {2vFo'u a[i— - L exp (-1/4Fo"')
™ ™

1
erfc (1/2 Fo')]} €)]
ZvFo'

+~

where the Eourier modulus Fo' is now given by
Fo' = at/a“,

The error associated with using equation (7)
increases with increasing w because the shapes of
the sector and right-triangle become increasingly
different. 1In addition the error also increases
as Fo' increases since the shape differences noted
above contribute more significantly to the temper-
ature rise at the vertex.

Correlation Between Long-Time and Short-time
Solutions

Equations (4) and (7) give respectively the
Lemperature rise at the vertex of a righ:—triangle
for the 'long'-time and 'short'-time assumptions.
However, some criterion must be developed to
determine for any particular angle . the time ¢
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Fig, 3 Sector approximation of a right-triangle




which constitutes the transition from short-time to
long-time. Since both equation (4) and (7) predict
temperature rises slightly higher than those ob-
tained by accurate numerical integration, then the
transition time or transitional Fourier modulus
Fo r for a particular w occurs when the two solu-
tions are identical. By investigating particular
values of w in l-degree intervalg from 0° to 85°
the following correlations of Fo as a function

tr
of w have been made ,

{2.87 - 5.18u - 28.24% + 95,643

Fo -
tr 4cos”w

-4 2
_ 2.31x10 } . (8a)

w

for 0° < w < 15° (0 < w < .2618 rad.), or

Fo . = —2{.944 - .5040 - .11002 + .1104°
4cos™w
+ 212642 (8b)
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Fig. 4 Transitional Fourier modulus versug
vertex angle

Point ot which
tempercture rise
will be calculoted

Approximation of
elements by
triangiles

Division of Contact Outline or
into a Group of Boundary of
Elements Contact

Fig. 5 Division of an arbitrary contact into
triangular elements

for 15° < < 85° (.2618 < u <« 1.4835 rad) and in
both (8a) and (8b) the angle w is in radians and

= 2
Fotr z u:tt/ﬁ .

Fig. 4 shows the relationship between w and
Fory. For vertex angles of less than 50° the max-
imum error, which occurs at Fo r» 15 about .5%. as
the vertex angle w approaches §5°, maximum error
can reach 2-4%. However it must be noted that the
actual error associated with some Fo falls very
rapidly to zero as Fo goes above or below Forr. 1In
addition a technique will be discussed shortly
which virtually eliminates all error for practical
applications by making evaluations of the tempera-
ture rise by equation (4) or (7) with w large and
Fo close to Fotr unnecessary.

Application of Triangular Elements on Arbitrarily
Shaped Contacts Division of Geometry into Elements

Any arbitrary contact geometry can be divided
into elements starting from some internal point P
at which the temperature rise 1s to be calculated.
As shown in Fig. 5, each element is considered to

OUTLINE OF CONTACT

Fig. 6 Division of triangular element into two
right-triangles: Case 1

Fig. 7 Division of triangular element into two
right-triangles: Case 2
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be triangular in shape which implies that there
will be some error in the final result since the
actual shape is slightly different in area from
that of the sum of the triangular elements.

Solution to a General Element

Any given triangular element can hzve one of
the three orientations shown in Figs. 6, 7, and 8.
Each orientation is just a linear combination of
two right-triangles which will both have the same
Fo.

If the temperature rise at the vertex of a
triangular element with vertex angle w is denoted
by T(w) then the following summary can be made:

Case 1. From Fig. 6,

T(w) = T(up) + T(wy) )
Case 2. From Fig. 7,

T(w) = T(wz) - T(wl) (10)
Case 3. From Fig. 8,

T(w) = T(wl) - T(wz) (11)

where T(w,) and T(w,) are determined by either
equation %4) or (7)"depending on the long-time or
short-time criterion of equations (8a) and (8b).

Solution of Thin, Obtuse Triangular Element

In real applications of this method, thin,
obtuse triangles as shown in Fig. 9 often arise.
Since evaluation of the temperature rise at the
vertex of this element involves two right-triangles
which both have large vertex angles, substantial
errors of 5-10% can arise when the Fourier modulus
approaches Fo To overcome this problem a trans-~
formation is made from a thin, obtuse triangular
element to a sector element of equal area. If the
equal area sector has radius 'a' and the same
vertex angle 'w' then

i waz
2

= % bec sinw (12a)
or an= ‘/bc—:‘ﬂ‘i (12b)

Fig. 8 Division of triangular element into two
right-triangles: Case 3

By recalling that equation (7) was derived for the
temperature rise at the vertex of a sector this
equation is valid again for this element giving,

T= E%E {2/Fo' wa [i— -4 exp (~1/4Fo')

™ m
+ erfc (1/2/Fo") 1} (13)
2/Fo'
where again Fo' = ut/az.

This method yields extremely accurate results
when Fo approaches Forpr 1f the vertex angle w is
kept below 10 degrees. This requirement can always
be met by further discretization of the contact
shape when necessary. There are two reasons for
the success of this technique. First, by keeping
the vertex angle small, the differences in the far
boundary shape between the sector element and the
triangular element are minimal. Second, since this
method is used when Fo {s near F°tr' the dimension-
less time is still relatively "short" so the minor
differences in shape between the sector and tri-
angular elements do not yet contribute signifi-
cantly to the temperature rise at the vertex,

Within the actual computer program which was
developed, the decision to use this sector
approximation was based on several empirical
criteria determined during the program development.

Method of Linear Extrapolation

After dividing a contact shape into N elements
the total temperature rise at some internal point
is sigply,

N

T = 3. z

27k Ti (14)

i=1

A dimensionless temperature 1is now introduced
by using the square root of the contact area as the
fundamental length scale so that,

- 2nkT
a’A;

T* (15)

where Ag represents the total area of the contact.

Since the temperature rise is calculated from the
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Fig. 9 Sector approximation of thin, obtuse
triangular element
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sum of triangular element temperature rises, then
the total area Ar for non-dimensionalizaticon should
be the sum of the areas of the triangular elements

N
AL - 121 A (16)

where A, is the area of the ith triangular element,

However, since the actual continuous contact
shape 18 approximated by triangles, the T* calcu-
lated will inherently be somewhat in error even if
no errors occurred in the evaluation of each ele-
mental contribution. This occurs because the T*
calculated represents a shape with a slightly
different boundary and area than the original con-
tact. Thus error in T* arises from area differ-
ences lost or gained by the triangular elements,

Fig. 10 shows the location of the error-
causing area A.. From Fig. 10 it is also apparent
that further division of the element will reduce
Ae but will still keep A, at about the same dis-
tance from P. Thus, if the error in T* is denoted
by € then,

€« Ae Qa7)

But 1f the boundary of the shape is considered
circular locally then,

2
Ae x p (18)

where the chord length
angle w such that,

1s related to the vertex

Ly (19)

If n equal-angle divisions of the contact shape are
made to generate the elements then

w = 1l/n (20)
And therefore,

€« l/n2 (21)

Thus by plotting values of T* against 1/n2
where n 1is the number of equal-angle elements a
linear relationship such as shown in Fig. 11 will

be obtained. A simple extrapolation of this curve
to the intercept where n = = gives the T* of the

[AREA, Aq

Fig. 10 Location of area unaccounted for by a
triangular element

actual contact shape, This technique has been used
extensively with great success to generate the data
of the next section and in every case a linear plot
as shown in Fig. 11 has been observed.

Results and Conclusions Regarding Dimensionless

Temperature Rise at Centroid

Ellipses and Rectangles with Equal Aspect Ratio

To illustrate and apply the methods discussed,
the dimensionless centroidal temperature rise has
been calculated over a complete range of dimension-
less time Fo where

2wkT°

TS = = (22)
WA

and

at

Fo ¢ ——v 23

o ( ﬁ_)z (23)
*ar

The ellipses are defined by (x/a)2 + (y/b)2 =1
where the aspect ratio is b/a. The rectangles are
of dimensions 2ax2b where again the aspect ratio is
b/a. The resultant dimensionless centroidal temp-
erature rises for ellipses and rectangles of__6
different aspect ratios over the range of 10 to
10" for Fo are given in Tables 1 and 2 respectively,

The analytic solution for the circle is given
by equation (7) by letting w = 2n. This gives

T: = 4nv/Fo [l— i exp(~1/4nFo)

™ ™
+ erfc (—i—)] (24)
2/7 vFo 2v/n /Fo
where Fo E-Lt-—z--% .
(/Z;) na

By evaluating this expression it can be shown that
the results for the circle in Table 1 are all
accurate to the decimal places shown. Note that
for all these shapes symmetry was used so that
calculations need only be made in the first quad-
rant. For the circle the necessary initial number
of equal-angle elements was Ny = 2 (d.e. 2N, = &,
4N, = 8). However, as the aspect ratio b/a de-
creased, the initial number of equal-angle
elements increased to N, = 4, N, = 8 and

Ts ' for neny
T, for ns 2N,
ACTUAL Tg - Te for neaN,
OF CONTACT |—
! ] I
neaN, ns 2Ny ne 4

LAZ 2
I/n® (n, number of equal-ongle elements)

Fig. 11 Extrapolation of calculated temperature
rises for a finite number of elements to
the actual temperature rise of the contact




finally N, = 16 for b/a = .1 in order to insure
accuracy in every case to the decimal places shown.
If less accuracy, say 1%, is all that is required
then considerably fewer elements could be used.
From Tables 1 and 2 it 1s seen that the
dimensionless centroidal temperature rise is always
higher for the ellipse than the rectangle of same
aspect ratio. However, by using the square root of
area to non-dimensionalize the maximum difference
observed is only about 4%. By inspection of Fig.
12 it can be seen that the shape difference
between an ellipse and rectangle of the same aspect
ratio shows up with the ellipse having more area
concentrated near the centroid. This "extra" area
which is concentrated near the centroid for the
ellipse contributes more to the temperature rise
than does the "lost'" area at its far ends. Hence
the ellipses have higher temperature rises, or
alternatively an elliptical contact is more resis-
tive than a rectangular contact with the same

L

Id o
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Fig. 12 Comparison of an ellipse and rectangle
with equal area and aspect ratio

aspect ratio.

~ 1 2nkT 2 2
Fo = /:f D;::::i::uizs , T* = /__o at centroid of (E) + (%) =1
( Ap) q7AL
log10 Fo b/a=1.0 b/a=0.8 b/a=0.6 b/a=0.4 b/a=0.2 b/a=0.1
-6 0.00709 0.00709 0.00709 0.00709 0.00709 0.00709
-5 0.02242 0.02242 0.02242 0.02242 0.02242 0.02242
-4 0.07090 0.07090 0.07090 0.07090 0.07090 0.07090
-3 0.2242 0.2242 0.2242 0.2242 0.2242 0.2242
=2 0.7090 0.7090 0.7089 0.7083 0.7001 0.6736
-1 1.9645 1.9574 1.9276 1.8493 1.6494 1.4113
0 2.9881 2.9773 2.9321 2.8137 2.4982 2.1070
1 3.3667 3.3558 3.3098 3.1894 2.8663 2.4601
2 3.4850 3.4775 3.4316 3.3110 2.9876 2.5809
3 3.5271 3.5161 3.4701 3.3496 3.0262 2.6195
4 3.5393 3.5283 3.4823 3.3618 3.0382 2.6317
5 3.5432 3.5322 3.4862 3.3656 3.0422 2.6355
6 3.5446 3.5334 3.4874 3.3669 3.0435 2.6368
L 3.5449 3.5337 3.4878 3.3678 3.0442 2.6373
Table 1 Dimensionless centroidal temperature rise versus dimensionless time for ellipses
714 Dimensionless kT .
Fo 7 ——— T erature ° T* = at centroid of rectangles with dimensions
(/A emp /A, 2a x 2b
l°g10 Fo b/a=1.0 b/a=0.8 b/a=0.6 b/a=0.4 b/a=0.2 b/a=0.1
-6 0.00709 0.00709 0.00709 0.00709 0.00709 0.00709
~5 0.02242 0.02242 0.02242 0.02242 0.02242 0.02242
-4 0.07090 0.07090 0.07090 0.07090 0.07090 0.07090
-3 0.2242 0.2242 0.2242 0.2242 0.2242 0.2242
-2 0.7090 0.7090 0.7089 0.7083 0.6938 0.6588
-1 1.9521 1.9430 1.9054 1.8108 1.5833 1.3559
0 2.9690 2.9560 2.9021 2.7639 2.4120 1.9990
1 3.3473 3.3341 3{2794 3.1389 2.7791 2.3505
2 3.4691 3.4459 3.4011 3.2606 2.9009 2.4713
3 3.5076 3.4944 3.4397 3.2906 2.9390 2.5098
4 3.5198 3.5066 3.4519 3.3114 2.9512 2.5220
5 3.5237 3.5105 3.4558 3.3152 2.9551 2.5259
6 3.5249 3.5117 3.4570 3.3164 2.9563 2.5271
» 3.5255 3.5123 3.4575 3.3170 2.9569 2.5276
Tahble 2 Dimensionless centroidal temperature rise versus dimensionless time for rectangles
6
—




Comparison of Several Shapes

In Table 3 the dimensionless centroidal temp-
erature rige of five different shapes are tabu-
lated. From these results it is seen that the
dimensionless centroidal temwperature rise decreases
as the contact shape becomes less concentrated
about the centroid or with the semi-circle, less
symmetric about the centroid.

In addition two major observations can be made
from Tables 1, 2, and 3. First by using the square
root of area to non~dimensionalize, the dimension-
less centroidal temperature rise for most shapes
up to a Fo of 10-2 (or up to a Fo of 10~3 for very
thin shapes) ig given simply by

* 2n kT
T, = N
/Ay
where Fo = —41575
/A

Angd second, when the dimensionless time Fo reaches
10%, the centroida] temperature rise of any shape
is within about 2% of its steady-state value.

Summary

The transient temperature rise at an internal
point in an arbitrary contact shape can be readily
determined by discretization of the entire shape
with triangular macro-surface elements. By using
the long-time and short-time solutions presented
in this work and non—dimensionalizing with respect
to the square root of the actual contact area, very
dccurate results can be obtained from relatively
few elements ang little computational effort. For
engineering accuracy even fewer elements are
required.

When both time and temperature are non-
dimensionalized by the square root of the actual
contact area, all shapes exhibit an identical,
dimensionless, transient, centroidal temperature
response for very short dimensionless time. Ag
dimensionless time increases, the dimensionless
temperature rise at the centroid increases in a
similar manner for all shapes with the greatest
differences in temperature rise observed at the

8teady-state condition. Contact shapes which are
both symmetric and concentrated about the centroid
(e.g. circle or square) have the highest centroida]
temperature rises, or al:etnatively, are the most
resistive to heat flow.
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Dimensionless ZﬂkTo
Fo = —at Temperature °® I¥ = at centroid of various shapes
7wk P a/A;
[ Equilateral 172 172
log, , Fo Circle Square Triangle (f) + (%) =1 Semi-circle
LI
a
-6 0.00709 0.00709 0.00709 0.00709 0.00709
-5 0.02242 0.02242 0.02242 0.02242 0.02242
~4 0.07090 0.07090 0.07090 0.07090 0.07090
-3 0.2242 0.2242 0.2242 0.2242 0.2242
-2 0.7090 0.7090 0.7090 0.7090 0.7087
-1 1.9645 1.9521 1.9151 1.8989 1.8872
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1 3.3667 3.3473 3.2883 3.2571 3.2498
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= 3.5449 3.5255 3.4664 3.4356 3.4281
Table 3

Dimensionless centroidal temperature rise versus dimensionless time for various shapes




