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interest to the thermal analyst. This paper investigates analytically and experimen-
tally the thermomechanical problem of a sphere in elastic contact with a flat coated
with a layer. An approximate solution is developed that utilizes the solution to the
thermal portion of the problem and the Hertzian limits of the mechanical portion.
The approximation shows good agreement with the full solution for two examples
that represent extremes in elastic properties for common metallics. Thermal con-
striction resistance measurements for a steel sphere contacting a nickel flat coated

with a silver layer are compared to theoretical predictions. Resistance predictions
Jrom both full and approximate solutions show good agreement with measurements
Jor light loads within the elastic load range. For heavy loads, the resistance is over-
predicted due to plastic yielding of the nickel substrate.

Introduction ]

The use of surface layers within components is increasing as
designers search for more variety and flexibility in material
properties. Uses of layers include improving wear resistance,
strength and corrosion resistance, modifying electrical and
thermal conductivities, reducing weight, and conserving
resources (Texas Instruments, 1983).

The development of computers with high chip densities
makes efficient heat removal increasingly important. The
Thermal Conduction Module (TCM), a key component of the
IBM 3081 computer, is shown in Fig. 1 (Bar-Cohen et al.,
1983). Each module contains an array of surface-mounted
chips. The heat generated within each chip is removed through
a spring-loaded aluminum piston, which presses onto the chip
surface. A typical piston/chip contact is detailed in Fig. 2
(Chu et al., 1982). Heat transfer occurs through both the solid
contact and the helium-filled gap. One technique to increase
the heat removal rate is to add a thermally conductive layer to
the piston/chip interface.

The purpose of this paper is to develop a simple model to
predict the effect of a surface layer on the thermal constriction
resistance of the piston/chip contact and to verify the model
by comparing experimental resistance measurements (o
theoretical predictions.

Analysis

Idealized Model. The piston/chip contact is idealized as a
nominal point contact between smooth surfaces, as shown in
Fig. 3(a). The piston is modeled as a spherical indenter and the
chip as a flat. Both bodies are idealized as half-spaces because
the dimensions of the contact area are small as compared to
the overall body dimensions. The indenter radius p, is the
reduced radius combining the radii of both bodies.

The addition of a layer to the piston/chip interface is
modeled by including a layer on the flat, as shown in Fig. 3(b).
This assumption does not restrict the applicability of the
model. The layer can be added to either the piston or chip
since both are assumed to be half-spaces in this analysis.

The complete model of the contact including the layer is
shown in Fig. 4. The indenter (subscript /) is loaded onto a flat
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composed of a layer (subscript L) of thickness 7, bonded to a
substrate (subscript S).

In general, heat transfer can occur through both the contact
and the surrounding gap. Heat transfer across the gap occurs
by two different modes: conduction or convection, and radia-
tion. The relative contributions of the two modes, for a gap
size similar to this problem, have been investigated by Kitscha
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and Yovanovich (1975), Ogniewicz and Yovanovich (1978),
and Turyk and Yovanovich (1985).

Heat transfer by natural convection is found to be negligi-
ble. Models have been developed for conduction and radiation
across the gap and, by comparison with experimental
measurements for bare flats, these modeis have been shown to
predict the heat transfer rate through the gap adequately.

The addition of a layer to the interface significantly affects
the conductive heat transfer rate through the solid contact.
Since the two heat transfer pathways (solid contact and gap)

are coupled, changes in the temperature field and heat transfer
rate across the solid contact will affect the temperature field
and heat transfer rate across the gap. However, because this
coupling is weak, the heat transfer rate through the gap is only
slightly affected by the addition of a layer. Therefore, to
simplify this analysis, heat transfer across the gap is neglected
and only steady-state conduction heat transfer through the
solid contact is considered.

The following assumptions further simplify the analysis:
The mechanical and thermal properties of the bodies are
assumed to be constant, the contact is assumed to form
clastically, the bodies are assumed to be smooth with negligi-
ble surface roughness, the temperature drop across the contact
is assumed to be small so thermal strain effects are negligible,
and the heat flux distribution over the contact area is assumed
to be equivalent isothermal, which is that flux distribution that
results in an isothermal contact spot on a homogeneous half-
space.

Analytical Solution. Heat flowing between the idealized
bodies must flow through the solid contact area. The constric-
tion and subsequent spreading of the heat flow lines gives rise
to a thermal constriction resistance defined as the temperature
difference across the contact divided by the total heat flow
rate through the contact. This constriction resistance depends
upon the load, geometry, and thermophysical properties of
the contact.

The thermal constriction resistance for a sphere in elastic
contact with a bare flat was investigated by Kitscha and
Yovanovich (1975). They experimentally verified the
analytical solution for the elastic load range. Antonetti and
Yovanovich (1985) studied the problem of a rough conform-
ing surface in contact with a smooth coated surface and
developed an analytical solution for the constriction
resistance, which they verified against experimental
measurements.

The contact of a sphere and a flat consisting of a layer
bonded to a substrate is a complicated problem. To predict the
thermal constriction resistance of the contact, both
mechanical and thermal portions of the problem must be
solved. First, the mechanical portion is solved to find the
radius g of the circular area of contact. Then, using the con-
tact radius, the thermal portion is solved to find the constric-
tion resistance.

The mechanical portion is a complex problem in axisym-
metric elasticity governed by the following differential equa-
tion:

Nomenclature
thickness (equation (11))
a = contact radius t = layer thickness ¢ = stress function
d = arithmetic average of bound- T = temperature ¥(r) = constriction parameter for an
ing contact radii (equation AT = contact temperature drop isothermal contact spot,
oy z = axial coordinate Dryden’s solution (equation
d = approach or penetration a = ratio of contact radius (AD)
E = elastic modulus bounds (equation (6))
F = load v = ratio of reduced elastic Superscripts
£2(r) = indenter profile moduli (equation (3)) * = dimensionless or reduced
h = layer half-thickness x = ratio of thermal conductivities * = average
H = hardness (Pa) or H, (equation (3))
(kg/mm?) 4 = shear modulus (Fig. 4) Subscripts
k = thermal conductivity » = Poisson ratio AP = approximate solution
m = mean asperity slope p = body radius E = experimental measurement
r = radial coordinate p; = reduced radius (Fig. 4) I = indenter
R = thermal constriction resistance o = rms surface roughness L = layer
R* = dimensionless resistance 7 = relative layer thickness (equa- m = from measured plastic
= Rdk, tion (3)) indentation
Q = heat flow rate # = average relative layer S = substrate
250/ Vol. 111, MAY 1989 Transactions of the ASME



Vivip=0 )
where ¢ is the stress function (Timoshenko and Goodier,
1951) and V2 is the Laplacian. The boundary condition is
mixed, with the surface deflection prescribed within the con-
tact area and the normal stress prescribed outside. For layered
bodies, equation (1) cannot be solved to yield a closed-form
solution for the contact radius. Instead, an iterative procedure
is used in which an initial guess at the contact radius is con-
tinually updated until the calculated supported load equals the
given load to some relative error criterion. Two solution pro-
cedures have been used to find the load supported by the con-
tact of given radius.

With the integral transform method, the problem is for-
mulated as a dual integral equation that is reduced to a
Fredholm integral equation. The equation is then solved by ex-
panding the kernel into a series of base functions. The short-
coming of the method is in the evaluation of the resulting in-
tegrals because they are slow to converge at the top surface of
the layer near the boundary of the loaded region, especially
for thin layers.

Chen and Engel (1972) circumvented this convergence dif-
ficulty with their general approximate method (GAM), in
which they replaced the unknown stress condition within the
contact area with an assumed set of base functions. The func-
tions are assembled such that the displacement within the con-
tact area approximates the real displacement boundary condi-
tion in accordance with an integral least-squares residual error
criterion. The shortcoming of their method is that many
numerical integrations are necessary to evaluate the displace-
ment due to the assumed set of base functions.

The governing differential equation for the thermal portion
is the Laplace equation

ViT=0 (3}

The boundary condition is mixed with the temperature
prescribed within the contact area and the flux prescribed out-
side. Dryden (1983) removed the mixed boundary condition by
replacing the unknown flux condition within the contact area
with the equivalent isothermal flux distribution, which is the
flux distribution that results in an isothermal contact spot on
the surface of a homogeneous half-plane.

For thick layered half-spaces, 7210, Negus et al. (1985)
have shown that the equivalent isothermal flux condition is a
good approximation to the true isothermal condition.
However, for thin resistive layers, r<1 and <1, the uniform
flux condition is a better approximation, while for thin con-
ductive layers, 7<1 and x> 1, the resistance due to the true
isothermal condition is somewhat lower than the equivalent
isothermal flux result and much lower than the uniform flux
result. Application of Negus et al.’s superposition technique
to this problem to solve for the true isothermal condition
would be beneficial.

Dryden solved Laplace’s equation using Hankel transforms
to yield an integral expression for the constriction resistance,
which he further simplified into simple closed-form expres-
sions for the limiting cases of very thin and very thick layers
and a series solution for intermediate layer thicknesses.

The combination of Chen and Engel’s (1972) solution to the
mechanical portion and Dryden’s (1983) solution to the ther-
mal portion forms a complete solution to the contact
resistance problem of a spherical indenter contacting a
layered, elastic half-space with an equivalent isothermal flux
distribution over the contact area. As the layer thickness ap-
proaches zero, the resistance approaches that of an indenter
contacting a half-space composed entirely of substrate
material, and as the thickness approaches infinity, the
resistance approaches that of an indenter contacting a half-
space composed entirely of layer material. At these bounds,
the equivalent isothermal distribution accurately represents
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the flux distribution for an isothermal contact. For in-
termediate layer thicknesses, the resistance predicted by this
coprincd solution lies between these two bounding
resistances.

Although the mechanical portion of the contact problem
cannot be solved in closed form for layered bodies, a closed-
form solution is available for the contact of unlayered bodies
(Hertzian contact theory). By combining the Hertzian contact
solution with Dryden’s thermal solution, an approximate
closed-form solution for the constriction resistance of the
layered contact can be developed.

Resistance Bounds. Three important parameters influence
the thermomechanical behavior of a flat composed of a layer
bonded to a substrate (hereafter called a ‘‘layered flat’’): ratio
of elastic moduli ¥, conductivity ratio «x, and relative layer
thickness 7.

E} k, t
E: I3 % T=— 3)

For a thin layer (r—0), the general layered contact reduces
to the Hertzian contact of an indenter and a flat composed of
substrate material. The contact radius ag corresponding to the
substrate bound is

y=

3 Fp, ] 173

= | — — 4

s [ 4 E3 @

where the reduced elastic modulus for the substrate bound E¢
is

- 1-

._l_gl._’..,. 1-4 )

Es E, Es

For a thick layer (r— o), the general contact reduces to the
Hertzian contact of an indenter and a flat composed of layer

material. The contact radius a; corresponding to the layer
bound is

3 Fp, ] 173
=|—_=L 6
o [ 4 E; ©
where the reduced elastic modulus for the layer bound E; is
1 1- 1-
4,11 ™

E E | E

For all other values of r, the contact radius a will lie between
the two bounding radii, a5 and g, . If the difference between
the bounds is small, then they can be used to estimate the con-
tact radius.

We define the ratio of the bounding radii a as

a= _ﬂ_ (8)
as
Then o depends upon + to the ~ 1/3 power _
a=y~3 9
When 1 is unity, the difference between the bounds is zero.

As v differs from unity, the difference between the bounds
widens. For common metallics, the range of v is

0.2sys<S$ (10)
Therefore .

1.72a20.6 11

or the bounding radii differ by less than a factor of two. For
this condition, the arithmetic mean of the bounds 4 is a good
estimate of the contact radius a
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and the average relative layer thickness # is a good estimate of
the relative layer thickness r

f= a3

n.l "~

The harmonic and geometric means of the bounding radii
were also examined as possible estimates of the contact radius.
The three means differ by less than 3.5 percent for the par-
ticular case of y=0.37. Therefore, the arithmetic mean is ar-
bitrarily chosen as a convenient estimate.

The total constriction resistance R of the system shown in
Fig. 4 equals the sum of two constriction resistances in series:
the resistance of an isothermal contact spot on the indenter
and the resistance of an isothermal contact spot on the layered

flat

1 ¥(r)
Rewk " aak, 14

where the contact spot radius 2 must be caiculated from the
mechanical portion of the contact problem. The constriction
parameter ¥(r) for an isothermal contact spot on a layered flat
is given by Dryden (1983).

The bounds on the constriction resistance, Rg and R, can
be easily calculated from the bounding contact radii, a5 and
a, . The substrate resistance bound is

1 + ¥(7s)

Remsm—m—m— o
ST dagk,  dagks

where
Ts=— (15)

and the layer resistance bound is

! ¥lr.)
+

RL‘

where
t

fL SR cmm—

ag

(16

Note that y(7) is defined with respect to the substrate con-
ductivity kg (see Appendix).

Approximate Resistance. The bounding resistances ap-
proximate the constriction resistance of the system for small
and large refative layer thicknesses. However, for intermediate
layer thicknesses, the resistance lies between the bounds. For
this range, an approximation combining the bounds is
required.

For several layer-substrate combinations the dimensionless
constriction resistance R*® was plotted versus the common
logarithm of the average relative layer thickness 7. The dimen-
sionless resistance is defined with respect to the average con-
tact radius 4 and the substrate conductivity k¢

R*® =Rk, an

The average contact radius is chosen as the nondimensionaliz-
ing length because it is load dependent and can be easily
calculated from the bounding contact radii. The dimensionless
bounding resistances are

3 [/ k
By = (- v0r0) (®)
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For the examined combinations, the following behavior was
observed. For # less than 0.1, R* approached the substrate
bound, R, while for # greater than 1.0, R* approached the
layer bound R;. Within the intermediate range, R* varied
logarithmically with #. Therefore, the dimensionliess resistance
can be approximated as

R? $s0.1
R;P= Rl‘_o“'(R‘..o-R;_l)]ogm(f) 0.l<f<l.0
R; +=1.0
(20

where R} ; and R} are transition points defined as

. 4G kg )
Bs) = o (0.0 @n
a [ kg
Ria = (2 e ya10)
=G \%, +¥(1.0) (22)
In dimensional terms, the approximate resistance is
Rip
R,p G ks (23)

Analytical Results. The approximate dimensionless
resistance Rj3p is compared to the dimensionless resistance
calculated using the full mechanical and thermal solutions R*
for two layer-substrate examples that represent relative ex-
tremes in elastic properties for common metallics.

The first example is a layered flat consisting of a lead layer
on a stainless steel substrate in contact with a stainless steel
sphere. The dimensionless parameters are y=0.33 and «= 1.9,
so the effect of the lead layer is to lower the constriction
resistance. The dimensionless resistances are plotted versus #
in Fig. 5.

The approximation overpredicts the resistance for # less
than 0.5 and underpredicts for # greater than 0.5. The largest
differences of 8 and — 5 percent (relative to R*) occur at the
transition points #=0.1 and #= 1.0, respectively, because the
approximate resistance curve changes siope abruptly at these
points, while the full solution curve changes slope gradually.
The greater difference at the small transition point indicates
that this transition point is less accurate. The approximation
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Table1 Properties of bare specimens

Material e E  » k, g, Hardness
mm GPa W/mK Am
Flat 13A Ni 200 = 204 03 793 0.06 H; 10
Flar 15A  Keewatin TS = 204 03 335 <005 Hte
l(ndheme; Carbon Steel ~ 38.1 207 03 457 <005  H.13$
sphere

*H), is Brinell hardness (kg/mm?),
tH, is Rockwell C hardness number.

Table2 Properties of layered specimens

Silver layer

Nickel substrate

k

E, v )
W/mk

Test )
GPa

t, ym a,

pm

m Hardness E, v Hardness

P

Q
™

14B
14D

60
900

75
75

427
427

0.09

0.3
0.3 0.04

0.03
0.02

H, 103

Hy* 65
H, Hy 103

204 0.3
5 83 204 0.3

*Hp is Rockwell B hardness number.

would be improved for this example by shifting the small #
transition point to #=0.05.

The second example is a layered flat consisting of a
chromium layer on an aluminum substrate in contact with an
aluminum sphere. The dimensionless parameters are y=1.6
and x=0.39, so the chromium layer increases the constriction
resistance. The dimensionless resistances are plotted versus #
in Fig. 6.

The approximation underpredicts the resistance for # less
than 0.12 and overpredicts for # greater than 0.12. The max-
imum difference of § percent occurs at #=0.2. The small #
transition point is again less accurate than the large # transi-
tion point. For this example the approximation would be im-
proved by shifting the small # transition point to #=0.2.

As noted in the two examples, the approximation could be
improved by shifting the small # transition point. However,
the position of this transition appears to depend on the relative
properties of the particular layer/substrate combination. For
the conductive layer, the recommended shift is toward smaller
+ and for the resistive layer, the shift is toward larger 7. The
position of the transition point (#=0.1) appears to be a
reasonable compromise.

Experiment

To verify the analytical models, an experimental test pro-
gram was conducted to provide thermal constriction resistance
measurements for comparison with theoretical predictions.

Apparatus and Procedure. A test column consisting of
four sections was used in the experimental program: source,
test, sphere, and sink. The source and sink specimens were
heat flow meters, used to measure the heat flow rate above
and below the contact. The temperature distributions within
the test and sphere specimens were extrapolated to the contact
plane to determine the temperature difference across the
contact.

Axial loads were applied directly to the test column by a
dead weight loading system, with a load range from 23.9 N to
688 N.

Heat was supplied to the column by a pair of resistive car-
tridge heaters positioned within the source specimen. The heat
flowed axiaily down the column and was removed at the heat
sink by a cold water bath. The column was wrapped in Fibrax
insulation and aluminum foil to reduce heat losses in the radial
direction.

Tests were conducted at a pressure less than 1 x 10-¥ torr to
eliminate convective and conductive heat transfer across the
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contact gap and radially, from the test column. The source
and test specimens were maintained at temperatures below 373
K by using a low heat flow rate (approximately 1 W). In this
manner, radiative heat transfer across the gap and radiative
heat loss from the upper haif of the test column were mini-
mized. At this temperature level, the radiative heat flow rate
across the gap was less than 1 percent of the total heat flow
rate across the contact and could be neglected. The small
temperature difference across the contact also reduced the ef-
fect of thermal strain at the sphere/flat interface.

To remove surface films, the sphere and test specimens were
ultrasonically cleaned before each test in soapy deionized
water and the contact surfaces were wiped with
1,1,1-trichloroethane (C,H;Cl;) as recommended by Hegazy
(1985). S

Test specimens were fabricated from a single rod of com-
mercially pure nickel (Nickel 200). The specimen for Test 15A
was made from Keewatin Tool Steel. The ends of each
specimen were ground and lapped smooth, and a silver layer
was electroplated on one end. The layer surface was lapped
smooth and uniform.

The properties of the bare flat specimens and the steel
sphere are listed in Table 1. A smooth sphere was used so sur-
face roughness effects could be neglected. The properties of
the layered flat specimens are listed in Table 2. Handbook
values (Baumeister, 1978) were used for the elastic modulus E,
and Poisson ratio ». The rms surface roughness ¢, and mean
asperity slope m, were measured with a surface profilometer.
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Hardness values were measured for the bare and layered nickel

flats using Brinell and Rockwell B hardness testers. Hardness -

values measured by McGee et al. (1985) and Kitscha and
Yovanovich (1975) are listed for the bare Keewatin TS flat and
the steel sphere. The layer thickness ¢ was measured at the edge
of the layered specimens by SEM. For one specimen, the
thickness close to the contact spot was measured using eddy
current techniques. The measurements from both techniques
at both locations were of similar magnitude. X-ray energy
spectroscopy of several layered specimens verified that the
layer composition was at least 99 percent silver.

The temperature variation through each specimen was
small. Consequently, the thermal conductivity was assumed
uniform throughout each specimen, dependent only upon the
average specimen temperature T. It was not possible to
measure the conductivity of the thin silver layers, so the hand-
book value for pure silver at temperatures below 373 K was
used (see Table 2).

The experimental contact resistance R was defined as the
temperature difference across the contact AT divided by the
heat flow rate through the contact Q

AT
k=g

(24)
The contact temperature difference was the difference in the
extrapolated average contact plane temperatures, 7',l and 7',z ,

AT=T, -T, @5)

where T, and T,2 corresponded to the test specimen and
sphere, respectively. These temperatures were calculated by
extrapolating the specimen temperature distributions to the
contact plane. For the layered specimens, the contact plane
temperature 7, was assumed to equal the extrapolated
temperature at thc layer-substrate interface because the layer
was thin and of high thermal conductivity. The interface
resistance at the layer-substrate bond was neglected because
the layer was deposited on a clean, smooth substrate. The
resistance of this bond should be about two orders of
magnitude less than the constriction resistance of the contact.

Heat flow rates were measured in both source and sink heat
flow meters. The heat flow rate measured in the source was
always greater than that measured in the sink since heat loss
occurred along the test column. The sink heat flow rate was
used to estimate Q since minimal heat loss occurred on the
sink side of the contact (McGee et al., 1985). Equation (24)
yields the conservative upper limit on the contact resistance
because the sink heat flow rate is the minimum heat flow rate
through the contact.

Experimental Results and Discussion

Bare Flats. Experiments were conducted with bare flats to
establish the accuracy of the experimental procedure by com-
parison to the analytical model previously verified by Kitscha
and Yovanovich (1975). Also, the bare nickel flat
measurements (Test 13A) provided the upper bound on the
constriction resistance for the subsequent tests with
silver-nickel layered flats.

The theoretical resistance for the bare specimens is

1 1
= e———— e ———
4k 4kga @)

If the contact behavior is elastic, the contact spot radius g can
be calculated using Hertzian elastic theory

a= [3Fp,] 173
4E™

where the reduced elastic modulus E* is defined as

o))

254/Vol. 111, MAY 1989

oo

10 JTest 134

- Bare Nickel 200, g *38.Imm

- O -Experiment , R

+ - Prediction from Measured Plastic indentation, R,
F ==« Theory, Elastic Contact, R :

- Theory, Including Archard Correction, R

Test IS5A

RESISTANCE ,R (K/W)

- Bare Keewatin Tool Steef, & »38.1 mm
I el 1 1 1 | A n § -
10 100 800
LOAD,F (N)
Fig. 7 Resistance versus load for bare fiats
A 1= 1A 29

E° . E, | Es

Experimental and theoretical resistances are plotted versus
the applied load in Fig. 7 for the two tests with bare
specimens: Nickel flat (13A) and Keewatin TS flat (15A). The
probable experimental error in the measured resistance was
+8.5 percent and the probable error in the theoretical
resistance due to uncertainty in the material properties is =7
percent. The probable difference between the resistances is
=11 percent and this error bound is included on represent-
ative data points.

The agreement between the theoretical resistance based on
Hertzian elastic theory and the experimental resistance is ex-
cellent for Test 15A. However, Hertzian theory overpredicts
the measured resistance for the high load portion of Test 13A
due to plastic deformation of the nickel flat. At the maximum
load of 688 N, the experimental resistance is 14 percent less
than the elastic theoretical prediction.

Archard (1980) developed a simple technique to estimate the
load ranges for elastic and plastic contact behavior. The
ranges of pure elastic and plastic behavior are defined in terms
of the critical load F,, where the elastic and plastic theories
predict the same value for the contact radius

Fe S ()

£ 29

The hardness H is the hardness of the softer material in
pressure units. The three load ranges are:

(1) pure elastic Fs-lls-F°

(2) elastic-plastic

transition 5T <F<ISF. (30)
(3) pure plastic Fz 15F, J
Transactions of the ASME
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For Test 13A, the nickel flat is the softer material and deter-
mines the onset of plastic behavior. The critical load F, is 2050
N and the elastic-plastic transition load range begins at 135 N.
The onset of plastic behavior for Test 15A is controlled by the
hardness of the steel sphere, which is softer than the Keewatin
TS flat. For this test, F. is 67.6 kN and the transition load
range begins at 4500 N. After Test 13A, the nickel flat had an
indentation of about 750 um radius at the contact spot, but
after Test 15A, neither the Keewatin TS flat nor the hardened
steel sphere had any discernible plastic deformation.

The load range used in the experiments extended from 23.9
N to 688 N. Therefore, for Test 13A the contact behavior is
elastic from 23.9 N to 135 N, and elastic-plastic from 135 N to
688 N. For Test 15A, the contact behavior is elastic for the full
load range.

For loads greater than 135 N, the effect of elastic-plastic
contact behavior must be included in the theoretical resistance
predictions for Test 13A. The contact radius within the elastic-
plastic load range is larger than predicted by either elastic or
plastic theory. Archard (1980) recommended that simple curve
fitting blending the theoretical curves for pure elastic and
plastic deformation be used to estimate the contact radius
within this range.

The theoretical curves for Test 13A are shown in Fig. 8.
Within the elastic-plastic transition range, a straight line join-
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ing the elastic and plastic theoretical curves is chosen as a con-
venient estimate of the contact behavior. Actually, this
estimate should provide the upper bound on the contact radius
within this range. The extended curves for elastic and plastic
deformation provide the lower bound for loads less than and
greater than F_, respectively.

The theoretical curve including Archard’s correction for
elastic-plastic behavior is shown as the solid line on Fig. 7 for
Test 13A. In the elastic-plastic load range, the agreement be-
tween this corrected prediction and the experimental resistance
is excellent, with a maximum difference of 3 percent. The pure
elastic curve is shown as a dashed line for loads greater than
135 N.

After cach test the radius of the resulting plastic indenta-
tion, a,, was measured. The predicted resistance R,,
calculated from a,,, is plotted with a plus ( +) sign in Fig. 7.

Layered Flats. Nickel test specimens with silver layers of
differing thickness were thermally tested in contact with a steel
sphere. In Figs. 9 and 10, experimental resistances are com-
pared to theoretical resistances predicted using the full solu-
tion: Chen and Engel’s solution to the mechanical portion and
Dryden’s solution to the thermal portion. For Test 14B (Fig.
9) x=5.4and 0.1 s r<0.3, while for Test 14D (Fig. 10) x=5.4
and 1.35<r=<4.0. The probable error bound (= 11 percent) is
included on representative data points. The theoretical

- resistance R,,, calculated using the measured plastic indenta-

tion a,,, is plotted with a plus (+) sign.

In general, the agreement between the theoretical and ex-
perimental resistances is good for the layered tests. For loads
less than 135 N, the experimental data are in good agreement
with the theoretical predictions. For loads greater than 135 N,
the contact behavior for Test 14B (Fig. 9) is elastic-plastic due
to plastic yielding of the softer nickel substrate (see Tables 1
and 2). Test 14D does not exhibit this behavior because ttge
hard silver layer is relatively thick. The end of the pure elastic
load range for Test 14B is consistent with the bare mcke{ test
(13A), at approximately 135 N, verifying that the soft mck.el
substrate controls the onset of plastic deformation fox_' this
test. .
Archard’s elastic-plastic correction cannot be directly ap-
plied to the layered tests because the layer and substrate

MAY 1989, Vol. 111/255



materials have different hardness values. Antonetti and
Yovanovich (1985) demonstrated that the contact theory for
bare rough conforming surfaces is applicable to coated rough
conforming surfaces if the effective hardness of the
layer~substrate combination is used. The effective harduess is
obtained from the hardmess distribution for the particular
combination. Therefore, to apply Archard’s technique to the
layered tests, it is suggested that the effective hardness of the
silver/nickel combination be used to predict the critical load.
To estimate the elastic-plastic contact radius for a given load,
several iterations would be required since the effective hard-
ness and contact radius are interrelated.

Conclusions

A simple analytical model has been developed to approx-
imate the thermal constriction resistance of a sphere in elastic
contact with a layered flat. The approximation utilizes the
limiting cases of the mechanical portion of the contact prob-
lem incorporated with Dryden’s solution to the thermal por-
tion. For two examples representing relative extremes in elastic
properties for common metallics, the approximation com-
pares favorably to results obtained using the full mechanical
and thermal solutions to calculate the constriction resistance.

The analytical models have been verified by comparing ex-
perimental resistance measurements to theoretical predictions.

Two different bare flats were tested in contact with a steel
sphere: Nickel 200 and Keewatin TS. Excellent agreement is
observed between the experimental resistances and theoretical
predictions for light loads within the elastic load range. For
the nickel test, elastic theory overpredicts the measured
resistance at heavy loads due to plastic deformation of the
nickel flat. With the theoretical predictions corrected for
elastic-plastic contact behavior, excellent agreement between
experiment and theory is obtained for the full load range.

Two nickel test specimens with silver layers of different
thickness were tested in contact with a steel sphere. Good
agreement is observed between the experimental
measurements and theoretical predictions for light loads. For
heavy loads, elastic theory overpredicts the resistance due to
plastic deformation of the nickel substrate. It is suggested that
the technique used to correct for elastic-plastic behavior of the
bare nickel contact could be applied to the layered contact by
introducing the effective hardness of the layer/substrate
combination.
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APPENDIX

Constriction Parameter for a Layered Half-Space

The constriction parameter y{7) is defined in terms of the
substrate thermal conductivity kg, and is dependent upon the
relative layer thickness 7 and the conductivity ratio «

¥(1)=4dksaR (Al

Dryden (1983) reports expressions for three different ranges of
relative layer thickness. For thin layers (r=<0.01), a linear ap-
proximation is given

r<0.01

4
V=1 +—1§<1 -, (A2)

and for thick layers (r=2), a logarithmic approximation is
provided

W=—-—m(-2),

r22
X X I+«

(A3)

For intermediate layer thicknesses (0.01<7<2), Dryden
presents a series solution

WD =1+l - )
TK

+if: [x-l

o 5 Lax+l

J
] NG@)), 0.01<r<2 (Ad)
where

N@))= [l—e'“] " [ —%‘] +—21—sm"(e“)-— (A3)
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