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Abstract--The impetus for this work came as a result of finding that evaluation of the complete elliptic 
integrals using theta-function expansions was computationally faster, for the same accuracy, than the well 
known conventional method using Landen's transformations, known as the arithmetic-geometric mean 
(A.G.M.). By using relations between Jacobian elliptic functions and theta-functions, it is shown here that 
the incomplete elliptic integrals may also be evaluated very efficiently using a Newton-Raphson scheme. 
The expressions outlined were found to be substantially more efficient and accurate than several infinite 
series or polynomial expansions provided by Abramowitz and Stegun in 1970. Analysis and algorithms 
are presented along with accurate tabulated numerical results. 

N O M E N C L A T U R E  

c,~-constants 
E--elliptic integral of the second kind 

E'--complementary complete elliptic integral of 
the second kind 

F incomplete elliptic integral of the first kind 
k, k'--modulus, complementary modulus 

K--complete elliptic integral of the first kind 
K'---complementary complete elliptic integral of 

the first kind 
m, n--integer constants 
q, q~--nome in theta-function series, complementary 

nome =- q (Tt /2 - ~ ) 
u, w, x, y, z--arguments 

Greek symbols  

•--modulus parameter 
r, 7--angular parameters 

~--modulus quotient 
A0--Heuman lambda function 

v, ~, ~l---general functions 
~--constant = 3.14159265... 

//--elliptic integral of the third kind 
a, ~, ~, 0--angular parameters 

0 r, O--theta-functions 

I N T R O D U C T I O N  

Integrals of the form 

f R(x ,  vr ) dx, 

where R denotes a rational function of x and y and some constant modulus k, and y is generally 
a quartic function of x, are of a non-standard type. They are referred to as elliptic integrals in the 
literature, and were first studied in Ref. [1]. Inverses of certain types of these integrals are known 
as elliptic functions, and they were first studied by Gauss, Abel, Jacobi and Weierstrass at the turn 
of the nineteenth century. As outlined in Ref. [2], every elliptic integral can be evaluated by aid 
of functions termed theta-functions, and it is this approach which is adopted here. The theta- 
functions themselves satisfy certain types of differential equations which are outlined by Refs [2, 3]. 

Numerous representations of theta-functions have been adopted over the years and perhaps the 
best summary of these is outlined by Ref. [2, Chap. XXI]. Evaluation of  complete elliptic integrals 
of the first and second kind using theta-function theory is very eflident (see Ref. [4]), involves no 
iteration, and is slightly superior in computational speed compared to the process of  the 
arithmetic-geometric mean (A.G.M.) described by Ref. [5]. This theory has actually been known 
for some time, as was outlined in Ref. [6]. More recently, Fenton and Gardiner-Garden [7] returned 
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to this theory and re-established that theta-function expansions give very convergent methods for 
evaluating complete elliptic integrals and their related functions. Numerous other non-standard 
integrals may often be expressed in terms of  elliptic integrals, as noted in Refs [3, 8]. The 
applications are many and, in particular, thermophysics problems are a rich source of  these, since 
they usually involve Lipshitz-Hankel integrals [9], as studied by Ref. [10], which may be written 
in terms of elliptic functions. 

We note that the evaluation of the complete elliptic integral of  the first kind, K(k), is paramount,  
since all other complete elliptic integrals may be expressed in terms of  it. Correspondingly, in this 
work, first emphasis is placed on the evaluation of  the first incomplete elliptic integral F(O, k). In 
the same manner as for the complete elliptic integrals, the remaining incomplete elliptic integrals 
may then be found. 

In this work we outline a procedure for the efficient evaluation of  the incomplete elliptic integrals 
using theta-functions. Numerical results are presented in tabulated form for several cases, including 
some incomplete elliptic integrals of  the third kind, for which tables exist only to limited accuracy 
in the literature (i.e. Ref. [5]). Complex values of  parameters are not treated here, but for these, 
and additional special cases not covered in Appendix A, refer to Refs [2, 3, 5] for excellent reviews. 

E V A L U A T I O N  OF C O M P L E T E  E L L I P T I C  I N T E G R A L S  

It is important to outline first the efficient procedure one may use to evaluate the complete 
elliptic integrals. This was studied in Ref. [7], and also used by one of  the authors (M.M.Y.) for 
many years in applied engineering courses. 

The four types of theta-functions we will be using are defined by the nome q and Fourier series 
(Ref. [5, Section 16.7]) as follows: 

Oi (z, q) = 2q ~/4 sin z - 2 q  9/4 sin 3z + 2q 25/4 sin 5z . . . .  (I) 

02(z, q) = 2ql/4 COS 2 -+- 2q9/4 COS 3z + 2q25/4 cos 5z + " • (2) 

03(z, q) = 1 + 2q cos 2z -4- 2q4 cos 4z + 2q9 cos 6z + • " (3) 

0 4 ( Z  , q) = 1 - 2q cos 2z + 2q 4 cos 4z - 2q 9 cos 6g + • • •. (4) 

These are used for the evaluation of elliptic integrals, and may be found in different notation in 
various references. Here we have adopted the notation of Refs [2, 5] [Note: Jahnke and Emde [6], 
as well as Byrd and Friedman [3], use Oo(z, q), the "zero-theta",  in place of  Oa(z, q).] 

The complete elliptic integrals of  the first and second kind, denoted in the literature by K and 
E, respectively, are given in Legendre notation as, 

j - ~/2 dO 
g = (5) 

0 (1 - k 2 sin 2 ~,)1/2, 

j " hi2 

E = (1 - k 2 sin 2 ~k) ~/2 d~b. (6) 
0 

The constant k is referred to as the modulus, and k '  = (1 - k2) j/2 is the complementary modulus. 
In terms of  theta-functions, z = 0 or n/2, and K and E are defined by: 

7t 2 7~ 
K = i [03(0, q)] = i [O,(n/2, q)]2, (7) 

[ q-)l (8) E = K  1 O,(O,q)/' 

where 

q = e x p ( -  nK'/K). (9) 

The modulus k is defined as the quotient of  theta-functions, 

k = (02(0, q),~2 (10) 
\o3 (o, q ) ]  
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TO obtain efficient convergent series for numerical work, it is obvious that we need to determine 
the nome q given k. Hence, using expansions developed by Weierstrass in 1895, from Refs [6, 2], 
we can deduce the following procedure for the complete elliptic integrals to 16 decimal place 
accuracy: 

(i) For the range k <<. 1/,J-2. 

1 1 _ v/-k-7 
£ =  

2 1 +.v/~ -7 

q = E+2ES+15E9+150EI3+ . .  • 

(11) 

(12) 

K = 2 [1 + 2q + 2q 4 + 2q9] 2 (13) 

E=-~-K l + 9 q 2 + 2 5 q b + 4 9 q  ~ ~. 
1 + q 2 + q 6  

(ii) For the range l / x / ~  <~ k <<. 1. 

1 1 - x / ~  
E =  

2 1 + x / ~  

ql = E + 2e5+ 15E9+ 150E13 + " ' "  

(14) 

(15) 

(16) 

K ~ = ~ (1 + 2q, + 2q~ + 2q9) 2 (17) 

~2 1 + 9 q ~ + 2 5 q ~ + 4 9 q l  2 
E' = - -  (18) 

4K' l + q ~ + q ~  

K t 
K =  - - - I n  ql (19) 

lI" 1 E=~; 5+ K(K'-E') . ( 2 0 )  

An important relation used in equation (20) is Legendre's relation, 
7c 

El('  + E ' K  - KK'  = ~. (21) 

We note that for the range (i), the nome q as defined by equation (9) is identical to the form 
(12). For the range (ii), the form (9) must be used to evaluate q after determining K', K. This will 
be required to evaluate the incomplete elliptic integrals of  the second and third kind to be shown 
later. 

E V A L U A T I O N  OF THE FIRST I N C O M P L E T E  ELLIPTIC  

In Legendre's notation we have 

u = F ( O ,  k )  = (1 - k 2 sin 2 O) 1/2' 

or, in Jacobi's notation also in the literature, we may write 

-- I "  (1 - t2)-1/2(1 - k2t2) -U2 dt, u 
Jo  

I N T E G R A L  F(O, k) 

(22) 

(23) 

1"This is found after some manipulation of  the form (8), 
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where 

sn(u, k)  = e = sin 0, (24) 

and sn is referred to as the Jacobian elliptic sine function. In terms of  theta-functions,  we have the 
relation: 

03 01 (w, q) 
sn(u, k)  = - -  - c¢, (25) 

02 04(w, q) 

where w = u/O](O, q). The quot ient  02/03 is shown in Ref. [3] and by equat ion (10) to be equal to 
the square root  o f  the modulus  k, and thus we obtain 

01 (w, q) (26) 
x/~ - ~O,(w, q)" 

Expansions for  Or(w, q) and 04(w, q) are given by equat ions (1) and (4). Now,  we proceed to reduce 
the t r igonometr ic  quantities to a simple series in sin" w, and with this we may  reduce equat ion (26) 
to 

0 = c0 + ~ c, sin" w, (27) 
n = l  

or  in nested notation, setting x - sin w, 

0 = X(C I + X(¢ 2 dr- X(C 3 "q- X(C 4 dl- X(C 5 "t- X(C 6 -1- X(C 7 "q- X(C 8 "~-" " " ) ) ) ) ) ) ) )  - t -  C O • (28) 

This is the functional  equat ion for x, to which we can apply a N e w t o n - R a p h s o n  scheme to evaluate 
x given the constants  c,. The constants  c, are functions o f  e and k, which need to be specified 
beforehand.  The first nine constants,  t runcated to give double  precision accuracy,  can be shown 
to be: 

Co - (1 - 2q + 2q 4 - 2q 9 + 2q 16) (29) 

cl = q 1/4 _ 3q9/4 + 5q2~/4_ 7q49/a (30) 

c2 - (4q -- 16q4+ 36q 9 -- 64q 16) (31) 

C 3 = 4q 9/4 -- 20q 25/4 -t- 56q 49/4 

Ca = (16q 4 - 96q 9 + 320q 16) 

(32) 

(33) 

c5 = 16q 25/4 - 112q 49/4 

C 6 = (64q 9 -- 512q 16) 

(34) 

(35) 

C 7 = 64q 49/4 (36) 

c8 = 256q t6. (37) 

The nome q is a funct ion o f  the modulus  k, and can be evaluated as was shown for the complete 
elliptic integrals in the previous section. 

In order  to achieve accuracy to double  precision (16 decimal places) as compared  with the process 
o f  the A.G.M. ,  over certain values o f  k we need to per form a Gauss  t ransformat ion  as given by 
Ref. [3, Section 164.02]. This t ransformat ion  is outlined as follows: 

F(dp, kl) = F(O, k)/( l  + kl), (38) 
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o r  

where 

and 

F(0, k) = (1 + k,), (39) 

" k '  = ( l  - -  k2) I/2 (40) 
kl--- l + k "  

sin 0(l + k~ sin 2 ~b) = (1 + k~) sin ~b (41) 

l+kl 41'/  
2 sin ~b = k, sin 0 k,J " (42) 

it was found that for values of  (# less than 45 ° (note: (~ = sin -] k), no transformations were 
necessary for double precision accuracy. For 45°<  (h < 80 °, one Gauss transformation was 
necessary, and for 80 ° < ~b, 2 successive Gauss transformations were required. For this latter case, 
the procedure is similar to equation (38) as follows: 

F(O, k) = (1 + k , ) ( l  + k2)F(dp2, k2), (43) 

where kl is as in equations (40) and 

1 - k ~  
k2--- 1 + k----~' (44) 

l+k  Ff l+k  y 2 sin ~b2 = k2 sin ~ - - - - -  ~ L\k sfn- i/- . (45) 

A summary of these transformations is shown in Table I, along with initial starting values, x,, for 
the iteration process. The remarkable consequence of all this work is the fact that convergence of 
the Newton-Raphson scheme is very efficient. This is shown in Table 2. It requires, on average, 
about 3 or 4 iterations for the scheme to converge over the entire range of O and ~b. 

It is important to note that other transformations were attempted, but failed to yield reasonable 
results. It is not clearly understood at this point why the Gauss transformation works so well, and 
why other transformations in the literature do not. Also, on a real time comparison with the process 
of  the A.G.M., it was found that the method outlined here was about 10% slower. This could be 
substantially improved if a relationship between the constants c, could be found. All computations 
were performed in double precision on an IBM PC in BASIC and F O R T R A N  77. 

R E L A T E D  I N T E G R A L S  AND F U N C T I O N S  

The incomplete elliptic integral of the second kind is defined by 

E(O, k) = I ° (1 - k 2 sin 2 ~k) 1/2 d~.  
J0  

(46) 

Table I. Range of transformations for evaluating F(O, ~) 

No tr~udozmations 
req~dred. Accuracy 
exact  with A . G ~  
to double preckiou. 

4 5 ° < ÷ _ < ! 1 0  . 

I Gau~ tr~foa'matioa 
requirmi. Accuracy to 
double pt-,';,,~,__- w i th  
.4.G.M. 

s O + < ÷ < W  

20 l~m trandormations 
required. Accuracy to 
double precision with 
A.G.M. 

zm ---- 0.004 =~ = 0.012 za = 0.022 
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Table 2. Convergence of  method ( N e w ton - Ra phson  i terat ions)t  

0 * < ~ < S *  5 " < ÷ < 4 5 "  4 8 " < ÷ < g 0 "  5 0 * < ÷ < 9 0 *  

800<0<900 3 4 4 4 
45 ° < O < 80 ° 3 4 4 3 
5 ° < 0 < 45 ° 3 $ 3 3 
00 < 0 < 5 ° 2 3 3 3 

T Represented by average number of i terations 

From Refs [2, p. 518; 5, Section 17.2.13] 

0 '{rcu q) 
ue 

E(O,k) = 2K nu ) (47) 

where u = F(O, k), K and E are the complete elliptic integrals of the first and second kind with 
modulus k, and 04 is defined by equation (4). To achieve double precision accuracy, only five terms 
are required in equation (4), and four terms for the derivative 0~. Noting that the home q is a 
function of the modulus k as in equations (12) and (16), we need only evaluate u = F(O, k), E and 
K, outlined earlier, and we may then determine E(O, k) from equation (47). Twelve decimal place 
values for F(O, k) and E(O, k) are provided in Table 3. 

As a direct result of being able to compute efficiently the incomplete elliptic integrals of the first 
and second kind, we can now efficiently compute elliptic integrals of the third kind, 17(0, 72, k), 
and also functions such as the Heuman lambda-function A0(fl, k), and the Jacobian zeta-function 
Z(fl, k). These are outlined below in terms of known functions and limiting forms are also given 
in Appendix A. 

Table 3. Selected values for F(O, k),  E(O, k) 

II ÷ ~  ° 1 10 3o , s  

1 0.017453292790 
10 0,174535193454 
30 0.523605673tl62 
45 0.785419807053 
60 1.047244824488 
80 1.396380715044 
38 1.536004057997 
90 1.570913958127 

60 
I 0.017453957120 
I0 0.175200286348 
30 ! 0.542229109804 
45 0.831223749071 
60 1.212396615255 
80 1.812529534398 
88 2.086744929901 
90 2.156515647500 

1 
1 0.017453292250 
10 0.174532656946 
30 0.323391877095 
45 0.785376430775 
60 1.047150781365 
80 L$96170097845 
83 1.535775433373 
90 1.570676709128 

r(,,÷) 

0.017,.310337 0.0~7,m14033 0.0t7,,,~373.7x 
0.174559492848 0.174755535140 0.17,19T630'1023 
0.324284017280 0.529428627032 0.335023732805 
0.787364937401 0.804366101232 0.326017870340 
1.051879112702 1.089550670082 1.142429058046 
1.405645220354 1,484554552055 1.608470732060 
1.547897932699 1.645446429580 1.804719328423 
1.382842804333 1.685730334313 1.854074677301 

.T ;I- iq 
0.017464161989 0.017484177604 0.017454178684 
0.175598542412 0.175424727014 0.175425829652 
0.548425344543 0.549270415213 0.549306144334 
0.8774033304~ 0.831211426058 0.881573587020 
1.301353213761 I.S16305100453 1.316957896925 
2.265273260789 2.4271800S0034 2.436246053716 
2,933656299014 3.8610"/5154349 4.048125418683 
3.133385231388 4.742717265279 oo 

Z ( ' , ÷ )  
10 30 45 

0.017453]M5802 0.017483071007 0.017482849439 
0.174506364812 0.174312496773 0.174091568465 
0.322915112409 0.517881934860 0.512049322350 
0.733241022961 0.707195985711 0.748186504173 
1.042550471931 1.007555555144 0.964951457643 
1.$869788560(B 1.31005840487"/ 1.226610499417 
1.52451070402"/ 1.437230174207 1.325950187678 
1.558887190602 1.467463209339 1,350643881048 

1 
10 
SO 
45 
60 
SO 
88 
90 

0.017452627966 0.017482438187 0.017452407617 0.017462406437 
0.175870127161 0.173674975302 0.173649360229 0.173648177667 
0.506092073466 0.500742319~ 0.5000,~5084 0.5000000000~ 
0.723224165457 0.709723805114 0.707212S90400 0.707106781187 
0.013393294810 0.872755208913 0.8662991100~1 0.8660254(]4784 
1.1224858956'/9 1.006432946316 0.985689154039 0.98480?753012 
1.193592110305 1.084013578241 1.001185967678 0.999390827019 
1.211056027568 1.04011U05706 1.0025&II0~528 I.O00(XX}OGO0~ 
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Table 4. Incomplete ll(O, .~2, 0) ;  y2 = 0.1, 0.5 

1 16 80 46 

• ~ ~ 0.1 

1 0.0174~4'~001 0.01746~2g0~ 0.0174U~1264 0.01746~912791 
lS 0.2e2slr~$140 0.26~dR}6lg}4~ 0.M~1S7864406 0.263898837974 
48~ 0.S~8M)641902~ 0.8'~7/60060640 0.U411926~0 0.$40411178885 

0.S00182e9',~76 0.S0~14897M~9 0.819719226671 0.6420~3046~6 
60 1.079586~241~ 1.090676712217 1.12401kl�leS06 1 . 1 ~ 2 3  
78 I.~5fd587829054 1.8U2016411~ 1.446496489~6 1.587887474808 
88 1.617104804812 1.646207887991 I 1.766526675692 1.908422904221 
90 1.65589416Tr24 1.6UM;6778764 1.760~84946~ 1.96~9707146 

O0 ?S 88 90 
1 0.017464184,~44 0.01746429M,41 0.017464~4661 0.017464365911 
18 0.2646651~49~ 0.2/~2~66116 0.~4461~014S 0.266447019880 
~0 0.54712~080287 0.55~18670804~ 0.8r~11278260274 O.U4~14S?09~9 
48 0.S~16N61072 0.890401M54~84 0.899918368451 0.899886364882 
60 1.2~960~07U9 1,329267664848 1.8e~646296864 1.864541466240 
7~ 1.78121278618"/ 1.9"~040~0~66 2.18?1~I~M~9 2.142016900e70 
88 2.21e060126462 2.816882198288 4.17r~107~9802 4.68~80786S2 ! 
90 2.29~St96SO~6 2.96600g01116"I 8.16467~005005 o~ 

1 IS S0 45 
1 0.017454178918 ~ 0.0174S42880~ 0.0174M400181 0.017454621785 
IS 0,2648111S$186 0.M~012814941 0.2M, S68608104 0.266U8966966 
30 0.648161967686 0.649801656749 OJS4445eO14962 0.561188894818 
46 O.STO445e4Oe�7 0.876209098974 0 . ~ ' / 3 8 9 ( ~  0.919022769166 
60 1.25S16~086~ 1.~5728~162891 1,$101M161~16 1..q821803~7781 
75 1.709~5M121 1 . 7 N 9 4 e ~ / ~ l  1.S~MlUSIIO~/ 1,91~i~17S0819 
88 2.1518442142'J8 2.194604896~4 2.U909~89495 2.602617110801 
90 2.221669664918 2.26681~42l~42 2A136711~4201 2.701287762095 

6O '/6 SS 90 
1 0.017454846304 0.0174~5006618 0~1746r~6,5808 O.01'bllS~.~6,1SS8 
18 0,2671213908~ 0.2M702003116 0,26'/912461904 0,2679163~6942 
SO 0.60886~62104 0.6'78944469484 0.$7e022965047 0.676061831288 
46 0.949~854'/3370 0 .97867898~  0.986TIS91SOS2 0.988910974827 
60 1.47906~,58T81 1.57881S,~66807 1.626064106611 1.62899680"/$86 
76 2.24188S968376 2.6084~401726 2 ~ 2 S 3  2.874678895261 
88 $.0~28fN52~09 4.097~676743 6.460005246197 6.851017961617 
90 &264"rT~471249 4.8062015147481 8.242640672S77 co 

Heuman" s lambda-function Ao(fl, k) and Jacobian zeta-function Z(fl, k) 
Complete elliptic integrals of the third kind can be expressed in terms of  A0(fl, k) and Z(fl, k), 

and therefore these will be summarized first. From Ref. [11], we note 

Ao(fl, k)  = 2 [(E - K)F(fl, k ' )  + KE(fl, k')], (48) 

Z(lJ, k) = E(IJ, k) - EF(fl, k )/K, (49) 

where k '  = (1 - -  k 2 )  |/2, E - E(n/2,  k),  K =- F(~/2, k). 

Limiting cases are listed in Appendix A. 

Elliptic integrals of the third kind 

The elliptic integral of  the third kind is given by the Legendre and Jacobi forms respectively, 

/ / (0,  7 s, k) = (1 - ~2 sin s 0)(1 - k s sin s 0 )  '/2' (50) 

= ~Y dt 
(51) 

J0 (1 -- ~2ts)[(1 -- t2)(l -- k2tS)] 1/2' 

where y = sin 0, t = sin ~, and ~ s ~ l, y 2 # k s. 

This integral is complete when 0 = It/2 (or y = l), and then the notat ion/ / (~s ,  k) is often used 
in the literature. Following Ref. [11], various cases of the elliptic integral of  the third kind can be 
rcducaxi to combinations of  the first and second kind elliptic integrals. The hyperbolic cases are 
defined if (i) ~2 > 1 or (ii) 0 < ~s < k s, and the circular cases occur when (iii) ~2 < 0 and (iv) 
k2<  72< I. Both cases (i) and (iii) can be reduced to cases (ii) and (iv) respectively using 
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Table 5. Incomplete 11(0, ?2, ¢5); 7 2 = 0.9, 1 

] 0 o ~  1 15 30 45 

= 0 . 9  

1 0.017454887928 
15 0.267311610497 
30 0.571068620117 
45 0.968565075983 
6 0  1.584686188326 
75 2.744639915401 
88 4.620017519457 
90 4.967868999251 

1 
15 
30 
45 
60 
75 
88 
90 

0.017454947022 
0.267516201343 
0.572840946669 
0.975465627078 
1.605155590664 
2.799900256217 
4.739522277310 
5.099584555505 

0.017455100213 
0.268082026367 
0.577854045902 
0.995680639173 
1.667576624374 
2.077101484511 
5.153037179732 
5.535513209603 

0.017455330753 
0.268865400118 
0.585084455240 
1.026954262326 
1.774526374757 
3.312107513623 
5.933811793915 
6.425573644196 

60 75 88 90 
0.017455552368 
0.269661175528 
0.592810387583 
1.06371577~183 
1.920812149907 
3.876014576125 
7.505603809885 
8.200869161724 

0.017455772889 
0.270465776257 
0.601061292363 
1.107973699411 
2.147527915792 
5.404323258959 

21.517134981934 
30.304518759221 

0,017455714589 
0.270251812985 
0.598820907975 
1.095352365590 
2.074876579981 
4.744332058197 

11.124061618136 
12.464091505630 '  

0.017455773968 
0.270469747206 
0,6O1103202435 
1.108214594931 
2.148996317919 
5.421255204038 

23.284483567510 
CO 

i 15 30 45 
1 0.017455065198 

15 0.267950129014 
30 0.577358455473 
45 1.000032684912 
60 1.732155119238 
75 3.732419888196 
88 28.640381402161 
90 co 

6O 
1 0.017455729650 

15 0.270309771090 
30 0.599526819407 
45 1.100604787410 
60 2.121599132946 
75 5 .5255419~744  
88 54.689422357519 
90 CO 

0.017455286487 
0.268723839483 
0.584275373072 
1.028657249209 
1.827809262650 
4.058637756780 

32.802148252251 

0.017455955376 
0.271117909952 
0.607943717461 
1.147537853149 
2.388787111951 
8.192303774545 

341.910450760807 
o o  

0.017455124293 
0.268155593835 
0.570164983705 
1.007311426564 
1.7556470"21548 
3.816547721377 

29.590854673433 
oo 
75 

0.017455891874 
0.270902956534 
0.605657988621 
1.134143595278 
2.802764655626 
7.003718597607 

98.276543996369 
oo 

0.017455508061 
0.269510573079 
0.591647537839 
1.061695675463 
1.951138930286 
4.612796113312 

39.675239854077 
o o  

90 
0.017455951254 
0.271121832123 
0,607986405500 
1.147793574696 
2.390529756031 
8.223563231008 

412.291487581163 
o o  

transformations given by Ref. [5; Section 17.7]. Expressions for limiting cases of the elliptic integral 
of the third kind are summarized in Appendix B. Here we note the hyperbolic case (ii) for the 
incomplete elliptic integral of the third kind, which may be expressed in terms of theta-function 
expansions. 

Incomplete H(O, 72, k), 0 < 72 ~< k 2, {hyperbolic} 
When 72 = k 2, the integral is defined by equation (A.26). For 0 < 72 < k 2, the integral reduces 

t o  

17(0, 72, k) = r(o, k) + 7[F(O, k)Z(fl,  k) - f~2] (52) 
[ ( l  - -  7 2 ) ( k  2 - -  7 2 ) ]  I/2 ' 

where 

fl = sin-~(7/k), (53) 

.2  = ~ ln (O4[v + co(fl)' q]~ (54) 
\o4[v co([3), q]]' 

v = nF(O, k)/2K, (55) 

co(#) = nF([3, k )/2K (56) 

and 04(z, q) is defined in equation (4). Tabulations for 11(0, 72, k) are shown in Tables 4 and 5 for 
72-~< 1. 

C O N C L U S I O N S  

An efficient and accurate methodology for computing incomplete elliptic integrals using 
them-function expansions has been summarized and results have been provided in tabular form 
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for several cases. Software has been provided with interactive codes based on the outlined material. 
Special forms in Appendices A and B have also been included in the codes. 

Table 3 values can be compared to results in Ref. [5, Chap. 17]. Tables 4 and 5 were also 
compared to Ref. [11] whose authors used Simpson numerical integration to provide six decimal 
place accuracy. For the circular cases occurring when k 2 < ~,2 < 1, listed in Tables 4 and 5, the form 
given by Ref. [5, Section 17.7.11] was used. Complex arguments would otherwise occur using 
theta-function expansions, and these are not within the scope of this work. 

Computations were compared to the process of the A.G.M. and found to be sufficiently accurate 
and efficient. These integrals have numerous applications both old and new and their efficient 
computation, particularly on a personal computer, provides the analyst with substantial savings 
over resorting to numerical integration schemes. Although accuracy is usually needed to only a few 
decimal places, particular applications sometimes require a series of these integrals, or ratios (i.e. 
Ref. [10]. In these cases, for adequate convergence, substantial decimal accuracy (10-16) is required. 
We also note a lesser known work by Gonz/dez [12], who provided compact expressions for 
incomplete elliptic integrals in terms of Legendre polynomial series. These were found to be less 
efficient, although quite accurate, requiring a convergence acceleration scheme (see Ref. [13]) over 
certain range of parameters. Although Carlson in Ref. [14] has provided robust schemes for elliptic 
functions, the object of this work was to summarize and clarify the use of theta-functions for 
evaluating elliptic integrals. Perhaps further work could be undertaken to compare more rigorously 
the duplication formulae given by Ref. [15], with the theta-function expansions shown here. Finally, 
the merit in this work is due to the research that was conducted by the many early mathematicians 
who devoted time towards functions which are not so well known, albeit remembered, today. 
Ironically, the use of these theta-functions vastly supersedes many present-day numerical integra- 
tion techniques. Other applications of these functions can only be the subject of further research. 

Acknowledgement--The authors wish to acknowledge the financial support of the Natural Sciences and Engineering 
Research Council of Canada under operating grant No. A7455. 
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Complete elliptic integral K(k ) and E(k ) 

A P P E N D I X  A 

Special Values 

E(I) = E'(O) = 1 (A.I) 

K(1) -- K'(0) -~ oo (A.2) 
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K(O)=K'(1)=n/2 

E(O)=E'(I)=n/2.  

Other special values and limiting cases can be found in Byrd and Friedman ReL [3, Section 11 l]. 

(A.3) 

(A.4) 

Incomplete elliptic integrals F(O, k) and E(O, k) 

E(0 ,  k )  = F(0 ,  k )  = 0 

E(O, 0) = F(0 ,  0) = 0 

E(O, 1) = sin 0 

F(O, 1) = In(tan 0 + sec 0) 

F( -O,k )  = --F(O,k) 

E ( - O , k ) =  -E(O,k)  

F(mTt +_ O, k) = 2inK(k) +_ F(O, k) 

E(m~t +_ O, k) = 2mE(k) +_ E(O, k ). 

(A.5) 

(A.6) 

(A.7) 

(A.8) 

(A.9) 

(A. 10) 

(A.11) 

(A.12) 

Complete elliptic integral 11(rcl2, ?2, k) 

H ( n / 2 ,  7 2, 1)= 11(n/2, 1, k )=  oo 

11(n/2, 0, k) = K(k) 

11(n/2, 0, 0) = n/2 

7~ 
ll(n/2, ? 2 < 1, O) 

2(1 - 72)1/2' 

(A.13) 

(A. 14) 

(A.15) 

(A. 16) 

Incomplete elliptic integral 11(0, ?2 k) 

H(0, 72, k) = 0 

11(0, O, k) = F(O, k) 

H(O, O, 1) = F(O, I) = In(tan 0 + sec 0) 

11(0, 1, 0) = tan 0 

tanh- t  [(~,2 _ i)1/2 tan 0] 
/ / ( 0 , 7 2 >  1 ,0 )=  

( 7 2  1)1/2 

tanh-i((1 _ 72)1/2 tan 0) 
/-/(0,72< 1 ,0)=  (1 - -  72)1/2 

k'2F(O, k) - E(O, k) + tan 0(1 - k 2 sin 2 0) ~/2" 
11(0, 1 , k ) =  

k,2 [! ÷? sinO_y = 
l n ( t a n O + s e c O ) - ? l n  1 - ? s i n O _ ]  . 

11(0,72>0, 1)= 72#  1 
1 - -7  2 

In(tan 0 + sec 0) + I ? I tan-  ~ (I ? I sin 0) 
11(0, ? 2 < 0, 1) 

1 __72 
E(O, k) - (k2sin 0 cos 0)/(1 - k 2 sin 2 0) I/2 ' 

1-1(0, k 2, k) k, 2 

 i.o , [  0 o)} 
11(0,1,1) 2-~os7 0 + ~ l n  tan ~ + ~  . 

Heuman lambda-function Ao(fl, k) and Jacobian zeta-function Z(fl, k) 

Ao(n/2, k )=  l; Ao(mrt/2, k ) = m ;  m = 0 , 1 , 2  . . . .  

Z(~t /2, k) = Z(O, k) = Ao(O, k) = Z(fl, O) = 0 

Ao( fl, 0) = sin fl 

Ao( fl, l )  = 2flln 

A o ( -  fl, k )  = - Ao(IJ, k )  

Ao(mn +_ fl, k) = 2m + AofJ3, k ). 

k # l  

k # l  

(A.17) 

(A.18) 

(A.19) 

(A.20) 

(A.21) 

(A.22) 

(A.23) 

(A.24) 

(A.25) 

(A.26) 

(A.27) 

(A.28)' 

(A.29) 

(A.30) 

(A.31) 

(A.32) 

(A.33) 
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A P P E N D I X  B 

Complete Ell ipt ic/ / (~/2,  ~e, k)  

Complete/ /(~2,k) ,  ~,e< 0, {circular} 
If ./2__ - k ,  then the integral reduces to 

1 
/ / ( - k ,  k) = ~ [n + 2(1 + k)K]. 

For other cases, we note that there are two equivalent expressions 

k2K ~ '/2Ao(tk, k)  
l-l (?2, k ) k2_,~2 2 ['/2(1 - -  y 2 ) ( ' / 2 _  k2)]1/2' 

(B.l) 

(8.2) 

o r  

where 

K n T2[a0(fl, k) - 1] 
/'/(~2'k) = 1 - " ~ ' ~  2[' /2( i - - )~2)(y2--k2)] l /2'  

/ V2 ~t/2 
* = s i n - ' ~ 2 ' - ~ ) ,  f l = s i n - ' - -  

Complete II (~ e, k ), k 2 < '/2 < 1, {circular} 

When T2= k 2 or k, the special forms are: 

and 

E 
/ /  (k2, k ) = ~-~ 

1 
/ / (k ,  k) = ..-=----7-z,. [n + 2(1 - k)k]. a(l - x )  

(1 - -  ' / 2 ) 1 / 2 '  

For other cases, there are two equivalent expressions: 

//(72, k) = K 4 

o r  

where 0 and ~ are defined as: 

n 70  -- Ao(O, k)) 
2 [(72 - k2)(1 - -  7 2 ) ]  1/2'  

11(7 2, k) 
2 [(72 - k2)(l - 72)] 1/2' 

/ 1 - v 2 \  t/2 . - / 7 2 - - k  2 Xtl/2 

Complete 1-1(75 k ), 0 < 72 < k e, {hyperbolic} 
One special case is defined here when 72 = k 2, hence this is given above. For  other cases we note 

rKZ(#,  k )  
//(72, k ) f  K-t - 

[(1 -- 72)(k 2 - 72)] t/2' 

where 

Complete//( ' /: ,  k ), 72> 1, {hyperbolic} 
This case is simply defined by 

where 

fl = sin-t  (T/k). 

/1(72, k) = - 
7KZq3, k) 

[ ( 7  2 - -  1 ) ( 7  2 - -  k2)]'/2 ' 

(8.3) 

(8.4) 

(B.5) 

(8.6) 

(B.7) 

(B.8) 

(B.9) 

(S.lO) 

(BAD 

(B.12) 

fl = sin-i(l /7).  (B.13) 


