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Approximate analytical methods have been developed to predict the transient temperature rise at surface
points interior or exterior to arbitrarily-shaped contacts with uniform heat flux on a homogeneous
half-space. The solution for points interior to the contact is based on subdivision into triangular
surface elements. For points exterior an approximate solution is derived by integrating across a
contact of arbitrary shape. The resultant expressions are easily implemented on a microcomputer and
can be used to describe the transient thermal behaviour of large systems of contacts.

Augmentation transitoire de la température d'une surface
causee par des contacts arbitraires en demi-espace —

Des méthodes analytiques approximatives ont été développdes pour prédire l'augmentation transitoire

de la température d'une surface en présence de contacts de forme arbitraire avec flux de chaleur —
uniforme d'un demi-espace homogéne. Pour des points internes aux contacts, la solution est basée sur
une subdivision en éléments triangulaires. Pour des points externes aux contacts, une solution
approximative est obtenue en intégrant sur le contact de forme arbitraire. Les expressions obtenues
pPeuvent étre appliquées a 1'aide d'un microordinateur et servent & décrire le comportement thermigue
transitoire de systémes a plusieurs contacts.

NOMENCLATURE INTRODUCTION o
a - sector radius; ellipse semi-major axis; radius of a To accurately predict the electrical performance of
circle modern semiconductor devices in integrated circuits, the —
A - contact area transient thermal behaviour of the devices is often
Ae - area difference caused by macro-discretization required. A common modelling assumption for this problem
b - obtuse triangle side length; ellipse semi-minor i{s that each device can be treated as a discrete, —
axis; sector radius uniformly-heated, planar thermal contact on the surface of
c - obtuse triangle side length the semiconductor die. A silicon or gallium arsenide die
Fo - Fourier modulus or dimensionless time - used in is typically 200-300 ugm in thickmess and 1000 um or more _
several contexts in length and width. However, the characteristic dimension
ii T matrix relating contact fluxes to contact of an individual device or thermal contact is only several
J temperatures at a given time pm and thus for times on the order of device transients o
Io - polar second moment of area about centroid of the (nanoseconds) the planar heat sources behave essentially
jt contact area as contacts on a homogeneous half-space. In addition,
IRR - radial second moment of area about axis through convective and radiative heat transfer from the surface is
centroid of j*® contact area and point P usually negligible compared to conduction into a copper or ‘7
k - thermal conductivity : beryllium oxide heat sink attached to the base of the die.
L - chord length The resultant thermal problem for this application is thus
n - number of triangular macro-elements one of determining the transient thermal behaviour of a —
P - point at which temperature rise is calculated large system of arbitrary planar contacts on the surface
q - uniform flux on contact of an adiabatic half-space as shown in Figs. 1 and 2.
T - polar coordinate Note that although arbitrarily-shaped contacts are shown —
R - distance between centroid of jth contact and point P in Fig. 1, common shapes such as rectangles or ellipses
t - time are usually encountered in practical applications.
T - temperature rise Furthermore, to study the transient thermal behaviour for _
T* . dimensionless temperature rise heating which varies over times on the order of seconds
(for example, initial power-up) a more comprehensive model
Greek Symbols which accounts for the layered structure of complete

system must be developed.

a - thermal diffusivity
B - dimensionless distance from centroid of contact Solution methods presently available for solving
3 - length of gerpendicular of right-triangle three-dimensional transient heat conduction problems "
€ - error in T include the finite element method and the finite volume
[ - polar coordinate and finite difference methods. However, a modern semi-
P - distance from point source conductor die can easily have many hundreds of active —
w - vertex angle of triangle; vertex angle of sector planar thermal contacts and thus an extremely large
computational effort may be required to analyze these dies
Subscripts and Superscripts using conventional numerical methods. For the special —
case where a system of contacts on a half-space is allowed
i - denotes ith contact to reach steady-state, an efficient approximate solution
3 - denotes jtI' contact method, the surface element method, has recently been _
2 - denotes 2° triangular macro-surface element developed [1]. In this work the surface element method is
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Fig. 1  Arbitrary planar contacts on adiabatic half-
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Fig. 2 Arbitrary Planar contacts on adiabatic half-space
(section view)

extended to predict the transient temperature rise ot
large systems of planar contacts.

The computational efficiency of the surface element
method derives directly from the use of linear super-
position principles for heat-flux specified contacts on an
adiabatic half-space. The temperature, Ty, at some
interior point of the i®M contact in Figs. 1 or 2 is
written conceptually as

Ti =Ty * ZTij (¢9)

In this form Tjj, the self-effect, represents the
transient temperature rise due to the ith concact acting
alone on an adiabatic half-space. Each Tyj, the induced-
effect, represents the transient influence at a point
exterior to the j®0 contact also acting alone on an
adiabatic half-space. The summation in Eq. (1) is assumed
to be taken over all contacts in the system.

The surface element formulation has two major
advantages in terms of computational simplicity. First,
the self-effect and induced-effect components can be
treated separately using approximately analytical
techniques to derive simple expressions. Second, the
results obtained, usually the centroidal contact
temperatures, are exactly the information required for
subsequent device analysis. That is, large amounts of

computer time are not expended to predict unneeded
temperatures at every point in space and time as with the

fully numerical approaches.

In this work the self-effect component Tjj is deter-
mined for arbitrary shapes by super-position of triangular
elements. The induced-effect component Tjj is derived for
arbitrary shapes approximately but accurately at least for
"long time" conditions. Although possible to determine,
it is shown that the “short term” condition for Tj
usually has little practical significance on the desired
temperature rise, Tj.

TEMPERATURE RISE WITHIN CONTACT OF ARBITRARY SHAPE

Temperature Rise st Vertex of & Right-Triangle

For the problem {llustrated in Fig. 3, the diffusion
of heat from a point source qdA into a semi-infinite body
or half-space with T « 0 initially and an adiabatic
surface, it has been shown that the temperature rise T
after some t is given by [2]

. .S 2L _ 2
T = 2nkp *FfC Q57 @

where k is the thermal conductivity of the body and a its
thermal diffusivity. "

qdA
T=T(p,0)

VYOIV IOV VDIV VIV IIIYY. -p

‘zy T—0as (p2+zz)"2—-m

Fig. 3 Point source of heat on adiabatic half-space

If a uniform flux is prescribed over a right-
triangular contact area such as Fig. 4, the resulting
temperature rise at the vertex is

- 3. /cosé r
T3 fg fg erfe (ZJEE) drds

! 3

Fig. 4 Integration over right-criangle

Long Time Solution

When t is "large” the argument of the complementary
error function becomes small (r/2/a<<l) and thus the
function can be written in a series expansion (3] to give

3
Tl /coso{l_a_[r_-_r_
2xk f: f(‘) /= 2/at Zh(at;/z .
5 e’ ]}
+ - + ... drdé (4)
320¢at)”’?  5576(at) />
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After evaluating these integrals [4] the temperature rise
is

- x,wyl | ftanw
T z’rk{sln[un(a¢2)} 27/
__ﬁ3£2§7§ [ (% secw + % sccsu)
48 /xFo
1 8 4 3 1 5
* 30Fs (Tg secw + 13 sec w + 5 sec w)
+ 13 3 (%% secw + %3 sec3u
448Fo
+ %3 secsw + % sec7u) - ...]} [&)]

where Fo = ac/62 is the Fourier modulus or dimensionless
time.

The first term of Eq. (5) {s exactly the steady-state
result of Yovanovich (5]. The additional terms represent
a perturbation from the steady-state result. Note that the
error associated with Eq. (5) increases with decreasing
time or Fo and with increasing angle w because the series
expansion of the complementary error function becomes
invalid over some part of the right-triangle’s contact
area.

Short Time Solution

If it is assumed that the uniform flux over the
right-triangular contact area has been applied only for a
relatively short period of time, then it is reasonable to
expect that the temperature rise at the vertex will be
fairly insensitive to the details of the far boundary of
the contact area. Thus for short time only the tempera-
ture rise at the vertex of a right-triangle and a sector
with the same vertex angle w and contact area should be
approximately identical. By equating the areas of the
sector and right-triangle shown in Fig. 5, then

a=~s /202 (6)

OUTLINE OF SECTOR

i

} 3
Fig. 5 Approximation of right-triangle by sector of
equal area

For the sector the temperature rise at the vertex is given
by

S 13
T~ 3k Jo Jo erte (ZJE) drds (N

These integrations can be evaluated in closed form to give

(2}

-3 ’ L.l_ '_1-
T -5 {2/?3 wa [ 7E exp (o)

1 1
= erte o]} 8
+ 2re erfc (21—3') (8)

where the Fourier modulus Fo' i{s given by Fo' = ac/az.
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The error associated with using Eq. (8) increases
with increasing w because the shapes of the sector and
right-triangle become increasingly different. In addition,
the error also increases as Fo’' increases since the shape
differences noted above contribute more significantly to
the temperature rise at the vertex.

Correlation Between Long Time and Short Time Solutions

Equations (5) and (8) give respectively the tempera-
ture rise at the vertex of a right-triangle for the long
time and short time assumptions. However, some criterion
must be developed to determine for any particular angle w
the time t which constitutes the transition from short
time to long time. Since both Eqs. (5) and (8) predict
temperature rises slightly higher than those obtained by
accurate numerical integration, then the transition time
or transitional Fourier modulus Fo., for a particular w
occurs when the two solutions are identical. By investi-
gating particular values of w in l-degree intervals from
0°® to 85° the following correlations of Fop, as a function
of w have been made:

1

6coszu

fo = 2 3

tr

{ 2.87 - 5.18w - 28.2w" + 95.6w

-4 42
L 2.31x 10 } (3a)

w
for 0° < w € 15° (0 < w £ .2618 rad.), and

1

4cos“w
2
. .i26 } (9b)

for 15° < w < 85° (.2618 < w < 1.4835 rad.) where in both
Eqs. (9a) and (9b) the angle v is in radians and Fop, =
atep/8°.

3

Fo -

- { .44 - .504w - .110w% + .11%

For vertex angles of less than 50° the maximum error,
which occurs at Fory, is about .5%. As the vertex angle w
approaches 75°, maximum error can reach 2-4%. However, it
must be noted that the actual error associated with some
Fo falls very rapidly to zero as Fo goes above or below
Fogy. ' In addition, a technique is discussed shortly which
virtually eliminates all error for practical applicationms
by making evaluations of the temperature rise by Eq. (5)
or (8) with w large and Fo close to the For, unnecessary.

Superposicion of Triangulag Elements

Any arbitrary contact geometry can be divided into
triangular elements starting from some internal point P at
which the temperature rise is to be calculated as shown in
Fig. 6. Linear superposition of the temperature rises due
to each triangular element can then give an estimate of
the temperature rise at P.

Superposition to a General Triangular Element

A triangular element is always orientated as shown in
either Fig. 7 or Fig. 8. Each orientation is just a
linear combination of two right-triangles which will both
have the same Fo.

If the temperature rise at the vertex of a triangular
element with vertex angle w is denoted by T(w) then the
following summary can be made:

Case 1. From Fig. 7,
T(w) = T(wy) + T(wy) (10)
Case 2. From Fig. 8,

T(w) = T(wy) + T(wy) (1




where T(w)) and T(wp) are determined by either Eq. (3) or
Eq. (8) depending on the long time or short time criterion
of Eqs. (9a) and (9b).

y

Point at which
temperature rise
will be calculated

Approximation of
slements by
triongles

Division of Contact Qutline or

into a Group of Boundary of
Elements Contact
Fig. 6 Discretization of arbitrary comtact by triangular

elements

OUTLINE OF CONTACT

Fig. 7 Division of. triangular element into right-

triangles (Case 1)

(\\

OQUTLINE OF CONTACT
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inz-wl
Fig. 8 Division of triangular element into right-
triangles (Case 2)

Solution of Thin, Obtuse Triangular Element

In real applications of this method, thin, obtuse
triangles as shown in Fig. 9 often arise. Since evalua-
tion of the temperature rise at the vertex of this element
involves two right-triangles which both have large vertex
angles, substantial errors of 5-10% can arise when the
Fourier modulus approaches Foy due to subtracting nearly
equal numbers each containing some error. To overcome
this problem a transformation is made from a thin, obtuse
triangular element to a sector element of equal area. If
the equal area sector has radius a and the same vertex
angle w then

.- fEesine _ a

w

Equation (8) which was derived from the temperature rise
at the vertex of a sector is valid again for this element.
or thus

-3 S S S 2l
T Tok {Zu- JFo [ﬁ Y- exp (“,.o,)
1 1
——— erf
* 2/Fo’ exte (2./ o’)]} (1%

where again Fo' = at/az.

OUTLINE OF SECTOR
i APPROXIMATION

P

Fig. 9 Sector approximation of obtuse triangular element
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This method yields extremely accurate results when Fo
approaches Fopy if the vertex angle w is kept below 10°.
This requirement can always be met by further discretiza-
tion of the contact shape when necessary. There are two
reasons for the success of this technique. First, by
keeping the vertex angle small, the differences in the far
boundary shape between the sector element and the trian-
gular element are minimal. Second, since this method is
used vhen Fo is near Fopry, the dimensionless time is still
relatively short so the minor differences in shape between
the sector and triangular elements do not yet contribute
significantly to the temperature rise at the vertex.

Method of Linear Extrapolation -

After dividing a contact shape into n elements the
total temperature rise at some internal point is simply

n
T.. =55 £ Ty (la)
ii 27k 2=1
where Ty represents the temperature rise due to the 2th
triangular element.

A dimensionless temperature is now introduced by
using the square root of the contact area as the
fundamental length scale so that,

B Z’rk‘I‘ii

T (15)
ii qisz

where A; represents the total area of the contact. Since
the temperature rise is calculated from the sum of
triangular-element temperature rises, then the total area
Aj for non-dimensionalization should be the sum of the
areas of the triangular elements

n
A, = I A (16)
i 2=l £

where Ay is the area of the 2th triangular element.

However, the actual continuous contact shape is
approximated by triangles and thus the T* calculated will
inherently be somewhat in error even if no errors occurred
in the evaluation of each elemental contribution. This
occurs because the T* calculated represents a shape with a
slightly different boundary and area than the original
contact. Thus error in T* arises from area differences
lost or gained by the triangular elements.

Figure 10 shows the location of the error causing
area A,. From Fig. 10 it is also apparent that further
division of the element will reduce Ae but will still keep

Ag at about the same distance from P. Thus, if the error
in T* is denoted by ¢ then,

€ < Ag an

AREA, A,

p

Fig. 10 Area unaccounted by discretization with
triangular elements
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.But if the boundary of the shape is considered circular
locally then,

A = L2 (18)

where the chord length L is related to the vet:eanngle w
such thact,

Law (19)

If n aqual-angle divisions of the contact shape are made
to generate the elements then

wal/m ' (20)
And therefore,
¢« « 1/n2 ’ (2L

Thus by plotting values of T* against 1/n2, where n
is the number of equal-angle elements a linear relacion-
ship such as shown in Fig. 11 is obtained. A simple
extrapolation of this curve to the intercept where n = =
gives the T* of the actual contact shape. This technique
has been used extensively with great success to generate
the data of the next section and in every case a linear
plot as shown {n Fig. 11 has been observed.

T.. . T for n=N,
T for ne2N,
ACTUAL To—*"T5 for ne 4N,
OF CONTACT
1 !
ne4N,  ns2N, e N,

nco 2
17n€ (n, number of equal-angle elements)

Fig. 11 Extrapolation of computed temperature rises

Resultrs for Several Common Shapes

To 1llustrate and apply the methods discussed, the
dimensionless centroidal temperature rise of an elliptical
contact has been calculated over a complete range of
dimensionless time Fol where

Fol m —28 (22)

A)?

The ellipses are defined by (x/a)2 + (y/b)2 = 1 where
the aspect ratio is b/a. The resultant dimensionless
centroidal temperature rises for ellipses of different
aspect ratios over the range of 1076 to 10 for Fol are
given in Table 1. Centroidal temperatures are especially
important for microelectronics applications since the
maximum device temperature is usually located at the
centroid of the planar contact.

The analytic solution for the circle is given by Eq.
(8) by letting w = 2x. It can thus be shown that the
results for the circle in Table 1 are all accurate to the
decimal places shown. Note that for all these shapes
symmetry was used so that calculations need only be made
in the first quadrant. For the circle the necessary
initial number of equal-angle elements was No = 2 (i.e.
2Ny = &4, 4N, = 8). However, as the aspect ratio b/a
decreased, the initial number of equal-angle elements
increased to Ny = 4, N, = 8 and finally N, = 16 for b/a =
-1 in order to insure accuracy in every case to the
decimal places shown. If less accuracy were required then
considerably fewer elements could be used.




) ot — 3 1
Fo'lw m ,ﬁ:%‘%nmtmdd(.) +(%) =1
logy Fo L 1.0 1:0.& 3:0.6 2 =04 330.2 :-O.l

a 4 a a. A A
-8 0.0071 | 0.0071 0.0071 | 0.0071 | 0.0071 0.0071
-8 0.0224 | 0.022¢ | 0.0224 | 0.0224 | 0.0224 | 0.0224
-4 0.0700 | 0.07090 | 0.07090 | 0.0709 | 0.07090 0.0709
-3 0.2242 | 0.2242 | 0.2242 | 0.2242 | 0.22¢2 0.2242
2 0.7090 | 0.7090 | 0.7089 | 0.7083 | 0.7001 0.6736
-1 19645 | 1.9574 | 1.9276 | 1.8493 | 1.6494 1.4113
0 2.9881 29773 | 29321 2.8137 | 2.4982 2.1070
1 3.3667 | 3.3558 | 3.3008 | 3.1804 | 2.3663 2.4601
2 3.4850 | 3.4775 | 3.4316 | 3.3110 | 2.9876 2.5809
3 3.5271 | 3.5161 3.4701 3.3496 | 3.0262 2.6195
4 3.5393 | 3.5283 | 3.4823 | 3.3618 | 3.0382 2.6317
H 8.5432 | 3.5322 | 3.4862 | 3.3656 | 3.0422 2.6385
[} 3.5446 | 3.5334 | 3.4874 | 3.3669 | 3.0435 2.6368
o0 3.5449 | 3.5337 3.4878 3.3678 | 3.0442 2.6373

Table 1. Dimensionless centroidal temperature rise for
ellipses

In Table 2 the dimensionless centroidal temperature
rises of five different shapes are tabulated. From these
results it is seen that the dimensionless centroidal
temperature rise decreases as the contact shape becomes
less concentrated about the centroid.

In addition, two major observations can be made from
Tables 1 and 2. First by using the square root of area to
non-dimensionalize, then the centroidal temperature rise
for most shapes up to a Fo* of 10°¢ (or up to a Fo' of.
10°3 for very narrow shapes) is given simply by

™ =47 /Foi Fol < 10'2 (23)

11

which is essentially the analytic solution for uniformly-
heated half-space. _And second, when the dimensionless
time Fol reaches 104, the centroidal temperature rise of
any shape is within about 2% of its steady-state value.

Fo's w‘fw 2::::‘::::: Ta= %% at centroid of various shapes
logy Fo Circle | Square %‘::‘:’d f \/ = =1 | Semi-circle
-6 0.0071 | 0.0071 0.0071 0.0071 0.0071
-5 0.0224 | 0.0224 0.0224 0.0224 0.0224
-4 0.0709 | 0.0709 0.0709 0.0709 0.0709
-3 0.2242 | 0.2242 0.2242 0.2242 0.2242
-2 0.7090 | 0.7090 0.7090 0.7090 0.7087
-1 1.9645 | 1.9521 1.9151 1.8989 1.8872
0 2.9881 | 2.9690 29111 2.8808 28731
1 3.3657 | 3.3473 3.2883 3:2571 3.2498
2 3.4850 | 3.4691 3.4100 3.3788 3.3718
3 3.5271 | 3.50768 3.4488 3.4174 3.4101
4 3.5303 | 3.5198 3.4608 3.4296 3.4223
] 3.5432 | 3.5237 3.4648 3.4335 3.4261
6 3.5446 | 3.5249 3.4659° 3.4347 3.4273
o0 3.5449 | 3.5285 3.4664 3.4358 3.4281

Table 2. Dimensionless centroidal temperature rise for
various shapes

TEMPERATURE RISE EXTERIOR TO CONTACT OF ARBITRARY SHAPE

To determine the temperature rise at a surface point
exterior to a thermal contact of arbitrary shape, an
approximate analysis is developed for both long and short
times.

Long Time Solytion

If a uniform flux a3 is prescribed on an arbitrary
contact area as shown in Fig. 12, then by superposition of
the point-source solution [2] the temperature rise at some
point P exterior to the contact is

erfe () da, (24)

9
Ty = fAj 2rkp 2/at

Al
NOTE THAT P MAY i CONTACT

RESIDE WITHIN SOME
i™ CONTACT AREA

N—— CENTROID OF
i™ cONTACT

Fig. 12 1Integration over arbitrary contact

A series expansion of the complementary error function for
large ¢t gives

}_LD

~

1
J, aa
xk{ A p /—(ac)l/2 A 3

1 2 1 A
+ ———n f, p°dA, - ——=—— [ da.
12/7e0)>/% "8y 7 ) je0/many?/? Ay D

1 6

+— pdA-.‘.} (25)
2688 /7 (at) /2 Ay 3

An approximate solution.to these integrals can be
derived using the methods of {1]. From Fig. 12
application of the cosine law gives
p2 = R2 + r2 . 2rRcosd 26)
where R is the distance from the exterior point P to the
centroid of the arbitrary contact shape and (r.4)

represent a local polar coordinate system.

The first integral in Eq. (25) becomes

A 2
fAj ._;1 -1 as ii - I os 9)'1/2dAj (27

By noting that r/R < 1 in general, a binomial expansion of
Eq. (27) gives

A
1 1
N —p-i.‘ﬁ{fA aA, + § [, roossd,
] 3 3
o deg, (3r%cos?s - r?) a, } (28)
2R? Ay

The first integral is simply

dA A 29

Ia "8y (29)
3

and by definition of the centroidal location

fA rcosfda, = ] (30)

Furthermore,

(3r2c0520 - r2) da, - (27:2 - 3rzsin25)dA.
A
5 J A J

= 2I5 - 3Igr : (31)
.whete
I e[, r’da (32)
o AJ ]
- f r?sin? b3, 33
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Io is defined as the polar second moment of area about the
centroid of the j®® contact and IRR as the radial second
moment of area about the axis formed by the exterior point
P in Fig. 12 and the centroid of the jth contact. Both
quantities are readily available for most common contact
shapes such as circles, squares, ellipses and rectangles.

Thus the first integral in Eq. (25) is given
approximately by

A ZI° - JIRR

+ . (34)
xR’

da
[, Si=

gl

%

The second and third integrals in Eq. (25) can be
evaluated exactly as

fAj dAJ - A (35)
Sy, dlea =% a1 (36)

By using the same method of variable transformation,
binomial expansion and neglecting higher order terms, the
fourth and fifth integrals in Eq. (25) can be shown to be

2 2 2
fA plaA, = R°A, + RT(3I - 21

5 0y : Gn

RR)

6 [ 4
fAj o dAJ = R Aj + 3R (SI° - hIRR) (38)

Thus the temperature rise at a surface point P a
distance R from the centroid of a thermal contact of
arbitrary shape exposed to uniform flux qj for a "long"
period of time is given approximately by

A, 21 - 31 A
T. = : { —l + d RR - 1 3 [ —l
ij " Tmx | R = e, 72 LR
;AT 1 A 61 - 4l
TR 2 &t T )
12Fo R 160(Fo?) R
1 Ay ST - lam s
- — (& + 3 ) (39)
2688 (Fo?) R
where
Fol = = (40)

R

This {s referred to as the long time induced-effect
temperature rise expression.

Aeproximate Geometry Solutions (Short Time)

In the preceding section a long time temperature rise
expression was developed. Unfortunately, this expression
is not valid below Fol = .25 because the series expansion
of erfe(p/2/at) diverges. Thus an attempt to determine
the induced-effect temperature rise at relatively short
times is made by considering two approximate contact
geometries which can be solved analytically.

The simplest approximation consists of converting the
original problem with a uniform flux over an arbitrary
contact area to one with a total heat flux applied as a
point-source at the centroid of the contact. With this
approximation the temperature rise at a surface point P
located a distance R from an arbitrary thermal contact

with uniform flux gy and area Ay as shown in Fig. 12 is
simply

A,

T, = s erfe (—L—)
ij 2xkR 2 &oj

£SO

(41)
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This is referred to as the point-source induced-
effect temperature rise expression. This approximation is
accurate at all times if the thermal contact is located
far enough from -the surface point of incerest.

A better approximate geometry which can be solved
analytically results from transforming an arbitrary
contact area to a sector with equivalent area, approximate
shape and location. The sector is defined by a local
polar coordinate system based at the surface point P as
shown in Fig. 13.

OUTLINE OF SECTOR
WITH EQUIVALENT AREA
AND SAME GENERAL
SHAPE

i™ coNTact

Fig. 13 Sector approximation of arbitrary contact
By approximating the radius of gyration of the sector

by that of an equal area rectangle, one can show that with
reference to Fig. 13

w =2 un'l J £} S Ri (42)

]

For equivalent area and approximate location, then

A

bR+ ol X (43
A

"R‘Z.I;Tz ' (6)

The resultant temperature rise for the sector
spproximation can be determined exactly to give

9 b -1
T ._.L_{__._.[l.,xp( )
1 x3/2k 2/Fob AFob

+ E__ erfc ( _l_) ]
2/Fob 2/Fob

-1 1 1

— |1 - exp ( ) + erfe ( ) ]} (45)

2/Fod 4Fo 2/Fo2 2/Fod

where

Fo = —2 (46)

Fo'' = = (47

This is referred to as the sector induced-effect
temperature rise expression. This approximation is
significantly better than the point source at short times
and small R since the contact shape is better represented.
However at very short time (FoJ << .l) and small R, large
relative errors in Tjy still result since the temperature
rise is greatly influenced by the location of the nearest
boundary edge of the thermal contact. Note that other
criteria could be used to transform an arbitrary shape to
an approximately equivalent sector. However the criterion
used here results in simple closed-form expressions which
reduce to the point-source solution as R becomes very
large.




Seleccion and Accuracy of Solution

A dimensionless distance from the centroid of any
arbitrary shape is defined as

8 =R/ /Ay (48)

To determine a criterion for selecting a solution
method, numerical results were generated from all three
solution methods over a wide range of Fol and 8 for
various common shapes. To make error estimates, accurate
results were obtained by numerical integration of the
point-source solution. Note that the numerical integration
typically consumed 1000-10,000 times the computation of
the three approximate analytical solucions for 1% or
better convergence of results. The criteria for selection
of a solution method is summarized graphically in Fig. 1l4.
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Fig. 14 Solution method selection criteria

From the extensive results compiled, when § becomes
large (8 > 10), then simple point-source induced-effect
temperature rise expression of Eq. (41) is adequate except
when FoJ is very small (Fod << .1). The long time
induced-effect temperature rise expression of Eq. (39)
works well for any § on most common shapes when FoJ 2 .3.
When Foj’s .3 and 8 < 10, the sector induced-effact
temperature rise expression of Eq. (43) becomes the proper
solution method.

Unfortunately even the sector approximation works
poorly sometimes when Fol is on the order of 0.1 or less
and 8 is relatively small (8 £ 3 - 5). When such cases
arise, macro-discretization of the contact shape (e.g.
sub-divide a square contact into 4 or 9 smaller square
areas) is required since the S associated with each
smaller contact area is larger. The solution is then
found by superposing the individual temperature rises for
each discretized contact area. However in most
engineering applications this situation is unimportant
since even at § = 2 and FoJ = .01 the resultant T4 is
usually about 10°5 of its steady-state value and is much
smaller than any Tyj for a point P within interior to
another contact, or essentially zero.

From the results compiled for several common shapes
under different orientations, some cautious generaliza-
tions can be made relating errors to the solution method
at various values of 4 and Fol. When A is small (8 = 2)
and FoJ = .3, the long time solution method was typically
1% or less in error. This difference diminishes rapidly
as A and Fod increased. Errors of 10% or less were
usually observed for small 8 (8 < 5) and .05 < Fol g .3
when using the sector approximation. Thus, {f extreme
accuracy is desired, macro-discretization may be necessary
for any FoJ < .3 and 8 £ 5, or for any Fol when 8 < 2.
However, such situations are either rare or unimportant in
most applications envisioned for this method.

APPLICATION TO SYSTEMS OF ARBITRARILY SHAPED CONTACTS

For a system of arbitrary planar concacts on a half-
space as shown in Figs. 1 and 2, the temperature rise at
some point within the ith contact area was written in Eg.
(1) as a linear superposition of the temperature rises due
to each contact in the system. When the heat flux over
each contact area in the system is modelled as uniform and
the surface reglon between the contacts adiabatic, then
the methods developed in this work can be used to evaluate
the Tqy and Tj4 for a given time. Furthernmore, Eq. (1)
can also be ur{cccn as a system of linear equations in the
matrix form

[61y1{ay) = (Ty) (49)

where the entries in the matrix [Gij] are functions of the
geometry and placement of the contacts, the thermal
properties and the elapsed time of cthe thermal loading.
This matrix formulation of Eq. (49) allows more general
problems for a system of arbitrary contacts under
transient conditions to be considered. For example, if in
a particular application some maximum temperature rises
are specified for the contacts after some period of time,
then the corresponding maximum tolerable heat fluxes qj on
the contacts can be calculated simply by solving the

linear equations posed by Eq. (49).

Often the quantity of interest is not the actual
temperature versus time history for a system, but simply
the time required to reach say 958 or 99% of the steady-
state temperature rises. This type of problem can be
handled by examining the Ty predicted by Eq. (49) at
various times t with the Ty for steady-state results.
Note that the steady-state results can be obtained by
letting t - = in all of the expressions derived in chis
work.

Another possible application is the determination of
the average temperature or thermal resistance of a single
contact or arbitrary shape on an adiabatic half-space
under transient conditions. This can be accomplished by
using a method outlined in [1]. In that paper it wvas
shown that the thermal resistance or average temperature
of a uniformly distributed system of circular contacts is
typically only 5% higher than that of a shape which
outlines the system of contacts when the total area of the
contacts is about 208 of the area of the shape. By
combining the expression for Tyj and Tiy (i.e. evaluace
[G{j]) developed in this work with the extrapolation
techniques of {1l], the thermal resistance or average
temperature rise of any arbitrarily shaped contact on an
adiabatic half-space can be determined under transient
conditions for any contact boundary condition.

Finally, it has been implicitly assumed throughout
the derivations of this work that all the contacts begin
heating at the same time t = 0 into a uniform temperature
half-space. Although this is required mathematically,
results can still be obtained when the contacts begin
heating at different times at least to some firsc
approximation. This is possible because even under steady-
state conditions the temperature field surrounding a
contact on a half-space is nearly uniform everywhere
except for a small constriction zone in the immediate
vicinity of the contact. Under transient conditions this
contact constriction zone becomes even smaller. Thus at
some time tj; = O when thermal loading begins on the it
contact, the temperature rise near this contact is always
somewhat uniform, although not necessarily zero, provided
the contact is not located very close to another contact
which has been thermally loaded for long periods of time.

CONCLUSIONS .

Approxim;cgrmethqu/to determine cthe temperature rise
under transient conditions at surface points interior and
exterior to arbitrarily-shaped contacts with uniform flux
on a half-space have been developed.

For the interior problem, an arbitrary contact shape
is divided into macro-surface elements triangular in shape
with a common vertex at the point at which the temperature
rise is required. An approximate analysis is then used to
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evaluate the temperature rise contribution of each
triangular element for any given time of thermal loading.
By means of a method of extrapolation, accurate results
can be obtained with relatively few macro-surface
elements.

Separate methods have also been developed to predict
the transient temperature rise at points exterior to the
contacts for both short and long dimensionless times of
thermal loading. Although the simple expressions developed
are found by integrating over the entire arbitrary contact
shape, in some special cases macroscopic sub-division of
the contact shape must be made.

The resultant approximate expression for the self-
effect and induced-effect components are easily imple-
mented on a microcomputer. With the concept of linear
superposition, a system of algebraic equations i{s formu-
lated to relate the contact fluxes and temperatures to the
elapsed time of thermal loading, the contact geometry, and
the thermal properties. The computational efficiency of
the approach allows predictions of the transient thermal
behaviour of large systems of planar contacts to be made
rapidly on a microcomputer.
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