36t" AIAA Thermophysics Conference
June 23-26 Orlando, Florida
ATAA-2003-4188

THERMAL SPREADING RESISTANCES
IN RECTANGULAR FLUX CHANNELS

PART II - EDGE COOLING

Y.S. Muzychkaf

Faculty of Engineering and Applied Science
Memorial University of Newfoundland

St. John’s, NF, Canada, A1B 3X5

J.R. Culham’ and M.M. Yovanovich*

Microelectronics Heat Transfer Laboratory
Department of Mechanical Engineering
University of Waterloo

Waterloo, ON, Canada, N2L 3G1

ABSTRACT

The effect of edge cooling is addressed in flux tubes
and flux channels. A new analytical solution is ob-
tained for thermal spreading resistance in a rectan-
gular flux channel with edge cooling. This solution
contains many limiting cases, including a previously
published solution for adiabatic edges. Comparisons
are made with the circular flux tube with edge cool-
ing and with adiabatic edges. Simple relationships are
developed for edge cooled systems to assess the im-
portant of edge cooling. This alleviates the issue of
computing or recomputing eigenvalues when the edge
cooling conditions change or have no impact. It is
shown that this simple approach provides good results
for a wide range of dimensionless parameters.

Keywords: Conduction, Spreading Resistance, Heat
Spreaders, Contact Heat Transfer, Electronics Pack-

aging

NOMENCLATURE
a,b radial dimensions, m
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Ay = substrate area, m?>
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Fourier coefficients

Biot number, hL/k

Biot number, h.L/k

Biot number, hep L/k
contact conductance or

film coefficient, W/m? - K
Bessel function of first kind
thermal conductivity, W/m-K
arbitrary length scale, m
indices for summations

heat flow rate,= q;As, W
heat flux, W/m?

thermal resistance, K/W
one-dimensional resistance, K /W
spreading resistance, K /W
total resistance, K /W
dimensionless resistance, = RkL
substrate thickness, m
temperature, K

mean source temperature, K
sink temperature, K

eigenvalues, = /A2, + A2,

eigenvalues

source aspect ratio, = a/b

source aspect ratio, = a/c

source aspect ratio, = b/d
baseplate aspect ratio, = ¢/d
temperature excess, =T — T, K

mean temperature excess, = 1 — T, K



AemsAyn = eigenvalues

¢ = spreading resistance functions

T = relative thickness, = ¢/L
Subscripts

b = Dbase

e = edge

eff = effective

m,n = mt" and n** terms

S = source

t = total

T = x-dir

Y = y-dir

INTRODUCTION

In the second part of this paper, the effect of edge
cooling is examined. A review of the literature shows
that a number of useful solutions for rectangular flux
channels have been obtained for a variety of configu-
rations including: compound and isotropic flux chan-
nels, single and multiple eccentric heat sources, and or-
thotropic spreaders.! ~® One issue not yet examined, is
the effect of edge cooling. This issue has recently been
addressed for circular disks®. This paper addresses
the issue of edge cooling in rectangular flux channels
by presenting a new solution. Further, simple expres-
sions are established to show the relative importance
of edge cooling in thermal resistance calculations. This
is done for both the circular disk and rectangular flux
channel. The need for a simple predictive approach for
edge cooled systems is a result of the fact that for each
unique value of edge heat transfer coefficient, a unique
set of eigenvalues must be tabulated, making compu-
tations more tedious. However, this is not the case for
systems with adiabatic edges. Theoretical results will
be presented for a range of parameters.

PROBLEM STATEMENT

Thermal spreading resistance arises in many elec-
tronic cooling applications where heat enters a domain
through a finite area. In typical applications, the sys-
tem may be idealized as having a central heat source
placed on the upper surface of a substrate or base-
plate, while the lower surface is cooled with a con-
stant conductance which may represent a heat sink,
contact conductance, or convective heat transfer. In
many systems edge cooling may be a significant fac-
tor. In the present solution all edges are assumed to
be cooled with a constant edge heat transfer coefficient
he in the case of a circular flux tube, or different edge
coefficients h. , and h., in the case of a rectangular
flux channel. The region outside of the heat source on
the source plane is taken to be adiabatic.

In this idealized system, the total thermal resistance
of the system may be defined as

(1)

where 6, is the mean source temperature excess and
Q) = ¢qsA; is the total heat input of the device. The
mean source temperature is given by

g, — Ais //A 0(z,y,0) dA, @)

In applications involving adiabatic edges, the total
thermal resistance is composed of two terms: a uni-
form flow or one-dimensional resistance and a spread-
ing or multi-dimensional resistance, which vanishes as
the source area approaches the substrate area. These
two components are combined as follows:

Ry = Rip + R; (3)

When edge cooling is present, the resistance remains
multi-dimensional for all conditions except for the spe-
cial case of he = 0. In this limit, Eq. (3) may be
used to determine the spreading resistance component.
Otherwise for all other values of h., the resistance can-
not be separated into these individual components.

Circular Flux Tubes
In the case of a circular flux tube, as shown in Fig.
1, Laplace’s equation in circular cylinder coordinates
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must be solved in two dimensions.
boundary conditions are prescribed:
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Fig. 1 - Circular Flux Tube with Edge Cooling

The solution to this problem for the total thermal
resistance R;, was recently obtained by one of the
authors®. It may be written in the following dime-

nionless form:

n€ )¢n
Z O3[JE (0n) + JE(0n)] (©)
and
_ \/medy, + Bitanh(0,e\/7T) 7
n = Bi + §pe\/m tanh(d,e4/7T) (

where Rf = Rikv/As, 7 = t/\/As, Bi = h/A/k,
and € = \/A;/A, = a/b, and §,, are the eigenvalues.
The eigenvalues are obtained from application of the
second boundary condition along the disk edges, and
requires numerical solution to the following transcen-
dental equation:

OnJ1(0p) = BieJo(0r) (8)

where §,, = \b, Bi. = h.b/k is the edge Biot number,
and Jo(-) and J;(-) are Bessel functions of the first
kind of order zero and one, respectively. A unique set
of eigenvalues is computed for each value of Bi.. Sim-
plified expressions for predicting the eigenvalues were
developed by Yovanovich® using the Newton-Raphson
method.

It is now clear that the dimensionless total resis-
tance depends upon

Ry = f(e, 1, Bi., Bi) (9)
whereas the dimensional total resistance depends upon

Rt = f(aa b) t: h67 h) (10)

Rectangular Flux Channels
In the case of a rectangular flux channel, as shown
in Fig. 2, Laplace’s equation in cartesian coordinates
0T 0°T 0°T

V2 8x2+6—y?+w:0 (11)

must be solved in three dimensions. The heat source
is placed at the centroid of the flux channel which is
symmetrically cooled along the edges. The following
boundary conditions are prescribed:
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Here h., and h., denote the values of the edge
heat transfer coefficient along the x-edge and y-edge,
respectively.
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Fig. 2 - Rectangular Flux Channel with Edge
Cooling

Presently, no solution exists for this configuration.
Thermal spreading resistance in a rectangular flux
channel with adiabatic edges was recently obtained by
the authors.® The solution methodology is the same
and the resulting solution is quite similar, with the ex-
ception of the definition of the eigenvalues. The solu-
tion for an isotropic flux channel with edge cooling may
be obtained by means of separation of variables.?—!!



The solution is assumed to have the form 6(z,y,z) =
X(z) *Y (y) * Z(z), where 0(z,y,2) = T(z,y,z) — Ty.
Applying the method of separation of variables yields
the following general solution for the temperature ex-
cess in the substrate which satisfies the thermal bound-
ary conditions along the two planes of symmetry, z = 0
and y = 0:

oo o0

O(x,y,z) = Z Z c08(Azm ) cos(Ayny) X

m=1n=1

where Aem, Ayn, and Bmn = /A%, + A2, are the
eigenvalues. The eigenvalues are obtained from the

following equations:

Ozm SIN(0zm) = Bie z cOS(0pm,) (14)

and

Oyn SIN(0yrn) = Bie y cos(0yn) (15)
where Bie g = he gc/k, Oom = AgmC, Biey = heyd/k,
and dyn, = Aynd. These equations must be solved nu-
merically for a finite number of eigenvalues for each
specified value of the edge cooling Biot numbers. The
separation constant (3,,, is now defined as

S R

Application of the lower surface boundary condition
yields the following relation

Amn = _an : ¢mn (17)

where

Bmnt + ﬂtanh(ﬁmnt)
¢mn = k

(18)

t
z + ﬂmnttanh(ﬂmnt)

The final Fourier coefficients may be obtained by
taking a double Fourier expansion of the upper sur-
face condition. This yields the following expression:

Lo | costmais | " cos(hni)dy
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(19)
Upon evaluation of the integrals one obtains

B. = —(Q/k) sin(dzma/c) sin(dynb/d)
T b B S0 (26,2m) /2 + O] [SI1(204n) /2 + Oyn]
(20)

With both Fourier coefficients now known, the mean
surface temperature excess may be found from Eq. (2).
Using this result and Eq. (1), the total resistance be-
comes:
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(21)

The total resistance now depends on

Rt = f(aabyca dat)kah)he,:t)he,y) (22)

The total resistance may be non-dimensionalized us-

ing £ = /A, = 2Vab to give:
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where

_ {+ Bitanh(¢T)
Gmn = Bi + ¢ tanh(éT) 24)
and
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Thus, the dimensionless total resistance depends
upon

Ry = f(eg, €y, €, 7, Bi, Bic g, Bic ) (26)

where €, = a/ec, ¢, = b/d, &, = c/d, T = t/\/As,
Bi = h/Ag |k, Biey = he yc/k, Biey = he,d/k, and

This general result has many geometric special
cases. These include: semi-infinite flux tubes t — oo,
infinite plate ¢,d — oo, half-space t,c,d — oo, three
dimensional strips b = d or a = ¢, and adiabatic edges
hex = 0 and h., — 0. A particular interesting prop-
erty is the case when adiabtic edges are present. It
can be shown in this case, that when Bi., — 0 and
Bi, , — 0, the double summation which represents the
total resistance, consists of the one dimensional resis-
tance when m = n = 1 and the spreading resistance
when the remaining terms are summed.



In the next section these two solutions are exam-
ined, and it is shown that considerable computational
effort is saved by modelling the rectangular system as
an equivalent circular disk for a wide range of channel
aspect ratios.

ANALYSIS

Given the solutions for the circular disk and rectan-
gular flux channel with edge cooling, it is now possible
to show that there exists a physical equivalence be-
tween these systems and systems with adiabatic edges,
Figs. 3 and 4. In determining this equivalence, we
choose to maintain the total convective heat transfer
rate at the edges and bottom surface. This is achieved
by means of the following energy balance

Qtotal = Qbase + Qedges (27)

or
heffAb(Tb—Tf) = thb(Tb—Tf)-FheAe(Te—Tf) (28)

For small aspect ratios € and thin substrates T,
T, ~ T, which leads to the following condition:

heffAb = hAp + h.A. (29)

where h.gs is an effective bottom surface heat transfer
coefficient.
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Fig. 3 - Circular Flux Tube with Edge Cooling
Transferred to Bottom Surface
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Fig. 4 - Rectangular Flux Channel with Edge
Cooling Transferred to Bottom Surface

Using the edge and lower surface areas of the disk
it may be shown that

Bi,
Biuys = Bi <1 + ?227?%2) (30)

where Bi.pp = heff\/A_s/k is the effective Biot num-
ber for the lower surface of a flux tube with adiabatic
edges. The edge cooling Biot number is Bi, = heb/k,
and 7 = t/\/Ay, € = \/As/Ap, and Bi = h\/A,/k are
defined as before. It may now be seen from this expres-
sion that when the edge cooling Biot number is small
and/or the relative thickness and/or relative contact
are small, the effect of edge cooling is negligible. In
otherwords when,

Bi,
Bi

27’ — 0 (31)



edge cooling can be neglected regardless of its magni-
tude.

Similarly, for the rectangular flux channel, we may
obtain a similar result which now contains the two
edge cooling Biot numbers Bi., and Bi,., in addi-
tion to the relative contact parameters €, = a/c and
€y, = b/d, such that

Bi.s = Bi [1 + <M> 47%64 (32)
Bi
where B’ieff = heff\/A_s/k, B’iew = he7mc/k, B’L.&y =
heyd/k, and Bi = hy/A k.

Once again, similar behavior is seen in terms of the
relative significance of edge cooling. In otherwords
when,

(Bz'm + B,

B ) 4reze, — 0 (33)

edge cooling in the rectangular flux channel may be
neglected regardless of its magnitude.

Finally, it can also be shown that the equivalent
rectangular flux channel with edge cooling can be mod-
elled as an equivalent circular disk with edge cooling
using the results of Part I of this paper provided that

hewC+ heoyd

he = 4
c+d (34)
in addition to
ae =/ Ag/m
be = /Au/7 (35)
t=t

RESULTS AND DISCUSSION

We may now examine the influence of edge cool-
ing in the flux tube and/or channel. For simplic-
ity, only the flux tube solution is considered, since it
only depends upon four variables whereas the rectan-
gular flux channel depends upon seven variables. In
the computations 200 terms were used in Eq. (6) to
provide four decimal place accuracy. The solution for
the circular flux tube with edge cooling is plotted in
Figs. 5-13 for a range of dimensionless thicknesses and
source aspect ratio. Nine combinations of lower sur-
face Bt number and edge Bi, number are considered.
These are obtained by choosing B: = 1,10,100 and
Bi, = 1,10,100. It is clear from the figures that the
total resistance for adiabatic and edge cooled systems
are equivalent, when source aspect ratio is small and
relative thickness is small. However, for larger values
of edge Biot number and in systems with large source
aspect ratios and/or large relative thickness, the ef-

fect of edge cooling becomes important and cannot be
neglected.

SUMMARY AND CONCLUSIONS

This paper examined the issue of edge cooling in cir-
cular flux tubes and rectangular flux channels. A new
solution was obtained for the rectangular flux chan-
nel with edge cooling. This solution was shown to
have many special limiting cases. Simple expressions
were developed for predicting the impact of edge cool-
ing. Comparisons were made with the exact solution
for edge cooling and the solution for flux tubes with
adiabatic edges. This simplified approach allows for
efficient computation as the eignevalues are only com-
puted once in systems with adiabatic edges. Finally,
it can be shown using the results of Part I of this pa-
per that, that rectangular edge cooled systems can be
modelled as an equivalent circular disk with edge cool-
ing for a wide range of dimensionless parameters.
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