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ABSTRACT

The integral method is employed for fast microcomputer
computation of natural convection heat transfer from isother-
mal spheres in air. The governing equations are the boundary
layer equations, expressed in spherical coordinates to account
for curvature effects. The equations are solved by using the
integral method in conjunction with assumed velocity and tem-
perature profiles. On average, solution times for computing the
surface-mean Nusselt number are about 8 and 12 minutes of an
IBM PC-AT and IBM PC-XT computational time per solution
respectively. Surface-mean Nusselt numbers are computed for
Rayleigh numbers ranging between 1.5 and 107. Comparison
of the results of the present study with the available data from
different sources shows good agreement over a wide range of
Rayleigh numbers.

NOMENCLATURE

C, specific heat capacity [J/kg-K]

D diameter of sphere [m]

DA() function of 4 in Eq. (13)

F(8) function of 4 in Eq. (14)

g gravitational acceleration [m/sec?]

g9 tangential gravitational component [m/sec’]
Grp Grashof number, g8(Ty - To)D3/43
I(8) function of § in Eq. (14)

k thermal conductivity [W/m?-K]
Nup(§) local Nusselt number

Nup surface-mean Nusselt number

Nup  diffusive surface-mean Nusselt number
Pr Prandtl number, v/a

radial distance [m]

F
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Fu radius of sphere [m]

r dimensionless radial distance

7,8,  spherical coordinates

Rap Rayleigh number, g8(T, ~ To)D?/va

rms root mean square

T temperature of fuid K1

T dimensionless temperature

T, function of § in Eq. (15)

T, function of §, in Eq. (15)

i_"., wall temperature [K]

T ambient temperature (K]

1 tangential velocity [m/sec]

u dimensionless tangential velocity, iD/a

g radial velocity [m/sec]

v dimensionless radial velocity, 4D/a

Ures reference velocity, a/D [m/sec]

We(8) function of 4 in Eq. (16)

Z(8) function of 4 in Eq. (16)

Greek Symbols

p fluid density (kg/m]

a thermal diffusivity of fluid, &/ (pC,) [m?/sec]
8 thermsl expansion coefficient (K™!]

dm hydraulic boundary layer thickness {m]

dt thermal boundary layer thickness [m]

§ dimensionless hydraulic boundary layer thickness
b¢ dimensionless thermal boundary layer thickness
v kinematic viscosity [m?/sec]

fm:Me  normalized boundary layer thickness

A(6) function of & in Eq. (13)

S dimensionless hydraulic boundary layer at 8 =0
S dimensionless thermal boundary layer at § = 0
Subscripts

D chmmbodylmgthbmdonsphmdmmeter
w  wall conditions



INTRODUCTION

Due to the ubiquity of spherical configurations in many en-
gineering applications such as in packed beds of spherical bodies
for heat transfer, great efforts have been devoted in the past to
natural convection heat transfer from isothermal spheres. The
governing equations which are encountered in such problems
are the continuity, momentum and energy. As will be seen in
a subsequent section, these equations are complicated by being
non-linear in nature. In natural convection, further complica-
tion arises due to the coupling of the momentum and energy
equations. Because of the mathematical difficulties associated
with these equations, their exact analytical solutions are not
to be expected. In the heat transfer literature, the various ap-
proaches undertaken by different authors to obtain solutions of
the governing equations for the case of natural convection heat
transfer from isothermal spheres, can be classified into three
main categories: (i) analytical methods, (ii) experimental tech-
niques, and (iii) numerical methods.

Analytical investigations have mainly centered upon the
two asymptotic solutions; the laminar boundary layer limit for
10* < Rap < 10% (Merk and Prins, 1953 - 1954, Chiang and
Tien, 1964) and the diffusive limit for Rap < 10~* (Yovanovich,
1987). However, many situations arise where solutions are re-
quired for Rayleigh numbers in the transition regime between
the two asymptotes (10™* < Rap < 10*). Due to the complex-
ity of the mathematical modelling of the heat transfer process
in the transition regime, most of the heat transfer data avail-
able today in this range of Rayleigh numbers are furnished by
experimental techniques (Kyte et al., 1953, Yuge, 1960, Amato
and Tien, 1972, Chamberlain, 1983). In general, the experi-
mental approach has the capability of supplying realistic heat
transfer data; however, it is time consuming and expensive.
Hossain and Gebhart (1970) employed an expansion technique
to obtain values for the Nusselt number for isothermal spheres
at low Grashof number (0 < Grp < 1) and Prandtl number
around unity. This approach is complicated, involving the so-
lution of the full momentum equations in spherical coordinates.
In addition, their solutions were reported to be significantly
lower than prior experimental data. Significant contributions
to natural convection heat transfer have been made by Raithby
and Hollands (1975), who developed an approximate method
for predicting natural convection heat transfer from isother-
mal bodies of arbitrary shape, which include the spheres. This
approximate method reduces the more complex natural convec-
tion problem into a simpler equivalent conduction problem, by
surrounding the body with a stationary layer of fluid of vari-
able thickness which offers the same thermal resistance as the
original problem. ’

Analytical methods discussed above usually involve the in-
troduction of simplifying assumptions to make the heat transfer
problem more amenable to mathematical treatments. Numer-
ical methods, on the other hand, require only a limited num-
ber of assumptions and can handle non-linearities encountered
in heat transfer problems. In spite of this, very few numer-
ical studies of natural convection heat transfer from isother-
mal spheres at low Rayleigh numbers exist in the literature.
An early attempt was made by Geoola and Cornish (1981)
to compute Nusselt number from an isothermal sphere at low
Grashof number (0.05 < Grp < 50) and Prandtl number of

0.72 (air). The computational time for solutions at Grp = 50
and Grp = 25 were reported to be as long as 4 and 3 hours on
a CDC6400 digital computer respectively. Moreover, the finite
difference results of Geoola and Cornish were not in satisfactory
agreement with experimental data. Recently, more satisfactory
results were obtained by Farouk (1982), who tackled the same
problem and obtained finite difference results for the surface-
mean Nusselt numbers that are in good agreement with Yuge’s

empirical correlation (Yuge, 1960).

Numerical methods have limitations; among which the most
common ones are the limited storage capacity and speed of the
computer. In view of this, the integral method has long been
utilized to obtain fast and reasonably accurate results for many
natural convection problems, which would otherwise be diffi-
cult and expensive to handle. In the past, integral methods
have been restricted to solutions of natural convection prob-
lems in the local body cartesian coordinate system (Merk and
Prins, 1953 - 1954, Levy, 1955, Jaluria, 1980). Such coordinate
system was reported to be insufficient for accurate results at
low Rayleigh numbers, instead a coordinate system which is
compatible to the body shape being analyzed should be used
to account for the curvature effects at low Rayleigh numbers
(Peterka and Richardson, 1969). The proper selection of the
coordinate system is therefore essential in the formulation of
integral methods for low Rayleigh numbers flow condition.

In the present study, the von Kirman integral method is em-
ployed to estimate natural convection heat transfer rates from
isothermal spheres in air. It is common practice in the heat
transfer literature to restrict the boundary layer theory and as-
sociated approximations to the laminar boundary layer regime.
In this study, the application of the boundary layer theory is
extended to the transition regime to obtain surface-mean Nus-
selt numbers over a wide range of Rayleigh qumbers. The ba-
sic equations for the present study are therefore the boundary
layer equations, expressed in spherical coordinates to account
for curvature effects at low Rayleigh numbers. These equations
are then solved by the von Kirman integral method in con-
junction with assumed velocity and temperature profiles. The
numerical aspects of the present study are performed on both
an [BM PC-AT and IBM PC-XT and their respective computa-
tional time is examined. Finally, an assessment of the accuracy
of the present study is obtained by comparing the computed
surface-mean Nusselt numbers with the available heat transfer
data from different sources.

THEORETICAL ANALYSIS

The body being analyzed is at a constant surface temper-
ature 7, and is immersed in an extensive, quiescent fuid of
constant temperature T,. According to the Boussinesq ap-
proximation, the properties of the fluid surrounding the body
are assumed constant, except the density variation which is ac-
counted for in the buoyancy term only. Based on the boundary
layer theory, the existence of hydraulic and thermal boundary
layers are assumed around the body. The present problem is

formulated in a spherical coordinate system (7, 8, ), where 7 is
the radial coordinate, & is the angular coordinate in the direc-
tion of fluid flow and ¢ is the angle of rotation about the axis
of revolution of the body (Fig. 1). The basic equations for the



present study are therefore the following boundary layer equa-
tions expressed in spherical coordinates (Hughes and Gaylord,
1964):

Continuity equation:

194 0% coth
f-momentum equation:
g _oi _ &%
;_;a—e + v—a—’:' = 3.2 +glﬁ(T T,,) ®
Energy equation:
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where the tilde denotes a dimensional quantity, g, is the compo-
nent of gravity in the §-direction, ¥ and i are the dimensional
velocities in the 7 and 8 direction respectively, v is the kine-
matic viscosity, § is the coefficient of thermal expansion, and
a is the thermal diffusivity of the fluid. To non-dimensionalize
the foregoing equations, the following dimensionless variables
are introduced:
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where u, v and T are the dimensionless angular velocity, radial
velocity and temperature respectively; v,y = a/D is chosen as
the reference velocity to eliminate the dependency of the energy
equation on the Prandtl number, Pr. The temperature is in
fact independent of Pr at sufficiently high Pr. Substituting
these dimensionless variables into Egs. (1) - (3) yields after
simplifications:
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where Rap = [98(fu — Toe)D3/av| is the Rayleigh number
based on the diameter of the sphere. The foregoing equations
are mathematically more complex than the classical boundary
layer formulation, where the equations are cast in local body
cartesian coordinates. For this reason, solutions are not sought
for Eqs. (5) - (7) in their original form. Instead, Eqgs. (6) and
(7) are integrated across the boundary layers with respect to
the radial coordinate r to give the following momentum and
energy integral equations:
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Figure 1: Spherical Polar Coordinate System (7, 4, ¢)

in which the dependency upon the radial velocity component v
has been eliminated by means of the continuity equation, and
§ = 6/D and § = 6./D are the dimensionless hyd.ta.uhc and
thermal boundary layer thicknesses respectively. It is notewor-
thy of mentioning that Eq. (9) is only valid for Pr < 1, i.e when
the thermal diffusivity is greater than the momentum diffusiv-
ity or when § < §. For Pr > 1 or when § > &, the upper
limit of the first integral in Eq. (9) should be replaced by §..

In integral methods, the conservation of mass, momentum and
energy are ascertained only on the average over a small control
volume extending across the boundary layers. As a result of
this, the velocity and temperature variations across the bound-
ary layers have to be supplied externally by assuming velocity
and temperature profiles that satisfy a few of the boundary
conditions at the surface and the edge of the boundary layers.
In this study, a fourth order polynomial in 7, = r/§ is chosen
for the tangential velocity profile in such a way that it satisfies
the following boundary conditions at the surface (7, = 0) and
at the edge of the hydraulic boundary layer (7 = 1):

1 Px sind 6T
u=0, and —— = —-Ra —_— tm =0
PRl o P, ilymo
(10)
Ou Pu
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where 1, = r/é and n; = r/é, are the normalized hydraulic and
thermal boundary layer thickness respectively, and the second
condition imposed on the velocity at the surface is derived by
evaluating the derivative of Eq. (6) at 7 = 0. Using Eq. (10).
the assumed velocity distribution profile can be derived and is
given as:
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of the boundary layer equations at low Rayleigh numbers, the

_[gm-e-gut]

3 (11)

u= -lilapanl



assumed temperature profile is taken as that corresponding to
pure radial conduction; this profile is approached as Rap —
0 and can be derived from Laplace’s equation (1985). When
expressed in terms of 7, the assumed temperature profile can
then be written as:

1—ne

T(m, 8= 26me + 1

(12)

and satisfies the two thermal boundary conditions T = 1 at
ne = 0and T = 0 at , = 1. However, it does not satisfy the con-
dition which arises in natural convection problems and which
requires the temperature gradient to be negligible at n, = 1,

ie. g—:— et = 0. Expressing the momentum and energy inte-

gral equations in terms of 7,, and 7, and substituting Eqs. (11)
and (12) into the resulting equations yield the following set of
linear ordinary differential equations, after some major mathe-
matical manipulations:
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where A(8) and I,(8) are functions of 4, obtained respectively
from the evaluation of the first integrals in Eqgs. (8) and (9)
using the assumed velocity and temperature profiles. D,(4),
and F() are functions that result from the derivatives of A(9)
and I,(8) with respect to 8 respectively. Finally, functions Z.(6)
and W,(8) are related to I,(8), as given below:

L(6) = Z. + %W. (16)

For brevity, detailed definitions of the foregoing functions will
not be presented herein; however, the interested readers can
consult the author’s thesis (Lo Choy, 1988) for more informa-
tion. The two dependent variables associated with Egs. (13)
and (14) are § and &, which can then be numerically solved
simultaneously on a personal computer.

NUMERICAL ANALYSIS

Initial Conditions for § and §,

Prior to the numerical solution of Eqs. (13) and (14), the
initial conditions are required at the frontal stagnation point
(6 = 0). However, § and §; at § = 0 are not known and have to

be determined. By symmetry arguments, %I oo 204 5;‘,‘[ o @

Egs. (13) and (14) can be set to zero, resulting in the followin
equations: i

Eie(l_*ﬁff_e)’,gr,ufe(l*“uo) [(1 l)x
T 1+26,) _

8Pr \ 6i 18\ 5. AT
In(280 +1) — %] =0 a7
and
50(82.) + 462 Za + W) + 8y0(Zo + AW, — g
[3/(2Rap8))]) + Webo = 0 (18) 3
:

where &, and §; 0 denote the values of § and 8¢ at 8 = 0 respec- 3
tively and functions A(6), Z,(8), W.(6) are evaluated at 8 = 0. !
Equations (17) and (18) are then simultaneously solved by an
iterative technique, which involves the following steps: i

(a) Guess an initial value for §,, denoted by 5 :

(b) Substitute 67, into Eq. (17) and solve for 6, by a Newton- .
Raphson method. i
(c) Substitute the calculated value of §, into Eq. (18) and solve
for an updated value for §,, denoted by 520

(dzi l?e)place the initial guess &7, by &7, and repeat steps (b) i
and (c

(e) Stop iteration when the percentage difference between 8% |
and 67, is within a specified tolerance (TOL).

Computer Code

The results of the iterations are the values of 8y and bep
which are then used to initiate the numerical solution of Egs.
(13) and (14) by means of a fourth order Runge-Kutta inte-
gral method (Cheney and Kincaid, 1985). The flow chart for |
the computer code is shown in Fig. 2. Once the local thermal
boundary layer thickness is known, the local and surface-mean

( INPUT DATA )

Guess 67, and solve
b from Eq. (17)
i
Using &q, solve &7,
from Eq. (18)

—
[ ERROR = (87, - 824) x 100/87, |

820 =80

ERROR < TOL

Compute §(8) and §(9) from
a fourth order Runge Kutta method

}
OUTPUT DATA
s, 8, N“D(o)i mD

Figure 2: Flow chart for computer code




Nusselt number are determined from the following expressions:

Nup(8) = 2+6l (19)
. t
1 [*sinf
Nup =2+ [ do (20)

It is interesting to note that Egs. (19) and (20} for the local
and surface-mean Nusselt numbers are composed of the linear
superposition of the two asymptotes; the diffusive limit 2 and
a second term which represents the laminar boundary layer
limit. At low Rayleigh number where §, is large, the first term
in the foregoing equations is predominant. However, at high
Rap, 6, is very small and consequently the Nusselt number
is almost entirely dependent on the magnitude of the second
term. The computer code developed for the numerical aspect
of the present study is written in doubleprecision and consists
of less than 650 line statements. No sophisticated solver is
required in the computer program, as opposed to the finite dif-
ference scheme where solutions of the finite difference equations
usually require special routines to keep the computer storage
requirement and computational time to a minimmm. Small fluc-
tuations in the computed values of § and §; were detected in
the vicinity of the frontal stagnation point (f < 3°) as Rap de-
creases. From a mathematical point of view, these fluctuations
would not have a significant effect on Nup due to the small
surface area available for heat transfer in this region. However,
due to the many numerical problems that may arise from these
fluctuations or instabilities, great care was taken to eliminate
or reduce them to a minimum by reducing the step size in the
Runge-Kutta routine as Rap decreases.

REsuLTs AND DISCUSSION

Surface-mean Nusselt numbers are computed for Rayleigh
numbers in the range 1.5 < Rap < 10”. The computational
time for solution is largest at low Rayleigh numbers, due to the
smaller step sizes used in the computer code as the Rayleigh
number decreases. The accuracy of the computed Nusselt num-
ber is found to be quite insensitive to the step size. The speed
of convergence of the iterative scheme, used for solutions at the
stagnation point, depends on the initial estimate for ;9. How-
ever, irrespective of the magnitude of the initial guess (as long
as it is realistic), the iteration converges to the same value for
&0, thus leading to the computation of the same value for Nup
(Lo Choy, 1988). On average, the solution times for computing
Nup are about 12 and 8 minutes of IBM PC-XT and IBM PC-
AT computational time per solution respectively. The present
analysis therefore provides a remarkable improvement in the
computational time and storage capacity requirement, which
are the two major areas of concern in numerical methods such
as the finite difference and finite element methods.

Figure 3 depicts the comparison of the present results with
Chamberlain’s air data (Chamberlain, 1983) for the range 10.4 <
Rap < 5.05x10%. It is found that the present results constantly
lie below the experimental data; however for Rap < 103, the
computed values are within the experimental error bounds,
which are 3% at Rap = 5.05 x 10®* and £7% at Rap =
10.4. Figure 4 shows good agreement between the computed
surface-mean Nusselt numbers and the finite-difference results
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of Farouk (1982) and the correlations of Raithby-Hollands (1975),
Yuge (1960), Kyte et al. (1953) and CUff et al. (1978) over a
wide range of Rayleigh numbers. The general trend observed is
that the computed values are lower than the data by the other
authors, indicating a tendency for the present study to under-
estimate the surface-mean Nusselt number (particularly at high
Rap). An indepth comparison of the present results with the
data by the other authors is presented in tabular forms in the
author’s thesis (Lo Choy, 1988) and is summarized in Table 1.
The present results lie consistently below those predicted by
the Raithby-Hollands correlation and were found to agree with
the latter to within 10% for Rap < 10%. Churchill’s correla-
tion for isothermal spheres (Churchill, 1983) was also consid-
ered. However, since Churchill’s correlation is within 1.5% of
Raithby-Hollands correlation for Pr = 0.71, the results will
not be elaborated; the trend being the same as that observed
with the latter. The best agreement is achieved with Yuge’s
correlation for the range of Rayleigh numbers within which the
correlation is valid, i.e Rap < 10%. Comparison of the com-
puted results with the two correlations of Kyte et al. shows the
same trend observed with the Raithby-Hollands correlation at
high Rap. This is due to the fact that at high Rap, the two
aforementioned correlation equations predict values of the Nus-
selt number which are almost identical. As Rap decreases, the
equation of Kyte et al. departs from the correlation of Raithby-
Hollands to become in excellent agreement with the present
results. A maximum error of 13.4% is observed with Kyte's
correlations at Rap = 107; however, agreement is within 4%
over the range Rap < 10*. Figure 5 compares the local Nusselt
number distribution of the present study for Rap = 10° with
Churchill’s correlation for isothermal spheres (Churchill, 1983).
Good agreement is observed for § < 150°, where the percent-
age difference is within 10%. At 6 > 150°, the two sets of data
diverge significantly from each other; however, this large differ-
ence has little effect on the surface-mean Nusselt number due
to the relatively small surface area available for heat transfer
in this region. In the region that controls the surface-mean
Nusselt number, i.e in the vicinity of # = 90°, excellent agree-
ment is observed between the present results and Churchill’s

_correlation.
10° [
t 0 Chamberlain Air Data (1983) Pr=0.11
Q | &  Present Study
=) } =—-— Experimental Error Bounds
L |
B | P *
: o
= 10‘ 3 /‘F
Z t F=
: 3
5 M
0
m -
z °°
' ol PP | pows B o | ok Wi
9 100 1w 100 10* 10° 10® 10

Rayleigh Number, Rap

Figure 3: Comparison of present results with the air data
of Chamberlain (1983)



Table 1: Comparison of present results with the available data from different sources

Author Range of Rap | rms percent { max. percent
difference difference
Kyte et al. (1953) 1.5~ 1.0 x 107 6.68 13.40
Yuge (1960) 1.5-1.0x 10% 4.03 5.98
Raithby-Hollands (1975) | 1.5 — 1.0 x 107 8.00 13.37
CEff et al. (1978) 1.5 - 1.0x 107 4.95 9.31
Farouk (1982) 1.5~ 1.0 x 108 5.18 7.18
Chamberlain (1983) 10.4 ~ 5.05 x 10° 7.76 11.14

107 F
[ ———— Raithby-Hollands (1976)
[~ - - - Yuge (1960)
| — — - Kyte, Madden and Piret (1953)
—-— Cliff, Grace and Weber (1978)
e Farouk (1982)
a Present Study
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Ty T YT

Nusselt Number

A "l A oach s e

?
10° 10} w0 100 10* 10 w0® 10

Rayleigh Number, Rap

Figure 4: Comparison of present results with data from
different sources
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& Present Study
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Figure 5: Local Nusselt number distribution at Rap = 10°

In view of the reasonably accurate results obtained herein !

over a wide range of Rayleigh numbers, it can be concluded

that the present study is very promising and enables fast com-

putation of heat transfer data with accuracy that is sufficient

for most engineering purposes. The increasing departure of the :
computed surface-mean Nusselt numbers from data by other |
authors at high Rap may also be related to the failure of the ¢
assumed temperature profile to approximate the actual profile |
at high Rap. In fact, it was brought to the attention of the ¢
reader earlier that the assumed temperature profile, derived |

from Laplace’s equation for pure radial conduction, does not

approximate the condition of negligible interfacial heat trans- :

fer at the edge of the thermal boundary layer for high Rayleigh

numbers. Moreover, at high Rayleigh numbers, the tempera-
ture profile approaches a linear distribution; this being related ;

to the fact that the solution of Laplace’s equation in spherical
coordinates approaches the solution for a flat plate in cartesian
coordinates when the thermal boundary layer becomes very
thin. The present integral approach is attractive from a math-
ematical point of view in that no specific mathematical skills

are required for a good understanding and appreciation of the -

analysis; knowledge of basic integration and differentiation is
adequate. The simplicity of its formulation, the small computa-
tional time and its good accuracy over a wide range of Rayleigh
numbers are the main justifications of the present study.
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