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ABSTRACT

A simple model for the heat transfer in binary-component
packed beds is presented. The model is a modification
to the basic-cell approach previously developed. The
interstitial spheres were arranged in a simple manner in
the gap between the primary-component spheres. The
sample calculations showed that at low values of the gas

‘rameter M (high gas pressure), the interstitial spheres

creased the total effective conductivity of the basic
cell,

NOMENCLATURE
area (m?)

contact radius (m)
sphere diameter (m)
diameter defined in Equation (19) (m)
diameter defined in Equation (17) (m)
Young’s modulus (Pa)
integral terms defined in the text
thermal conductivity (W/m/K)
thermal conductivity ratio (k/k,)
dimensionless diameter D/2a
heat transfer length (m)
=D, /2a
=0,/2a
dimensionless gas parameter (2afA/D)
number of rings of interstitial spheres
mechanical load (N)
number of spheres in the interstitial stack
number of spheres in a ring of interstitial spheres
gas pressure (Pa)
Prandtl number
heat flow (W)
radius coordinate (m)
thermal resistance (K/W)
radius of locus of interstitial sphere centres (m)
radius location defined in Equation (18) (m)
=X, -Le,
=X, tLe,
temperature (K)
dimensionless radius with respect to contact radius
(r/a)
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X, =r/a
Greek symbols

accommodation coefficient

thermophysical gas property (27/Pr/{y+1))

specific heat ratio

dimensionless gap width with respect to contact
radius

sphere size ratio 0,.,/D ...

function defined by Eéﬁgﬁfﬁh (35)

angular coordinate (deg)

gas mean free path (m)

Poisson coefficient

on-d R

‘T OmMm

Subscripts and_Superscripts

secondary phase; gas alone; plane 1

12 between planes 1 and 2

2 with interstitial spheres; plane 2

c contact

g gas

ge gap effective

ht heat transfer

Hz  Hertzian, to denote gap width between primary
spheres

i ring index

] referenca conditions; continuum

s solid

t total

te total effective

! for a single stack of interstitial spheres

* dimensionless with respect to k,

INTRODUCTION

Heat transfer in packed beds has been extensively
studied for a wide variety of applications: fluidized-
bed reactors and combustors, grain driers, soils and
solar thermal-energy rock beds, insulation, powders,
ceramics, and pebble-bed nuclear reactors. In each case,
there is a need to know the geometric and mechanical

characteristics of the beds, and the heat transport
within the beds.




This paper describes an initial attempt at modelling
the geometry and heat transfer within a binary-component
packed bed of spheres. In a binary-component packed bed,
a secondary phase of small spheres fills the interstices
formed by the matrix of large spheres. The formulation
proceeds with the development of a simple model for the
structure of the spheres which fill the interstitial
space between the large primary-companent spheres of the

bed, followed by the heat transfer analysis. The result
will be an expression for the effective thermal
conductivity of the «cell, and some parametric

calculations will be presented.

The analysis of the heat transfer properties in
binary-component beds presented here was originally
intended for the determination of effective conductivity
of unrestructured sphere-pac fuel used in some types of
power generating nuclear reactors (Turyk, 1985).
Peterson, Fletcher and Peddicord (1987) reviewed various
experimental and analytical research in this area. They
concluded that the heat transfer mechanisms in
multicomponent packed beds are not clearly understood,
and that additional analytical work is required.

The geometry and heat transfer analysis is performed
for a unit of the packed bed called the basic cell. This
type of analysis isolates a single element of the packed
bed, and examines the heat transfer mechanisms within it,
with the intent of applying the results to the rest of
the bed. The basic cell is an idealization of the
structure of the packed bed. It assumes that the bed is
infinite, i.e., no boundary effects, and regularly packed
throughout; the basic cell in this formulation
corresponds to the simple cubic packed arrangement.
However ideal, the results of the analysis in this
appraach can be used in higher order forms of packed bed
heat transfer analysis, such as the Monte Carlo approach
of Yang, et al. (1982). Thus, the results of the basic-
cell analysis can provide valuable insight into the
mechanisms of heat transfer within the entire bed.

The basic-cell approach for the binary-component
packed bed was chosen to build upon the previous
formulations of Yovanovich (1967), Kitscha and Yovanovich
(1975), and Ogniewicz and VYovanovich (1978}. The
following assumptions and arrangements are used in the
development of the model:

. the primary component bears a mechanical load N;

. the secondary component bears no load (point
contact), including the primary-secondary interface;

. the secondary component is packed in the simple
orderly fasnion shown in Figure 4;

. a gas fills the interstitial gap;

. the interstitial gas is quiescent:
convective heat transfer;

. radiation heat transfer is neglected, but is
important if the temperature gradient is high;

. the secondary-component spheres are one-tenth the
size of the primary component;

. one-dimensional heat transfer in the interstitial
gap predominates (Figure 3);

. the midplanes of the primary spheres are isothermal;
and

. the primary and secondary components share a common
thermal conductivity k,.

no natural or

The text will proceed with a review of the underlying
method developed by Yovanovich, Kitscha, and Ogniewicz,
and then will present the medification required to
account for the presence of the secondary components.

REVIEW OF BASIC THEORY

The basic method provides an expression for the
dimensionless effective thermal conductivity of the
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Figure 1 Simple Cubic Packing Basic Cell

system shown in Figure 1. A concise review of the basic-
cell heat transfer method of Yovanovich (1967), Kitscha
and Yovanovich (1975), and Ogniewicz and Yavanovich
(1978) was presented in Turyk and Yovanovich (1985), and
is summarized here.

In Figure 1, the mechanical load creates material
deformation at contact, resulting in a finite contact
area of radius a, given by

3 3 I'Vz
= 3D (1)
from Hertz elastic contact theory (Timoshenko and

qudier, 1970). For an imposed temperature differential
of AT,=T,-T,, the heat flow across the cell is

AT,
== (2)
%

qQ =

The total heat flow is composed of two elements,
heat transfer through the contact spot and the
interstitial gap, which are represented by the contact
and gap resistances, respectively (Figure 2}):

1 1 1
R TR TR (31
The contact resistance is given by
1
T 2k,a (4)
The gap resistance is calculated from
T hed
Q - g2 (5)
8
where
g - [[ o, - [[ BT e (6)
88:
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Each of the integrand parameters in Equation (6) are
dependent on the location within the gap, which, assuming
axisymmetry, is reprasented by the radius r, as follows:

The gas conductivity depends on the gap width and
is given by
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Figure 2 Heat Conduction in the Basic Cell

k
T + apA/dq, (7)

where k, is the continuum gas conductivity, @ is the
thermal accommodation coefficient between the spheres and
the gas, 8 is a thermophysical property of the gas, and
A is the mean free path of the gas. The mean free path
varies with temperature and pressure according to

A=A ]r.—FP“ (7a)
-]

where the subscript o indicates reference conditions.
The gap width in dimensionless form is

S (x) = 2[/1."-1 - 53

ky(x) =

(8)
+ ;—L((Z-xz)sin"(l/x) + KT - 7(/2)]

where L=D/2a, and x=r/a.
according to

AT(x) = AT,(2/7)tan"/x*-1 {(9)
With d*A=271rdr, and substituting equations (7) and

(9) into (6), integrating from r=a to r=0/2,
nondimensionalizing, and simplifying,

The temperature varies

L
2xtant/x*-1
Q, = 2k,aaTy, W dx (10)
1
Q, = 2k,aAT,,! (10a)

in which I s integrated by adaptive numerical
quadrature. The mechanical load is represented by the
dimensionless sphere diameter, L=0/2a, which varies
between L=50 and L=1000 for heavy and light loads,
respectively. The gas parameter M varies directly with
temperature, and inversely with pressure.

The gap resistance is

S P

T - 2kl (1)

4.
R!

and the total resistance is

1 k
—_— x —
R, T ke [ % I] (12)
The resistance is converted into a conductivity by
¢
k,, =
0 RAL (13)

Taking £=0 and A,,=0%, the dimensionless effective th
conductivity of %he basic cell is ermal

. k, 17T1
Wt (14)

Q9

which reduces the dependence of the conductivity to three
parameters:

Kea” = F(L,M,K) (15)

The variation of conductivity k., with these parameters
will be described in the sample calculation section, in

coT?arison with the effective conductivity of the binary
cell.

BINARY-COMPONENT CELL

The assumptians presented in the problem statement
concerning point contact for the secondary-compenent
spheres and the one-dimensional heat flow within the gap
(Figure 3) simplify the modification of the basic model
for the binary phase:

. the contact conductance remains unchanged,

. the temperature distribution of the primary
component remains unchanged, and

. the gap conductance is altered only in the regions
occupied by the secondary component.

The modifications to the basic model are presented
in this section starting with the examination of the

geometry of the system, followed by the heat transfer
analysis.
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Figure 3 One-Dimensional Heat Flow
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Figure 4 Simple Binary-Component Basic Cell

Geometry

The interstitial spheres are arranged in the simple
manner shown in Figure 4. This is, of course, a highly
jdealized view of the packing of spheres in the gap
between the spheres of the primary component. However,
the mathematical analysis is simplified, and it is only
a first step in analyzing the heat transfer in such a
system.

Three parameters necessary to carry out the heat
transfer analysis characterize the geometry of this
system. They are: r.,, the radial distance of the locus
of centres of the interstitial spheres in the ith ring
from the axis of symmetry of the primary components
(Figures 5 and 6); N,, the number of stacks of spheres
in the ith ring; and &,(r,d), the gap between the
primary-component sphere and the adjacent secondary-
component sphere in the ith ring (Figure 5). These
parameters are determined given the number of spheres in
the ith stack, n,.

From Figures 5 and 6, r, is given by

2r., = [(D,_%-Ddi)z - (D,-(nl-l)Dl)z]k (16)
where

p—‘é’— - [r“z + [D -;"“ L Z]h an

Ta = D: +DJD“ (18)

%& - {(D/Z)z-azr - —%—2 (19)

The various methods of describing the primary sphere
diameter (D, D,, and D) are necessary because of the
deformation of the surfaces under load. This is
accounted for by the appearance of the terms &g, and a in
the eguations. Equations (16) to (19) are
nondimensionalized as follows:
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Figure 5 Geometry for Interstitial Spheres
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Figure 6 Definition of r,

X
Xt = [(LmLex)’ i (L.-(ni-l)LeL)‘] (20)
X
Ly = [ xuz + [L-"é:zziﬁ{‘l]z] (21)
XL
SR 22
1
L= T -5 (23)

By calculating L,, the simultaneous Equations (20) to
(22) can be solved iteratively to yield x.. °

The number of stacks in a ring, N, is calculated
with the aid of Figure 7:

N, = int["%}

where

(24)
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Figure 7 Spheres in Ring of Diameter r,

¢ = sin“[;: - sin'{gih]

< ci

(25)

and int(.) denotes the integer operator (truncation of
the fractional portion). The dependence of N, on the
number of spheres in the stack is carried by x.,.

~ The gap width §,(r,8) is the distance between the
main sphere and the adjacent interstitial sphere, shown
in Figure 5. It is dependent on both the distance from
the system centreline, r, and on the angular position, 4,

~

shown in Figure 8 for n,=1, and is given by the
expression
,, 26,(r,8) = &y,(r) - ((n-1)D, + 28,,(r,8)) (26)
" where
s X
§,(r,8) = [(01/2) - ru’] (27)

is the distance from the midplane (plane ml or m2 in

Figure 5) of the interstitial sphere to its surface. The

local coordinate r, is shown in Figure 9, and is

converted from the gﬁoba1 coordinate system by
r,?=r,t+r? - 2rr cosd (28)

Equations (26) to (28) are nondimensionalized to

25,(x,8) = 8g,(x) - ((ng-1)Le, +28,,(x,8)) (29)

§,,(x,8) = J(LEI)z -xuz (30)
and

Xy,% = %, 2+ X - 2xx c0s8 (31)

Heat Transfer

Enough geometric information is now available to
calculate the heat transfer in a stack of interstitial
spheres, Figure 10. The approach taken to medify the gap
conductance is:

1) subtraction of the contribution to the gap
conductance in this region by the gas alone,
followed by

2) addition of the contribution to the conductance by

the stacks of interstitial spheres in this region.
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Figure 9 Local and Global Coordinate Systems

This is allowable given the assumptions for this system,
as explained at the beginning of this section.

To subtract the gas-alone contribution, the Tlocal
heat transfer must be formulated as in the basic model.
Equation (6) is recast as .

—kLAT—rdadr

sﬂz
which must be integrated over the region of influence,
i.e. the region occupied by the stack of interstitial
spheres.

The limits of integration on r are:

¢, = (32)
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Figure 10 Heat Transfer Through Interstitial Spheres

b} 0
. =L 33
S STETLt3 (33)

The limits of integration on 4

rci

as shown in Figure 11.
are

058 ¢8 (34)
where 8, is obtained by substituting r;=0,/2 into Equation
(28), and isolating 4:

2 _ 2
8,(r) = cos“[ k. ;;;_“ (0./2) ]

Substituting Equations (7) and (9) into quation
(32), nondimensionalizing, integrating, and simplifying
gives

(35)

Sy 8,
0 = Zkf(”m J I x;:":/’i_l— dédx (36)
S, 0
where
Sy = X + L (36a)
Sy = X, - Le,g (36b)

The subscript 1 denotes heat transfer for the gas alone,
from the basic-cell formulation. The integrand of
Equation (36) is not dependent on 4, so that

Sy

2k,aAT,, [ 8.xtan/x*-1 37

Qi = x J 5, s ML (37)
St

Ny

Figure 11 Radial Limits of Integration

where
2 2
- af xS+ %, - (Le,)*
8, = cos [ o (37a)
The resistance of this component is
Sy
P Q| 2ka J 8,xtan™t/x*-1 dx
R pus AT, 1 8y, + ML (38)
S
1 2k.a
—
R ¢ Lo (38a)

I,.s is evaluated by adaptive numerical quadrature. There
are 2N, of these regions in the ith ring of interstitial

spheres. The resistances are added in parallel to give
1 2N,
R = 2k,a [ - L ] (39)

To calculate the contribution of the interstitial
spheres to the gap conductance, the resistances of the
various components in the heat flow path between the
primary spheres are added in series, as shown in Figure
10. The local heat flow expression is

AT
d2 - —

0321 ZR (40 )
AT

ZRup.uin + anRsph-:-.l + (nl'l)Rgap,wnu

where

§.(r.9)

R
kA

(41)

3ap,main

&, .{r,8)

k,d%A (42)

Rsph-:- .1 =

94




and

N D.-25..(r.9)
k,d°A

The subscript 2 refers to heat transfer with interstitial
spheres present. Substituting Equations (41) to (43)
into (40), as well as Equations (7), (9), and (26) for
k,» AT, and §,, nondimensionalizing and simplifying
results in

R (43)

sap,small

AT,k (2/7)tan™t/x*-1 xdfdx
Sy, + (n,+1)ML + 2n,(K-1)6,,(x,8)

where §,, and x,, are given by Eguations (30) and (31)
respectively. Equation (44) reduces to the limiting case
(integrand of Equation (36)) for n,=0.

Equation (44) may be integrated in global
coordinates, as was Equation (36). However, the
resulting integral could not be reduced to the single
integral, like Equation (37) because the integrand is
dependent on ¢ through §,,. This complicates the
evaluation of the integral because of the functional
nature of 8,, the upper limit of the § integration.

The double integration in Equation {44) can be
simplified by transforming the geometry to local
coordinates, Figure 9. In this system, the integration
limits are constants:

sz;Zl =

(44)

0 <x, < Le (4s)
08 < (46)
sa that
Zk:ATlz
ngx = p (a7)
Lel'x
x,tan"t/x*-1 dd.dx,

: 8a.(X) + (n,+1)ML + 2n,(K-1)8,(x,)

0 0

Q;zx = &lA_ILZ 1‘21 (47a)

where §..(x) and tan"'/x*-1 retain the global coordinate

x. The coordinate x is given by

xF = X2+ X - 2xyX,,C0S8, (48)
and

§.(x,) = J(Ley)* - xlz (48a)

The Jocal coordinate approach shortens computation time
for the integral.

The resistance for the string of interstitial
spheres is
1 Q 2k.a
LU Y IO L (49)
R gzt AT, no s

and 2N, of these added in parallel gives the ith-ring
contribution to the gap resistance:

1

R 2k.a

2
ezt T 82t

{ where 1, is evaluated by adaptive numerical quadrature.

—

(50)

g5

An  alternative approach to calculating the
interstitial sphere contribution is shown in Figure 12,
in which the stack of spheres from plane ml to m2 is
replaced by the effective conductivity k., as calculated
by the basic-cell approach (Turyk, 1985). However, this
is not the correct approach because the interstitial
stack is not infinite, which is an underlying assumption
in the basic-cell method. In the gap, the interstitial
spheres transfer heat in a manner similar to that of a
packed bed at a boundary wall (Peterson and Fletcher,
1988, Turyk, 1985). The formulation of the gap
resistance is inconsistent as well, since substitution of
n,;=0 does nat reduce to the basic-cell formulation: a k,,
term still remains in the equation. The calculation of
the total cell conductivity would be overpredicted, and
thus this approach is not recommended.

The total gap resistance R, is calculated by adding
the contributions of each of the m rings of stacked
spheres in parallel with the basic-cell resistance, less
the resistance of the interstitial-sphere regions with

gas alone:
m
;— = 2kal + ¥ [Rl— - H (51)
s jm]e 82t 3
1 m
Tl 2k a(l + (2/7')_21"1“:21‘1:1&)) (52)
1=

The total cell effective thermal conductivity is
calculated as for the basic model, resulting in

+ 1+ (2/x) ZNl(Iai-I‘,L)]
i=l

.l
Kea =T [K (53)
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Figure 12  Alternative Method for Heat Transfer

Through Interstitial Spheres
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SAMPLE CALCULATION

A sample binary-component basic cell was formed and
the effective thermal conductivity was evaluated to
demonstrate the effect of the interstitial spheres. The
sample calculation was carried out for interstitial
spheres one-tenth the size of the primary component,
€,=0.1, for two load values L=50 (heavy) and L=1000
(1ight2, and for two gas-solid conductivity ratios K*=100
and K™'=5000. The gas parameter M is varied from 107
(high pressure) to 10° (vacuum). The features of the
binary cell are illustrated in Figure 4, and the geometry
is summarized in Table 1. The calculated results are
tabulated in Tables 2 and 3, and illustrated in Figures
13 and 14, which also include values for the basic model
(no interstitial spheres).

For the basic model, the effective conductivity of
the cell increases with increasing gas pressure (lower
M}, increasing load (Tower L) and increasing solid-to-gas
conductivity ratio (Tower K). As gas pressure decreases,
there is no gas to conduct heat through the gap, so that
the effective gap conductivity k"' approaches zero, and
the cell total effective conductivity is controlled by
heat conduction through the contact. The contact
resistance decreases as load increases (contact radius
increases) and as the conductivity of the solid phase

increases; the cell effective conductivity becomes
greater.
It is clear from Tables 2 and 3 that the

interstitial spheres increase the effective gap and total
conductivities. This is because of the increase in
conducting strength of the interstitial gap medium. The
greatest increases in the gap and total effective
conductive conductivities occurs at high pressures (low
M). At low pressures, little gas transmits heat from
sphere to sphere, and because of point contact between

28~
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the spheres of the secondary component, k.,” approaches
the no-interstitial-sphere value. The increase in the
gap conductivity has the largest relative influence on
the total effective conductivity in cases where L and
K" are Tow.

The effective conductivity of the cell with
interstitial spheres was not compared with experimental
data found in the literature. Hall and Martin (1981),
Ades and Peddicord (1982a), and Willison (1982) report
some experimental measurements on the effective
conductivity of binary and ternary beds of uranium-
dioxide and uranium-carbide sphere-pac fuel. The
experimental results in these papers cannot be compared
directly with the numerical results in the previous
section since the sphere size ratios are not comparable.
However, the trends exhibited by the sample calculations
here and the experimental data in Ades and Peddicord
(1982a) and Willison (1982), with respect to addition of
a secondary component, indicate that the present model
is qualitatively correct.

To quantitatively assess the performance of the
model compared with experimental data, a basic cell with
€,=0.075 should be constructed, and the effective
conductivity should be calculated over a range of gas
pressures, and including appropriate thermophysical data
for the experimental conditions in the literature. The
load, and hence L, in the bed is difficult to assess, but
a parametric study over a range of L compared with the
experimental results may show which value is suitable.
By comparing the calculations with experimental results,
the strengths and shortcomings of the effective
gonductivity model can be determined, and work to further
improve the model could be identified.
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Figure 13b Total Effective Conductivity of Binary-
Component Basic Cell for L=50 and K '=5000
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DISCUSSION

The geometry of the packing of the interstitial
spheres and the handling of the heat transfer analysis
with the gap are admittedly simplistic compared with real
binary-component packed beds. McGeary (1961) discussed
realistic packing of multicomponent packed beds, and
showed that while the larger component may be packed in
a regular manner, the secondary component packs in a more
complicated random fashion. In addition, Ades and
Peddicord (1982b) wrote that multicomponent sphere-pac
nuclear fuel becomes restructured (sintered) at elevated
temperatures, thus changing the thermal conductivity of
the system. However, the analysis presented is a first
step towards making a deterministic analysis of binary-
component packed bed heat transfer, while retaining the
dependence of the conductivity on thermophysical
properties.

In a more advanced analysis, the approach presented
for the heat transfer analysis can be used for more
complex packing of the interstitial spheres to account
for the randomness of the secondary compaonent, as long as
the locations, size, and properties of the secondary
component are known, or correlated. For example, a
combination of numerical simulation, such as the Monte
Carlo method of Yang et al. (1982) and the analytical
basic-cell model could be used for real packed bed heat
transfer.

The assumption of secondary-component paint contact
also simplified the analysis, and its effect should be
addressed. Point contact led to the further assumptions
that the temperature distribution on the surfaces of the
large spheres was unaffected, that there was no contact
conductance between the small and large spheres, and that
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heat flow was parallel to the axis of symmetry. In real
packed beds, there is some small, finite area contact
region between the large and small spheres, because the
smaller spheres will carry some of the mechanical load.
In this case, the local temperature field will change
because of the presence of the contact. Further, the
small spheres may still have some effect on the heat flow
through the large spheres, even with the point contact
assumption. The heat flow path is less resistive in the
gap because of the increase in conductivity created by
the small spheres. The gas in the gap would affect the
temperature distribution in this manner also, but this
was ignored in the basic model since it was argued that
the effect would be small. The same argument may apply
to the small spheres in the gap; it would be difficult to
determine their effect on the temperature distribution,
and the net effect may be small. Also, the small spheres
are far enough away from the main contact so that the
temperature drop does not vary much in the region of
interest, i.e., the surfaces of the large spheres are
nearly isothermal far from the contact.

Inclusion of these effects into the formulation of
the binary-component basic-cell conductivity would be
complex and highly dependent on the distribution of the
spheres of the secondary phase. This may prove to be
impractical for engineering work. A compromise solution
would be to correlate the analytical model presented here
with experimental data for various combinations of large
and small spheres.
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Table 1 Geometric Quantities in Binary-Component Basic Cell

Ring | 1 2 3
Number (i)

Number of
Interstitial | 1 2 4
Spheres (n,) !

Load
Parameter (L) Xey N, Xoz N, X3 N,

50 22.9556 | 14 31.6508 19 42.4427 26
1000 458.2597 | 14 632.4570 19 | 848.5290 26

Table 2 Effective Conductivity of Binary-Component Basic Cell for L=50

107! 3.3060 . 5.3060 ; 3.5855; 5.5655; 3. 3060 | 103. 3060! 3.5771 1103.5771

0.0009 | 2.0009 | 0.0015 | 100.0015| 0.0009 1100 0009

P Kt = 100 : Kt = 5000 !

H i i

| ‘ No Interstitial 2 w/Interstitial { No Interstitial i w/Interstitial x

! . Spheres | Spheres | Spheres | Spheres

oMY , .

| . ; . R . | - - -

% i: k;. ! k., ‘ k;o 5 kt- ; k;- ; kt- I k?.o

% 107%:15.3326 17 3326 123.6232 25.6232 ' 15.3326 115 3326 29.8981 ‘129.8981

“ 1 1071 1374706 , 15,4706 | 21.7445 | 23.7445 | 13.4706 | 113.4706 | 27.4195  127.4195

i 10"i11 4678 { 13.4678 i19'5837 21.5837 |11 .4678 ! 111. 4678, 23.1149 (123.1149

P 107 9.1277 §11.1277 i16'1447 18.1447 5 9.1277 , 109. 1277 ; 17.2477 i117.2477
10° 2‘ 6.3174 | 8.3174 i10'0921 12.0921 @ 6.3174 106 3174| 10.2715 110.2715
10° { 0.9880 } 2.9880 1 0.6744 | 2.6744 , 0.9830 ‘100 9880 ! 0.6746 ,100.6746

; 10% } 0.1437 : 2.1437 | 0.0865| 2.0865; 0.1437 i100.1437 0.0865 !100 .0865

102 i 6.0152 ! 2.0152 | 0.0090 : 2.0090 . 0.0152 1100.0152| 0.0090 ; 100.009C

©10° | 0.0015! 2.0015 ;

Table 3 Effective Conductivity of Binary-Component Basic Cell for L=1000

\ } K = 100 K™ = 5000
| e e e
‘ No Interstitial | w/Interstitial No Interstitial i w/Interstitial
i Spneres Spheres Spheres ! Spheres
M T - ) l :
k;. l k’.o ks! ‘ ktl k;t » ku } k;- ktn

107 | 19.4782 | 19.5782 | 27.9878 | 28.0878 | 19.4782  24.4782| 34.4554 ; 39.4554
107° | 16.8323 | 16.9323 | 25.3243 25.4248 | 16.8323  21.8323| 31.1742 | 36.1742
1073 | 13.7024 | 13.802¢ | 22.0321 ) 22.1321 | 13.7024 187024 25.6723 | 30.6723
107 | 10,2818 | 10,3818 17.4803I .5803 | 10.2816 : 15.2816| 18.6177 | 23.6177

0% 6.7721| 6.8721|10.6385! 10.7385 | 6.7721: 11.7721) 10.8225 i 15.8225

107t | 3.4392| 3.5392| 3.7043: 3.3043 3.4392 8.4392] 3.7161 | 8.7161

10° | 1.0162! 1.1162| 0.6966' 0.7965 | 1.0162  6.0162, 0.6968 | 5.6968

10* | 0.1474! 0.2474| 0.08901 0.1890 & 0.1474  5.1474; 0.0890 | 5.0890

10° | 0.0156| 0.1155| 0.0093 0.1093 | 0.0156  5.0156; 0.0093 | 5.0093

10° | 0.0016| 0.1016| 0.0009 | 0.1009  0.0016 ' 5.0016| 0.0009 5.0009
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NCLUSIONS AND RECOMMENDATIONS

A simple method for the analysis of binary-component
affective thermal conductivity was outlined. The model
includes a simple packing of the interstitial spheres
which greatly simplified the mathematical analysis. The
methaod modified the conductivity of the basic model (no
secondary component) by removing the contribution to the
gap conductance of the gas alone and replacing it with
the contribution of the interstitial spheres.

A sample calculation for a binary cell with one-
tenth-sized interstitial spheres over a range of
mechanical load, gas pressure, and solid-to-gas
conductivity ratio was carried out. At low values of gas
parameter (high pressure), the interstitial spheres
increased the total effective conductivity of the basic
cell. As with the single-component basic cell, at low
gas pressures, the cell conductivity was controlled by
the load and solid conductivity.

The calculated results agreed qualitatively with
published experimental data. The method should be used
to construct a basic-cell model for the types of beds
reported in the literature, and calculations compared
with the experimental results.

A deterministic model for the true packing of
interstitial spheres, with interstitial sphere lcading
included may be impractical. A semi-empirical model
using the method presented here may be a more appropriate
approach.
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